MachineBasicBlock.h revision 2ad047e04dd4c19defade4799834efacb0024551
1//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/Support/DataTypes.h"
20#include <functional>
21
22namespace llvm {
23
24class Pass;
25class BasicBlock;
26class MachineFunction;
27class MCSymbol;
28class SlotIndexes;
29class StringRef;
30class raw_ostream;
31class MachineBranchProbabilityInfo;
32
33template <>
34struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
35private:
36  mutable ilist_half_node<MachineInstr> Sentinel;
37
38  // this is only set by the MachineBasicBlock owning the LiveList
39  friend class MachineBasicBlock;
40  MachineBasicBlock* Parent;
41
42public:
43  MachineInstr *createSentinel() const {
44    return static_cast<MachineInstr*>(&Sentinel);
45  }
46  void destroySentinel(MachineInstr *) const {}
47
48  MachineInstr *provideInitialHead() const { return createSentinel(); }
49  MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
50  static void noteHead(MachineInstr*, MachineInstr*) {}
51
52  void addNodeToList(MachineInstr* N);
53  void removeNodeFromList(MachineInstr* N);
54  void transferNodesFromList(ilist_traits &SrcTraits,
55                             ilist_iterator<MachineInstr> first,
56                             ilist_iterator<MachineInstr> last);
57  void deleteNode(MachineInstr *N);
58private:
59  void createNode(const MachineInstr &);
60};
61
62class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
63  typedef ilist<MachineInstr> Instructions;
64  Instructions Insts;
65  const BasicBlock *BB;
66  int Number;
67  MachineFunction *xParent;
68
69  /// Predecessors/Successors - Keep track of the predecessor / successor
70  /// basicblocks.
71  std::vector<MachineBasicBlock *> Predecessors;
72  std::vector<MachineBasicBlock *> Successors;
73
74  /// Weights - Keep track of the weights to the successors. This vector
75  /// has the same order as Successors, or it is empty if we don't use it
76  /// (disable optimization).
77  std::vector<uint32_t> Weights;
78  typedef std::vector<uint32_t>::iterator weight_iterator;
79  typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
80
81  /// LiveIns - Keep track of the physical registers that are livein of
82  /// the basicblock.
83  std::vector<unsigned> LiveIns;
84
85  /// Alignment - Alignment of the basic block. Zero if the basic block does
86  /// not need to be aligned.
87  /// The alignment is specified as log2(bytes).
88  unsigned Alignment;
89
90  /// IsLandingPad - Indicate that this basic block is entered via an
91  /// exception handler.
92  bool IsLandingPad;
93
94  /// AddressTaken - Indicate that this basic block is potentially the
95  /// target of an indirect branch.
96  bool AddressTaken;
97
98  /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
99  /// is only computed once and is cached.
100  mutable MCSymbol *CachedMCSymbol;
101
102  // Intrusive list support
103  MachineBasicBlock() {}
104
105  explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
106
107  ~MachineBasicBlock();
108
109  // MachineBasicBlocks are allocated and owned by MachineFunction.
110  friend class MachineFunction;
111
112public:
113  /// getBasicBlock - Return the LLVM basic block that this instance
114  /// corresponded to originally. Note that this may be NULL if this instance
115  /// does not correspond directly to an LLVM basic block.
116  ///
117  const BasicBlock *getBasicBlock() const { return BB; }
118
119  /// getName - Return the name of the corresponding LLVM basic block, or
120  /// "(null)".
121  StringRef getName() const;
122
123  /// getFullName - Return a formatted string to identify this block and its
124  /// parent function.
125  std::string getFullName() const;
126
127  /// hasAddressTaken - Test whether this block is potentially the target
128  /// of an indirect branch.
129  bool hasAddressTaken() const { return AddressTaken; }
130
131  /// setHasAddressTaken - Set this block to reflect that it potentially
132  /// is the target of an indirect branch.
133  void setHasAddressTaken() { AddressTaken = true; }
134
135  /// getParent - Return the MachineFunction containing this basic block.
136  ///
137  const MachineFunction *getParent() const { return xParent; }
138  MachineFunction *getParent() { return xParent; }
139
140
141  /// bundle_iterator - MachineBasicBlock iterator that automatically skips over
142  /// MIs that are inside bundles (i.e. walk top level MIs only).
