1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariables analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using a sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30#define LLVM_CODEGEN_LIVEVARIABLES_H
31
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/IndexedMap.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/SparseBitVector.h"
37#include "llvm/CodeGen/MachineFunctionPass.h"
38#include "llvm/CodeGen/MachineInstr.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40
41namespace llvm {
42
43class MachineBasicBlock;
44class MachineRegisterInfo;
45
46class LiveVariables : public MachineFunctionPass {
47public:
48  static char ID; // Pass identification, replacement for typeid
49  LiveVariables() : MachineFunctionPass(ID) {
50    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51  }
52
53  /// VarInfo - This represents the regions where a virtual register is live in
54  /// the program.  We represent this with three different pieces of
55  /// information: the set of blocks in which the instruction is live
56  /// throughout, the set of blocks in which the instruction is actually used,
57  /// and the set of non-phi instructions that are the last users of the value.
58  ///
59  /// In the common case where a value is defined and killed in the same block,
60  /// There is one killing instruction, and AliveBlocks is empty.
61  ///
62  /// Otherwise, the value is live out of the block.  If the value is live
63  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
64  /// where the liveness range ends are not included in AliveBlocks, instead
65  /// being captured by the Kills set.  In these blocks, the value is live into
66  /// the block (unless the value is defined and killed in the same block) and
67  /// lives until the specified instruction.  Note that there cannot ever be a
68  /// value whose Kills set contains two instructions from the same basic block.
69  ///
70  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
71  /// value in one of its predecessor blocks, it is not listed in the kills set,
72  /// but does include the predecessor block in the AliveBlocks set (unless that
73  /// block also defines the value).  This leads to the (perfectly sensical)
74  /// situation where a value is defined in a block, and the last use is a phi
75  /// node in the successor.  In this case, AliveBlocks is empty (the value is
76  /// not live across any  blocks) and Kills is empty (phi nodes are not
77  /// included). This is sensical because the value must be live to the end of
78  /// the block, but is not live in any successor blocks.
79  struct VarInfo {
80    /// AliveBlocks - Set of blocks in which this value is alive completely
81    /// through.  This is a bit set which uses the basic block number as an
82    /// index.
83    ///
84    SparseBitVector<> AliveBlocks;
85
86    /// Kills - List of MachineInstruction's which are the last use of this
87    /// virtual register (kill it) in their basic block.
88    ///
89    std::vector<MachineInstr*> Kills;
90
91    /// removeKill - Delete a kill corresponding to the specified
92    /// machine instruction. Returns true if there was a kill
93    /// corresponding to this instruction, false otherwise.
94    bool removeKill(MachineInstr *MI) {
95      std::vector<MachineInstr*>::iterator
96        I = std::find(Kills.begin(), Kills.end(), MI);
97      if (I == Kills.end())
98        return false;
99      Kills.erase(I);
100      return true;
101    }
102
103    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
104    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
105
106    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
107    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
108    /// MBB, it is not considered live in.
109    bool isLiveIn(const MachineBasicBlock &MBB,
110                  unsigned Reg,
111                  MachineRegisterInfo &MRI);
112
113    void dump() const;
114  };
115
116private:
117  /// VirtRegInfo - This list is a mapping from virtual register number to
118  /// variable information.
119  ///
120  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
121
122  /// PHIJoins - list of virtual registers that are PHI joins. These registers
123  /// may have multiple definitions, and they require special handling when
124  /// building live intervals.
125  SparseBitVector<> PHIJoins;
126
127private:   // Intermediate data structures
128  MachineFunction *MF;
129
130  MachineRegisterInfo* MRI;
131
132  const TargetRegisterInfo *TRI;
133
134  // PhysRegInfo - Keep track of which instruction was the last def of a
135  // physical register. This is a purely local property, because all physical
136  // register references are presumed dead across basic blocks.
137  MachineInstr **PhysRegDef;
138
139  // PhysRegInfo - Keep track of which instruction was the last use of a
140  // physical register. This is a purely local property, because all physical
141  // register references are presumed dead across basic blocks.
142  MachineInstr **PhysRegUse;
143
144  SmallVector<unsigned, 4> *PHIVarInfo;
145
146  // DistanceMap - Keep track the distance of a MI from the start of the
147  // current basic block.
148  DenseMap<MachineInstr*, unsigned> DistanceMap;
149
150  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
151  /// uses. Pay special attention to the sub-register uses which may come below
152  /// the last use of the whole register.
