MachineBasicBlock.h revision 258c58cc6257cf61c9bdbb9c4cea67ba2691adf0
1//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/ADT/GraphTraits.h"
19
20namespace llvm {
21
22class Pass;
23class BasicBlock;
24class MachineFunction;
25class MCSymbol;
26class StringRef;
27class raw_ostream;
28
29template <>
30struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
31private:
32  mutable ilist_half_node<MachineInstr> Sentinel;
33
34  // this is only set by the MachineBasicBlock owning the LiveList
35  friend class MachineBasicBlock;
36  MachineBasicBlock* Parent;
37
38public:
39  MachineInstr *createSentinel() const {
40    return static_cast<MachineInstr*>(&Sentinel);
41  }
42  void destroySentinel(MachineInstr *) const {}
43
44  MachineInstr *provideInitialHead() const { return createSentinel(); }
45  MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
46  static void noteHead(MachineInstr*, MachineInstr*) {}
47
48  void addNodeToList(MachineInstr* N);
49  void removeNodeFromList(MachineInstr* N);
50  void transferNodesFromList(ilist_traits &SrcTraits,
51                             ilist_iterator<MachineInstr> first,
52                             ilist_iterator<MachineInstr> last);
53  void deleteNode(MachineInstr *N);
54private:
55  void createNode(const MachineInstr &);
56};
57
58class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
59  typedef ilist<MachineInstr> Instructions;
60  Instructions Insts;
61  const BasicBlock *BB;
62  int Number;
63  MachineFunction *xParent;
64
65  /// Predecessors/Successors - Keep track of the predecessor / successor
66  /// basicblocks.
67  std::vector<MachineBasicBlock *> Predecessors;
68  std::vector<MachineBasicBlock *> Successors;
69
70  /// LiveIns - Keep track of the physical registers that are livein of
71  /// the basicblock.
72  std::vector<unsigned> LiveIns;
73
74  /// Alignment - Alignment of the basic block. Zero if the basic block does
75  /// not need to be aligned.
76  unsigned Alignment;
77
78  /// IsLandingPad - Indicate that this basic block is entered via an
79  /// exception handler.
80  bool IsLandingPad;
81
82  /// AddressTaken - Indicate that this basic block is potentially the
83  /// target of an indirect branch.
84  bool AddressTaken;
85
86  // Intrusive list support
87  MachineBasicBlock() {}
88
89  explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
90
91  ~MachineBasicBlock();
92
93  // MachineBasicBlocks are allocated and owned by MachineFunction.
94  friend class MachineFunction;
95
96public:
97  /// getBasicBlock - Return the LLVM basic block that this instance
98  /// corresponded to originally. Note that this may be NULL if this instance
99  /// does not correspond directly to an LLVM basic block.
100  ///
101  const BasicBlock *getBasicBlock() const { return BB; }
102
103  /// getName - Return the name of the corresponding LLVM basic block, or
104  /// "(null)".
105  StringRef getName() const;
106
107  /// hasAddressTaken - Test whether this block is potentially the target
108  /// of an indirect branch.
109  bool hasAddressTaken() const { return AddressTaken; }
110
111  /// setHasAddressTaken - Set this block to reflect that it potentially
112  /// is the target of an indirect branch.
113  void setHasAddressTaken() { AddressTaken = true; }
114
115  /// getParent - Return the MachineFunction containing this basic block.