143  template<typename Ty, typename IterTy>
144  class bundle_iterator
145    : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
146    IterTy MII;
147
148  public:
149    bundle_iterator(IterTy mii) : MII(mii) {}
150
151    bundle_iterator(Ty &mi) : MII(mi) {
152      assert(!mi.isBundledWithPred() &&
153             "It's not legal to initialize bundle_iterator with a bundled MI");
154    }
155    bundle_iterator(Ty *mi) : MII(mi) {
156      assert((!mi || !mi->isBundledWithPred()) &&
157             "It's not legal to initialize bundle_iterator with a bundled MI");
158    }
159    // Template allows conversion from const to nonconst.
160    template<class OtherTy, class OtherIterTy>
161    bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
162      : MII(I.getInstrIterator()) {}
163    bundle_iterator() : MII(0) {}
164
165    Ty &operator*() const { return *MII; }
166    Ty *operator->() const { return &operator*(); }
167
168    operator Ty*() const { return MII; }
169
170    bool operator==(const bundle_iterator &x) const {
171      return MII == x.MII;
172    }
173    bool operator!=(const bundle_iterator &x) const {
174      return !operator==(x);
175    }
176
177    // Increment and decrement operators...
178    bundle_iterator &operator--() {      // predecrement - Back up
179      do --MII;
180      while (MII->isBundledWithPred());
181      return *this;
182    }
183    bundle_iterator &operator++() {      // preincrement - Advance
184      while (MII->isBundledWithSucc())
185        ++MII;
186      ++MII;
187      return *this;
188    }
189    bundle_iterator operator--(int) {    // postdecrement operators...
190      bundle_iterator tmp = *this;
191      --*this;
192      return tmp;
193    }
194    bundle_iterator operator++(int) {    // postincrement operators...
195      bundle_iterator tmp = *this;
196      ++*this;
197      return tmp;
198    }
199
200    IterTy getInstrIterator() const {
201      return MII;
202    }
203  };
204
205  typedef Instructions::iterator                                 instr_iterator;
206  typedef Instructions::const_iterator                     const_instr_iterator;
207  typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
208  typedef
209  std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
210
211  typedef
212  bundle_iterator<MachineInstr,instr_iterator>                         iterator;
213  typedef
214  bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
215  typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
216  typedef std::reverse_iterator<iterator>                      reverse_iterator;
217
218
219  unsigned size() const { return (unsigned)Insts.size(); }
220  bool empty() const { return Insts.empty(); }
221
222  MachineInstr& front() { return Insts.front(); }
223  MachineInstr& back()  { return Insts.back(); }
224  const MachineInstr& front() const { return Insts.front(); }
225  const MachineInstr& back()  const { return Insts.back(); }
226
227  instr_iterator                instr_begin()       { return Insts.begin();  }
228  const_instr_iterator          instr_begin() const { return Insts.begin();  }
229  instr_iterator                  instr_end()       { return Insts.end();    }
230  const_instr_iterator            instr_end() const { return Insts.end();    }
231  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
232  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
233  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
234  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
235
236  iterator                begin()       { return instr_begin();  }
237  const_iterator          begin() const { return instr_begin();  }
238  iterator                end  ()       { return instr_end();    }
239  const_iterator          end  () const { return instr_end();    }
240  reverse_iterator       rbegin()       { return instr_rbegin(); }
241  const_reverse_iterator rbegin() const { return instr_rbegin(); }
242  reverse_iterator       rend  ()       { return instr_rend();   }
243  const_reverse_iterator rend  () const { return instr_rend();   }
244
245
246  // Machine-CFG iterators
247  typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
248  typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
249  typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
250  typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
251  typedef std::vector<MachineBasicBlock *>::reverse_iterator
252                                                         pred_reverse_iterator;
253  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
254                                                   const_pred_reverse_iterator;
255  typedef std::vector<MachineBasicBlock *>::reverse_iterator
256                                                         succ_reverse_iterator;
257  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
258                                                   const_succ_reverse_iterator;
259
260  pred_iterator        pred_begin()       { return Predecessors.begin(); }
261  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
262  pred_iterator        pred_end()         { return Predecessors.end();   }
