JITCodeEmitter.h revision f3b11aa6a72e0c31066a60c2e888e7a5eb5f2399
1//===-- llvm/CodeGen/JITCodeEmitter.h - Code emission ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an abstract interface that is used by the machine code
11// emission framework to output the code.  This allows machine code emission to
12// be separated from concerns such as resolution of call targets, and where the
13// machine code will be written (memory or disk, f.e.).
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CODEGEN_JITCODEEMITTER_H
18#define LLVM_CODEGEN_JITCODEEMITTER_H
19
20#include <string>
21#include "llvm/System/DataTypes.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/CodeGen/MachineCodeEmitter.h"
24
25using namespace std;
26
27namespace llvm {
28
29class MachineBasicBlock;
30class MachineConstantPool;
31class MachineJumpTableInfo;
32class MachineFunction;
33class MachineModuleInfo;
34class MachineRelocation;
35class Value;
36class GlobalValue;
37class Function;
38
39/// JITCodeEmitter - This class defines two sorts of methods: those for
40/// emitting the actual bytes of machine code, and those for emitting auxillary
41/// structures, such as jump tables, relocations, etc.
42///
43/// Emission of machine code is complicated by the fact that we don't (in
44/// general) know the size of the machine code that we're about to emit before
45/// we emit it.  As such, we preallocate a certain amount of memory, and set the
46/// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
47/// emit machine instructions, we advance the CurBufferPtr to indicate the
48/// location of the next byte to emit.  In the case of a buffer overflow (we
49/// need to emit more machine code than we have allocated space for), the
50/// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
51/// function has been emitted, the overflow condition is checked, and if it has
52/// occurred, more memory is allocated, and we reemit the code into it.
53///
54class JITCodeEmitter : public MachineCodeEmitter {
55public:
56  virtual ~JITCodeEmitter() {}
57
58  /// startFunction - This callback is invoked when the specified function is
59  /// about to be code generated.  This initializes the BufferBegin/End/Ptr
60  /// fields.
61  ///
62  virtual void startFunction(MachineFunction &F) = 0;
63
64  /// finishFunction - This callback is invoked when the specified function has
65  /// finished code generation.  If a buffer overflow has occurred, this method
66  /// returns true (the callee is required to try again), otherwise it returns
67  /// false.
68  ///
69  virtual bool finishFunction(MachineFunction &F) = 0;
70
71  /// allocIndirectGV - Allocates and fills storage for an indirect
72  /// GlobalValue, and returns the address.
73  virtual void *allocIndirectGV(const GlobalValue *GV,
74                                const uint8_t *Buffer, size_t Size,
75                                unsigned Alignment) = 0;
76
77  /// emitByte - This callback is invoked when a byte needs to be written to the
78  /// output stream.
79  ///
80  void emitByte(uint8_t B) {
81    if (CurBufferPtr != BufferEnd)
82      *CurBufferPtr++ = B;
83  }
84
85  /// emitWordLE - This callback is invoked when a 32-bit word needs to be
86  /// written to the output stream in little-endian format.
87  ///
88  void emitWordLE(uint32_t W) {
89    if (4 <= BufferEnd-CurBufferPtr) {
90      *CurBufferPtr++ = (uint8_t)(W >>  0);
91      *CurBufferPtr++ = (uint8_t)(W >>  8);
92      *CurBufferPtr++ = (uint8_t)(W >> 16);
93      *CurBufferPtr++ = (uint8_t)(W >> 24);
94    } else {
95      CurBufferPtr = BufferEnd;
96    }
97  }
98
99  /// emitWordBE - This callback is invoked when a 32-bit word needs to be
100  /// written to the output stream in big-endian format.
101  ///
102  void emitWordBE(uint32_t W) {
103    if (4 <= BufferEnd-CurBufferPtr) {
104      *CurBufferPtr++ = (uint8_t)(W >> 24);
105      *CurBufferPtr++ = (uint8_t)(W >> 16);
106      *CurBufferPtr++ = (uint8_t)(W >>  8);
107      *CurBufferPtr++ = (uint8_t)(W >>  0);
108    } else {
109      CurBufferPtr = BufferEnd;
110    }
111  }
112
113  /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
114  /// written to the output stream in little-endian format.