153  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
154
155  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
156  void HandleRegMask(const MachineOperand&);
157
158  void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
159  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
160                        SmallVectorImpl<unsigned> &Defs);
161  void UpdatePhysRegDefs(MachineInstr *MI, SmallVectorImpl<unsigned> &Defs);
162
163  /// FindLastRefOrPartRef - Return the last reference or partial reference of
164  /// the specified register.
165  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
166
167  /// FindLastPartialDef - Return the last partial def of the specified
168  /// register. Also returns the sub-registers that're defined by the
169  /// instruction.
170  MachineInstr *FindLastPartialDef(unsigned Reg,
171                                   SmallSet<unsigned,4> &PartDefRegs);
172
173  /// analyzePHINodes - Gather information about the PHI nodes in here. In
174  /// particular, we want to map the variable information of a virtual
175  /// register which is used in a PHI node. We map that to the BB the vreg
176  /// is coming from.
177  void analyzePHINodes(const MachineFunction& Fn);
178public:
179
180  bool runOnMachineFunction(MachineFunction &MF) override;
181
182  /// RegisterDefIsDead - Return true if the specified instruction defines the
183  /// specified register, but that definition is dead.
184  bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
185
186  //===--------------------------------------------------------------------===//
187  //  API to update live variable information
188
189  /// replaceKillInstruction - Update register kill info by replacing a kill
190  /// instruction with a new one.
191  void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
192                              MachineInstr *NewMI);
193
194  /// addVirtualRegisterKilled - Add information about the fact that the
195  /// specified register is killed after being used by the specified
196  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
197  /// not found.
198  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
199                                bool AddIfNotFound = false) {
200    if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
201      getVarInfo(IncomingReg).Kills.push_back(MI);
202  }
203
204  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
205  /// register from the live variable information. Returns true if the
206  /// variable was marked as killed by the specified instruction,
207  /// false otherwise.
208  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
209    if (!getVarInfo(reg).removeKill(MI))
210      return false;
211
212    bool Removed = false;
213    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
214      MachineOperand &MO = MI->getOperand(i);
215      if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
216        MO.setIsKill(false);
217        Removed = true;
218        break;
219      }
220    }
221
222    assert(Removed && "Register is not used by this instruction!");
223    (void)Removed;
224    return true;
225  }
226
227  /// removeVirtualRegistersKilled - Remove all killed info for the specified
228  /// instruction.
229  void removeVirtualRegistersKilled(MachineInstr *MI);
230
231  /// addVirtualRegisterDead - Add information about the fact that the specified
232  /// register is dead after being used by the specified instruction. If
233  /// AddIfNotFound is true, add a implicit operand if it's not found.
234  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
235                              bool AddIfNotFound = false) {
236    if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
237      getVarInfo(IncomingReg).Kills.push_back(MI);
238  }
239
240  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
241  /// register from the live variable information. Returns true if the
242  /// variable was marked dead at the specified instruction, false
243  /// otherwise.
244  bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
245    if (!getVarInfo(reg).removeKill(MI))
246      return false;
247
248    bool Removed = false;
249    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
250      MachineOperand &MO = MI->getOperand(i);
251      if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
252        MO.setIsDead(false);
253        Removed = true;
254        break;
255      }
256    }
257    assert(Removed && "Register is not defined by this instruction!");
258    (void)Removed;
259    return true;
260  }
261
262  void getAnalysisUsage(AnalysisUsage &AU) const override;
263
264  void releaseMemory() override {
265    VirtRegInfo.clear();
266  }
267
268  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
269  /// register.
270  VarInfo &getVarInfo(unsigned RegIdx);
271
272  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
273                               MachineBasicBlock *BB);
274  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
275                               MachineBasicBlock *BB,
276                               std::vector<MachineBasicBlock*> &WorkList);
277  void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
278  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
279                        MachineInstr *MI);
280
281  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
282    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
283  }
284
285  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
286  /// PHI nodes. This means that Reg is either killed by a successor block or
287  /// passed through one.
288  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
289
290  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
291  /// variables that are live out of DomBB and live into SuccBB will be marked
292  /// as passing live through BB. This method assumes that the machine code is
293  /// still in SSA form.
294  void addNewBlock(MachineBasicBlock *BB,
295                   MachineBasicBlock *DomBB,
296                   MachineBasicBlock *SuccBB);
297
298  /// isPHIJoin - Return true if Reg is a phi join register.
299  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
300
301  /// setPHIJoin - Mark Reg as a phi join register.
302  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
303};
304
305} // End llvm namespace
306
307#endif
308