263  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
264  pred_reverse_iterator        pred_rbegin()
265                                          { return Predecessors.rbegin();}
266  const_pred_reverse_iterator  pred_rbegin() const
267                                          { return Predecessors.rbegin();}
268  pred_reverse_iterator        pred_rend()
269                                          { return Predecessors.rend();  }
270  const_pred_reverse_iterator  pred_rend()   const
271                                          { return Predecessors.rend();  }
272  unsigned             pred_size()  const {
273    return (unsigned)Predecessors.size();
274  }
275  bool                 pred_empty() const { return Predecessors.empty(); }
276  succ_iterator        succ_begin()       { return Successors.begin();   }
277  const_succ_iterator  succ_begin() const { return Successors.begin();   }
278  succ_iterator        succ_end()         { return Successors.end();     }
279  const_succ_iterator  succ_end()   const { return Successors.end();     }
280  succ_reverse_iterator        succ_rbegin()
281                                          { return Successors.rbegin();  }
282  const_succ_reverse_iterator  succ_rbegin() const
283                                          { return Successors.rbegin();  }
284  succ_reverse_iterator        succ_rend()
285                                          { return Successors.rend();    }
286  const_succ_reverse_iterator  succ_rend()   const
287                                          { return Successors.rend();    }
288  unsigned             succ_size()  const {
289    return (unsigned)Successors.size();
290  }
291  bool                 succ_empty() const { return Successors.empty();   }
292
293  // LiveIn management methods.
294
295  /// addLiveIn - Add the specified register as a live in.  Note that it
296  /// is an error to add the same register to the same set more than once.
297  void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
298
299  /// removeLiveIn - Remove the specified register from the live in set.
300  ///
301  void removeLiveIn(unsigned Reg);
302
303  /// isLiveIn - Return true if the specified register is in the live in set.
304  ///
305  bool isLiveIn(unsigned Reg) const;
306
307  // Iteration support for live in sets.  These sets are kept in sorted
308  // order by their register number.
309  typedef std::vector<unsigned>::const_iterator livein_iterator;
310  livein_iterator livein_begin() const { return LiveIns.begin(); }
311  livein_iterator livein_end()   const { return LiveIns.end(); }
312  bool            livein_empty() const { return LiveIns.empty(); }
313
314  /// getAlignment - Return alignment of the basic block.
315  /// The alignment is specified as log2(bytes).
316  ///
317  unsigned getAlignment() const { return Alignment; }
318
319  /// setAlignment - Set alignment of the basic block.
320  /// The alignment is specified as log2(bytes).
321  ///
322  void setAlignment(unsigned Align) { Alignment = Align; }
323
324  /// isLandingPad - Returns true if the block is a landing pad. That is
325  /// this basic block is entered via an exception handler.
326  bool isLandingPad() const { return IsLandingPad; }
327
328  /// setIsLandingPad - Indicates the block is a landing pad.  That is
329  /// this basic block is entered via an exception handler.
330  void setIsLandingPad(bool V = true) { IsLandingPad = V; }
331
332  /// getLandingPadSuccessor - If this block has a successor that is a landing
333  /// pad, return it. Otherwise return NULL.
334  const MachineBasicBlock *getLandingPadSuccessor() const;
335
336  // Code Layout methods.
337
338  /// moveBefore/moveAfter - move 'this' block before or after the specified
339  /// block.  This only moves the block, it does not modify the CFG or adjust
340  /// potential fall-throughs at the end of the block.
341  void moveBefore(MachineBasicBlock *NewAfter);
342  void moveAfter(MachineBasicBlock *NewBefore);
343
344  /// updateTerminator - Update the terminator instructions in block to account
345  /// for changes to the layout. If the block previously used a fallthrough,
346  /// it may now need a branch, and if it previously used branching it may now
347  /// be able to use a fallthrough.
348  void updateTerminator();
349
350  // Machine-CFG mutators
351
352  /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
353  /// The Predecessors list of succ is automatically updated. WEIGHT
354  /// parameter is stored in Weights list and it may be used by
355  /// MachineBranchProbabilityInfo analysis to calculate branch probability.
356  ///
357  /// Note that duplicate Machine CFG edges are not allowed.
358  ///
359  void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
360
361  /// removeSuccessor - Remove successor from the successors list of this
362  /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
363  ///
364  void removeSuccessor(MachineBasicBlock *succ);
365
366  /// removeSuccessor - Remove specified successor from the successors list of
367  /// this MachineBasicBlock. The Predecessors list of succ is automatically
368  /// updated.  Return the iterator to the element after the one removed.