116  ///
117  const MachineFunction *getParent() const { return xParent; }
118  MachineFunction *getParent() { return xParent; }
119
120  typedef Instructions::iterator                              iterator;
121  typedef Instructions::const_iterator                  const_iterator;
122  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
123  typedef std::reverse_iterator<iterator>             reverse_iterator;
124
125  unsigned size() const { return (unsigned)Insts.size(); }
126  bool empty() const { return Insts.empty(); }
127
128  MachineInstr& front() { return Insts.front(); }
129  MachineInstr& back()  { return Insts.back(); }
130  const MachineInstr& front() const { return Insts.front(); }
131  const MachineInstr& back()  const { return Insts.back(); }
132
133  iterator                begin()       { return Insts.begin();  }
134  const_iterator          begin() const { return Insts.begin();  }
135  iterator                  end()       { return Insts.end();    }
136  const_iterator            end() const { return Insts.end();    }
137  reverse_iterator       rbegin()       { return Insts.rbegin(); }
138  const_reverse_iterator rbegin() const { return Insts.rbegin(); }
139  reverse_iterator       rend  ()       { return Insts.rend();   }
140  const_reverse_iterator rend  () const { return Insts.rend();   }
141
142  // Machine-CFG iterators
143  typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
144  typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
145  typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
146  typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
147  typedef std::vector<MachineBasicBlock *>::reverse_iterator
148                                                         pred_reverse_iterator;
149  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
150                                                   const_pred_reverse_iterator;
151  typedef std::vector<MachineBasicBlock *>::reverse_iterator
152                                                         succ_reverse_iterator;
153  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
154                                                   const_succ_reverse_iterator;
155
156  pred_iterator        pred_begin()       { return Predecessors.begin(); }
157  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
158  pred_iterator        pred_end()         { return Predecessors.end();   }
159  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
160  pred_reverse_iterator        pred_rbegin()
161                                          { return Predecessors.rbegin();}
162  const_pred_reverse_iterator  pred_rbegin() const
163                                          { return Predecessors.rbegin();}
164  pred_reverse_iterator        pred_rend()
165                                          { return Predecessors.rend();  }
166  const_pred_reverse_iterator  pred_rend()   const
167                                          { return Predecessors.rend();  }
168  unsigned             pred_size()  const {
169    return (unsigned)Predecessors.size();
170  }
171  bool                 pred_empty() const { return Predecessors.empty(); }
172  succ_iterator        succ_begin()       { return Successors.begin();   }
173  const_succ_iterator  succ_begin() const { return Successors.begin();   }
174  succ_iterator        succ_end()         { return Successors.end();     }
175  const_succ_iterator  succ_end()   const { return Successors.end();     }
176  succ_reverse_iterator        succ_rbegin()
177                                          { return Successors.rbegin();  }
178  const_succ_reverse_iterator  succ_rbegin() const
179                                          { return Successors.rbegin();  }
180  succ_reverse_iterator        succ_rend()
181                                          { return Successors.rend();    }
182  const_succ_reverse_iterator  succ_rend()   const
183                                          { return Successors.rend();    }
184  unsigned             succ_size()  const {
185    return (unsigned)Successors.size();
186  }
187  bool                 succ_empty() const { return Successors.empty();   }
188
189  // LiveIn management methods.
190
191  /// addLiveIn - Add the specified register as a live in.  Note that it
192  /// is an error to add the same register to the same set more than once.
193  void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
194
195  /// removeLiveIn - Remove the specified register from the live in set.
196  ///
197  void removeLiveIn(unsigned Reg);
198
199  /// isLiveIn - Return true if the specified register is in the live in set.
200  ///
201  bool isLiveIn(unsigned Reg) const;
202
203  // Iteration support for live in sets.  These sets are kept in sorted
204  // order by their register number.
205  typedef std::vector<unsigned>::const_iterator livein_iterator;
206  livein_iterator livein_begin() const { return LiveIns.begin(); }
207  livein_iterator livein_end()   const { return LiveIns.end(); }
208  bool            livein_empty() const { return LiveIns.empty(); }
209
210  /// getAlignment - Return alignment of the basic block.
211  ///
212  unsigned getAlignment() const { return Alignment; }
213
214  /// setAlignment - Set alignment of the basic block.
215  ///
216  void setAlignment(unsigned Align) { Alignment = Align; }
217
218  /// isLandingPad - Returns true if the block is a landing pad. That is
219  /// this basic block is entered via an exception handler.
220  bool isLandingPad() const { return IsLandingPad; }
221
222  /// setIsLandingPad - Indicates the block is a landing pad.  That is
223  /// this basic block is entered via an exception handler.
224  void setIsLandingPad() { IsLandingPad = true; }
225
226  // Code Layout methods.
227
228  /// moveBefore/moveAfter - move 'this' block before or after the specified
229  /// block.  This only moves the block, it does not modify the CFG or adjust
230  /// potential fall-throughs at the end of the block.