115  ///
116  void emitDWordLE(uint64_t W) {
117    if (8 <= BufferEnd-CurBufferPtr) {
118      *CurBufferPtr++ = (uint8_t)(W >>  0);
119      *CurBufferPtr++ = (uint8_t)(W >>  8);
120      *CurBufferPtr++ = (uint8_t)(W >> 16);
121      *CurBufferPtr++ = (uint8_t)(W >> 24);
122      *CurBufferPtr++ = (uint8_t)(W >> 32);
123      *CurBufferPtr++ = (uint8_t)(W >> 40);
124      *CurBufferPtr++ = (uint8_t)(W >> 48);
125      *CurBufferPtr++ = (uint8_t)(W >> 56);
126    } else {
127      CurBufferPtr = BufferEnd;
128    }
129  }
130
131  /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
132  /// written to the output stream in big-endian format.
133  ///
134  void emitDWordBE(uint64_t W) {
135    if (8 <= BufferEnd-CurBufferPtr) {
136      *CurBufferPtr++ = (uint8_t)(W >> 56);
137      *CurBufferPtr++ = (uint8_t)(W >> 48);
138      *CurBufferPtr++ = (uint8_t)(W >> 40);
139      *CurBufferPtr++ = (uint8_t)(W >> 32);
140      *CurBufferPtr++ = (uint8_t)(W >> 24);
141      *CurBufferPtr++ = (uint8_t)(W >> 16);
142      *CurBufferPtr++ = (uint8_t)(W >>  8);
143      *CurBufferPtr++ = (uint8_t)(W >>  0);
144    } else {
145      CurBufferPtr = BufferEnd;
146    }
147  }
148
149  /// emitAlignment - Move the CurBufferPtr pointer up to the specified
150  /// alignment (saturated to BufferEnd of course).
151  void emitAlignment(unsigned Alignment) {
152    if (Alignment == 0) Alignment = 1;
153    uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
154                                                   Alignment);
155    CurBufferPtr = std::min(NewPtr, BufferEnd);
156  }
157
158  /// emitAlignmentWithFill - Similar to emitAlignment, except that the
159  /// extra bytes are filled with the provided byte.
160  void emitAlignmentWithFill(unsigned Alignment, uint8_t Fill) {
161    if (Alignment == 0) Alignment = 1;
162    uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
163                                                   Alignment);
164    // Fail if we don't have room.
165    if (NewPtr > BufferEnd) {
166      CurBufferPtr = BufferEnd;
167      return;
168    }
169    while (CurBufferPtr < NewPtr) {
170      *CurBufferPtr++ = Fill;
171    }
172  }
173
174  /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
175  /// written to the output stream.
176  void emitULEB128Bytes(uint64_t Value) {
177    do {
178      uint8_t Byte = Value & 0x7f;
179      Value >>= 7;
180      if (Value) Byte |= 0x80;
181      emitByte(Byte);
182    } while (Value);
183  }
184
185  /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
186  /// written to the output stream.
187  void emitSLEB128Bytes(int64_t Value) {
188    int32_t Sign = Value >> (8 * sizeof(Value) - 1);
189    bool IsMore;
190
191    do {
192      uint8_t Byte = Value & 0x7f;
193      Value >>= 7;
194      IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
195      if (IsMore) Byte |= 0x80;
196      emitByte(Byte);
197    } while (IsMore);
198  }
199
200  /// emitString - This callback is invoked when a String needs to be
201  /// written to the output stream.
202  void emitString(const std::string &String) {
203    for (unsigned i = 0, N = static_cast<unsigned>(String.size());
204         i < N; ++i) {
205      uint8_t C = String[i];
206      emitByte(C);
207    }
208    emitByte(0);
209  }
210
211  /// emitInt32 - Emit a int32 directive.