369  ///
370  succ_iterator removeSuccessor(succ_iterator I);
371
372  /// replaceSuccessor - Replace successor OLD with NEW and update weight info.
373  ///
374  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
375
376
377  /// transferSuccessors - Transfers all the successors from MBB to this
378  /// machine basic block (i.e., copies all the successors fromMBB and
379  /// remove all the successors from fromMBB).
380  void transferSuccessors(MachineBasicBlock *fromMBB);
381
382  /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
383  /// in transferSuccessors, and update PHI operands in the successor blocks
384  /// which refer to fromMBB to refer to this.
385  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
386
387  /// isPredecessor - Return true if the specified MBB is a predecessor of this
388  /// block.
389  bool isPredecessor(const MachineBasicBlock *MBB) const;
390
391  /// isSuccessor - Return true if the specified MBB is a successor of this
392  /// block.
393  bool isSuccessor(const MachineBasicBlock *MBB) const;
394
395  /// isLayoutSuccessor - Return true if the specified MBB will be emitted
396  /// immediately after this block, such that if this block exits by
397  /// falling through, control will transfer to the specified MBB. Note
398  /// that MBB need not be a successor at all, for example if this block
399  /// ends with an unconditional branch to some other block.
400  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
401
402  /// canFallThrough - Return true if the block can implicitly transfer
403  /// control to the block after it by falling off the end of it.  This should
404  /// return false if it can reach the block after it, but it uses an explicit
405  /// branch to do so (e.g., a table jump).  True is a conservative answer.
406  bool canFallThrough();
407
408  /// Returns a pointer to the first instructon in this block that is not a
409  /// PHINode instruction. When adding instruction to the beginning of the
410  /// basic block, they should be added before the returned value, not before
411  /// the first instruction, which might be PHI.
412  /// Returns end() is there's no non-PHI instruction.
413  iterator getFirstNonPHI();
414
415  /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
416  /// not a PHI or a label. This is the correct point to insert copies at the
417  /// beginning of a basic block.
418  iterator SkipPHIsAndLabels(iterator I);
419
420  /// getFirstTerminator - returns an iterator to the first terminator
421  /// instruction of this basic block. If a terminator does not exist,
422  /// it returns end()
423  iterator getFirstTerminator();
424  const_iterator getFirstTerminator() const;
425
426  /// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles
427  /// and return an instr_iterator instead.
428  instr_iterator getFirstInstrTerminator();
429
430  /// getLastNonDebugInstr - returns an iterator to the last non-debug
431  /// instruction in the basic block, or end()
432  iterator getLastNonDebugInstr();
433  const_iterator getLastNonDebugInstr() const;
434
435  /// SplitCriticalEdge - Split the critical edge from this block to the
436  /// given successor block, and return the newly created block, or null
437  /// if splitting is not possible.
438  ///
439  /// This function updates LiveVariables, MachineDominatorTree, and
440  /// MachineLoopInfo, as applicable.
441  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
442
443  void pop_front() { Insts.pop_front(); }
444  void pop_back() { Insts.pop_back(); }
445  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
446
447  /// Insert MI into the instruction list before I, possibly inside a bundle.
448  ///
449  /// If the insertion point is inside a bundle, MI will be added to the bundle,
450  /// otherwise MI will not be added to any bundle. That means this function
451  /// alone can't be used to prepend or append instructions to bundles. See
452  /// MIBundleBuilder::insert() for a more reliable way of doing that.
453  instr_iterator insert(instr_iterator I, MachineInstr *M);
454
455  /// Insert a range of instructions into the instruction list before I.
456  template<typename IT>
457  void insert(iterator I, IT S, IT E) {
458    Insts.insert(I.getInstrIterator(), S, E);
459  }
460
461  /// Insert MI into the instruction list before I.
462  iterator insert(iterator I, MachineInstr *MI) {
463    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
464           "Cannot insert instruction with bundle flags");
465    return Insts.insert(I.getInstrIterator(), MI);
466  }
467
468  /// Insert MI into the instruction list after I.