231  void moveBefore(MachineBasicBlock *NewAfter);
232  void moveAfter(MachineBasicBlock *NewBefore);
233
234  /// updateTerminator - Update the terminator instructions in block to account
235  /// for changes to the layout. If the block previously used a fallthrough,
236  /// it may now need a branch, and if it previously used branching it may now
237  /// be able to use a fallthrough.
238  void updateTerminator();
239
240  // Machine-CFG mutators
241
242  /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
243  /// The Predecessors list of succ is automatically updated.
244  ///
245  void addSuccessor(MachineBasicBlock *succ);
246
247  /// removeSuccessor - Remove successor from the successors list of this
248  /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
249  ///
250  void removeSuccessor(MachineBasicBlock *succ);
251
252  /// removeSuccessor - Remove specified successor from the successors list of
253  /// this MachineBasicBlock. The Predecessors list of succ is automatically
254  /// updated.  Return the iterator to the element after the one removed.
255  ///
256  succ_iterator removeSuccessor(succ_iterator I);
257
258  /// transferSuccessors - Transfers all the successors from MBB to this
259  /// machine basic block (i.e., copies all the successors fromMBB and
260  /// remove all the successors from fromMBB).
261  void transferSuccessors(MachineBasicBlock *fromMBB);
262
263  /// isSuccessor - Return true if the specified MBB is a successor of this
264  /// block.
265  bool isSuccessor(const MachineBasicBlock *MBB) const;
266
267  /// isLayoutSuccessor - Return true if the specified MBB will be emitted
268  /// immediately after this block, such that if this block exits by
269  /// falling through, control will transfer to the specified MBB. Note
270  /// that MBB need not be a successor at all, for example if this block
271  /// ends with an unconditional branch to some other block.
272  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
273
274  /// canFallThrough - Return true if the block can implicitly transfer
275  /// control to the block after it by falling off the end of it.  This should
276  /// return false if it can reach the block after it, but it uses an explicit
277  /// branch to do so (e.g., a table jump).  True is a conservative answer.
278  bool canFallThrough();
279
280  /// getFirstTerminator - returns an iterator to the first terminator
281  /// instruction of this basic block. If a terminator does not exist,
282  /// it returns end()
283  iterator getFirstTerminator();
284
285  /// SplitCriticalEdge - Split the critical edge from this block to the
286  /// given successor block, and return the newly created block, or null
287  /// if splitting is not possible.
288  ///
289  /// This function updates LiveVariables, MachineDominatorTree, and
290  /// MachineLoopInfo, as applicable.
291  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
292
293  void pop_front() { Insts.pop_front(); }
294  void pop_back() { Insts.pop_back(); }
295  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
296  template<typename IT>
297  void insert(iterator I, IT S, IT E) { Insts.insert(I, S, E); }
298  iterator insert(iterator I, MachineInstr *M) { return Insts.insert(I, M); }
299
300  // erase - Remove the specified element or range from the instruction list.
301  // These functions delete any instructions removed.
302  //
303  iterator erase(iterator I)             { return Insts.erase(I); }
304  iterator erase(iterator I, iterator E) { return Insts.erase(I, E); }
305  MachineInstr *remove(MachineInstr *I)  { return Insts.remove(I); }
306  void clear()                           { Insts.clear(); }
307
308  /// splice - Take an instruction from MBB 'Other' at the position From,
309  /// and insert it into this MBB right before 'where'.
310  void splice(iterator where, MachineBasicBlock *Other, iterator From) {
311    Insts.splice(where, Other->Insts, From);
312  }
313
314  /// splice - Take a block of instructions from MBB 'Other' in the range [From,
315  /// To), and insert them into this MBB right before 'where'.
316  void splice(iterator where, MachineBasicBlock *Other, iterator From,
317              iterator To) {
318    Insts.splice(where, Other->Insts, From, To);
319  }
320
321  /// removeFromParent - This method unlinks 'this' from the containing
322  /// function, and returns it, but does not delete it.
323  MachineBasicBlock *removeFromParent();
324
325  /// eraseFromParent - This method unlinks 'this' from the containing
326  /// function and deletes it.