212  void emitInt32(uint32_t Value) {
213    if (4 <= BufferEnd-CurBufferPtr) {
214      *((uint32_t*)CurBufferPtr) = Value;
215      CurBufferPtr += 4;
216    } else {
217      CurBufferPtr = BufferEnd;
218    }
219  }
220
221  /// emitInt64 - Emit a int64 directive.
222  void emitInt64(uint64_t Value) {
223    if (8 <= BufferEnd-CurBufferPtr) {
224      *((uint64_t*)CurBufferPtr) = Value;
225      CurBufferPtr += 8;
226    } else {
227      CurBufferPtr = BufferEnd;
228    }
229  }
230
231  /// emitInt32At - Emit the Int32 Value in Addr.
232  void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
233    if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
234      (*(uint32_t*)Addr) = (uint32_t)Value;
235  }
236
237  /// emitInt64At - Emit the Int64 Value in Addr.
238  void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
239    if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
240      (*(uint64_t*)Addr) = (uint64_t)Value;
241  }
242
243
244  /// emitLabel - Emits a label
245  virtual void emitLabel(uint64_t LabelID) = 0;
246
247  /// allocateSpace - Allocate a block of space in the current output buffer,
248  /// returning null (and setting conditions to indicate buffer overflow) on
249  /// failure.  Alignment is the alignment in bytes of the buffer desired.
250  virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
251    emitAlignment(Alignment);
252    void *Result;
253
254    // Check for buffer overflow.
255    if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
256      CurBufferPtr = BufferEnd;
257      Result = 0;
258    } else {
259      // Allocate the space.
260      Result = CurBufferPtr;
261      CurBufferPtr += Size;
262    }
263
264    return Result;
265  }
266
267  /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
268  /// this method does not allocate memory in the current output buffer,
269  /// because a global may live longer than the current function.
270  virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment) = 0;
271
272  /// StartMachineBasicBlock - This should be called by the target when a new
273  /// basic block is about to be emitted.  This way the MCE knows where the
274  /// start of the block is, and can implement getMachineBasicBlockAddress.
275  virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
276
277  /// getCurrentPCValue - This returns the address that the next emitted byte
278  /// will be output to.
279  ///
280  virtual uintptr_t getCurrentPCValue() const {
281    return (uintptr_t)CurBufferPtr;
282  }
283
284  /// getCurrentPCOffset - Return the offset from the start of the emitted
285  /// buffer that we are currently writing to.
286  uintptr_t getCurrentPCOffset() const {
287    return CurBufferPtr-BufferBegin;
288  }
289
290  /// earlyResolveAddresses - True if the code emitter can use symbol addresses
291  /// during code emission time. The JIT is capable of doing this because it
292  /// creates jump tables or constant pools in memory on the fly while the
293  /// object code emitters rely on a linker to have real addresses and should
294  /// use relocations instead.
295  bool earlyResolveAddresses() const { return true; }
296
297  /// addRelocation - Whenever a relocatable address is needed, it should be
298  /// noted with this interface.
299  virtual void addRelocation(const MachineRelocation &MR) = 0;
300
301  /// FIXME: These should all be handled with relocations!
302
303  /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
304  /// the constant pool that was last emitted with the emitConstantPool method.
305  ///
306  virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
307
308  /// getJumpTableEntryAddress - Return the address of the jump table with index
309  /// 'Index' in the function that last called initJumpTableInfo.
310  ///
311  virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
312
313  /// getMachineBasicBlockAddress - Return the address of the specified
314  /// MachineBasicBlock, only usable after the label for the MBB has been
315  /// emitted.
316  ///
317  virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
318
319  /// getLabelAddress - Return the address of the specified LabelID, only usable
320  /// after the LabelID has been emitted.
321  ///
322  virtual uintptr_t getLabelAddress(uint64_t LabelID) const = 0;
323
324  /// Specifies the MachineModuleInfo object. This is used for exception handling
325  /// purposes.
326  virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
327};
328
329} // End llvm namespace
330
331#endif
332