327  void eraseFromParent();
328
329  /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
330  /// 'Old', change the code and CFG so that it branches to 'New' instead.
331  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
332
333  /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
334  /// the CFG to be inserted.  If we have proven that MBB can only branch to
335  /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
336  /// DestB can be null. Besides DestA and DestB, retain other edges leading
337  /// to LandingPads (currently there can be only one; we don't check or require
338  /// that here). Note it is possible that DestA and/or DestB are LandingPads.
339  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
340                            MachineBasicBlock *DestB,
341                            bool isCond);
342
343  /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
344  /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
345  DebugLoc findDebugLoc(MachineBasicBlock::iterator &MBBI);
346
347  // Debugging methods.
348  void dump() const;
349  void print(raw_ostream &OS) const;
350
351  /// getNumber - MachineBasicBlocks are uniquely numbered at the function
352  /// level, unless they're not in a MachineFunction yet, in which case this
353  /// will return -1.
354  ///
355  int getNumber() const { return Number; }
356  void setNumber(int N) { Number = N; }
357
358  /// getSymbol - Return the MCSymbol for this basic block.
359  ///
360  MCSymbol *getSymbol() const;
361
362private:   // Methods used to maintain doubly linked list of blocks...
363  friend struct ilist_traits<MachineBasicBlock>;
364
365  // Machine-CFG mutators
366
367  /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
368  /// Don't do this unless you know what you're doing, because it doesn't
369  /// update pred's successors list. Use pred->addSuccessor instead.
370  ///
371  void addPredecessor(MachineBasicBlock *pred);
372
373  /// removePredecessor - Remove pred as a predecessor of this
374  /// MachineBasicBlock. Don't do this unless you know what you're
375  /// doing, because it doesn't update pred's successors list. Use
376  /// pred->removeSuccessor instead.
377  ///
378  void removePredecessor(MachineBasicBlock *pred);
379};
380
381raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
382
383void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
384
385//===--------------------------------------------------------------------===//
386// GraphTraits specializations for machine basic block graphs (machine-CFGs)
387//===--------------------------------------------------------------------===//
388
389// Provide specializations of GraphTraits to be able to treat a
390// MachineFunction as a graph of MachineBasicBlocks...
391//
392
393template <> struct GraphTraits<MachineBasicBlock *> {
394  typedef MachineBasicBlock NodeType;
395  typedef MachineBasicBlock::succ_iterator ChildIteratorType;
396
397  static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
398  static inline ChildIteratorType child_begin(NodeType *N) {
399    return N->succ_begin();
400  }
401  static inline ChildIteratorType child_end(NodeType *N) {
402    return N->succ_end();
403  }
404};
405
406template <> struct GraphTraits<const MachineBasicBlock *> {
407  typedef const MachineBasicBlock NodeType;
408  typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
409
410  static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
411  static inline ChildIteratorType child_begin(NodeType *N) {
412    return N->succ_begin();
413  }
414  static inline ChildIteratorType child_end(NodeType *N) {
415    return N->succ_end();
416  }
417};
418
419// Provide specializations of GraphTraits to be able to treat a
420// MachineFunction as a graph of MachineBasicBlocks... and to walk it
421// in inverse order.  Inverse order for a function is considered
422// to be when traversing the predecessor edges of a MBB
423// instead of the successor edges.
424//
425template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
426  typedef MachineBasicBlock NodeType;
427  typedef MachineBasicBlock::pred_iterator ChildIteratorType;
428  static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
429    return G.Graph;
430  }
431  static inline ChildIteratorType child_begin(NodeType *N) {
432    return N->pred_begin();
433  }
434  static inline ChildIteratorType child_end(NodeType *N) {
435    return N->pred_end();
436  }
437};
438
439template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
440  typedef const MachineBasicBlock NodeType;
441  typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
442  static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
443    return G.Graph;
444  }
445  static inline ChildIteratorType child_begin(NodeType *N) {
446    return N->pred_begin();
447  }
448  static inline ChildIteratorType child_end(NodeType *N) {
449    return N->pred_end();
450  }
451};
452
453} // End llvm namespace
454
455#endif
456