469  iterator insertAfter(iterator I, MachineInstr *MI) {
470    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
471           "Cannot insert instruction with bundle flags");
472    return Insts.insertAfter(I.getInstrIterator(), MI);
473  }
474
475  /// Remove an instruction from the instruction list and delete it.
476  ///
477  /// If the instruction is part of a bundle, the other instructions in the
478  /// bundle will still be bundled after removing the single instruction.
479  instr_iterator erase(instr_iterator I);
480
481  /// Remove an instruction from the instruction list and delete it.
482  ///
483  /// If the instruction is part of a bundle, the other instructions in the
484  /// bundle will still be bundled after removing the single instruction.
485  instr_iterator erase_instr(MachineInstr *I) {
486    return erase(instr_iterator(I));
487  }
488
489  /// Remove a range of instructions from the instruction list and delete them.
490  iterator erase(iterator I, iterator E) {
491    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
492  }
493
494  /// Remove an instruction or bundle from the instruction list and delete it.
495  ///
496  /// If I points to a bundle of instructions, they are all erased.
497  iterator erase(iterator I) {
498    return erase(I, llvm::next(I));
499  }
500
501  /// Remove an instruction from the instruction list and delete it.
502  ///
503  /// If I is the head of a bundle of instructions, the whole bundle will be
504  /// erased.
505  iterator erase(MachineInstr *I) {
506    return erase(iterator(I));
507  }
508
509  /// Remove the unbundled instruction from the instruction list without
510  /// deleting it.
511  ///
512  /// This function can not be used to remove bundled instructions, use
513  /// remove_instr to remove individual instructions from a bundle.
514  MachineInstr *remove(MachineInstr *I) {
515    assert(!I->isBundled() && "Cannot remove bundled instructions");
516    return Insts.remove(I);
517  }
518
519  /// Remove the possibly bundled instruction from the instruction list
520  /// without deleting it.
521  ///
522  /// If the instruction is part of a bundle, the other instructions in the
523  /// bundle will still be bundled after removing the single instruction.
524  MachineInstr *remove_instr(MachineInstr *I);
525
526  void clear() {
527    Insts.clear();
528  }
529
530  /// Take an instruction from MBB 'Other' at the position From, and insert it
531  /// into this MBB right before 'Where'.
532  ///
533  /// If From points to a bundle of instructions, the whole bundle is moved.
534  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
535    // The range splice() doesn't allow noop moves, but this one does.
536    if (Where != From)
537      splice(Where, Other, From, llvm::next(From));
538  }
539
540  /// Take a block of instructions from MBB 'Other' in the range [From, To),
541  /// and insert them into this MBB right before 'Where'.
542  ///
543  /// The instruction at 'Where' must not be included in the range of
544  /// instructions to move.
545  void splice(iterator Where, MachineBasicBlock *Other,
546              iterator From, iterator To) {
547    Insts.splice(Where.getInstrIterator(), Other->Insts,
548                 From.getInstrIterator(), To.getInstrIterator());
549  }
550
551  /// removeFromParent - This method unlinks 'this' from the containing
552  /// function, and returns it, but does not delete it.
553  MachineBasicBlock *removeFromParent();
554
555  /// eraseFromParent - This method unlinks 'this' from the containing
556  /// function and deletes it.
557  void eraseFromParent();
558
559  /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
560  /// 'Old', change the code and CFG so that it branches to 'New' instead.
561  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
562
563  /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
564  /// the CFG to be inserted.  If we have proven that MBB can only branch to
565  /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
566  /// DestB can be null. Besides DestA and DestB, retain other edges leading
567  /// to LandingPads (currently there can be only one; we don't check or require
568  /// that here). Note it is possible that DestA and/or DestB are LandingPads.
569  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
570                            MachineBasicBlock *DestB,
571                            bool isCond);
572
573  /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
574  /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
575  DebugLoc findDebugLoc(instr_iterator MBBI);
576  DebugLoc findDebugLoc(iterator MBBI) {
577    return findDebugLoc(MBBI.getInstrIterator());
578  }
579
580  /// Possible outcome of a register liveness query to computeRegisterLiveness()
581  enum LivenessQueryResult {
582    LQR_Live,            ///< Register is known to be live.
583    LQR_OverlappingLive, ///< Register itself is not live, but some overlapping
584                         ///< register is.
585    LQR_Dead,            ///< Register is known to be dead.
586    LQR_Unknown          ///< Register liveness not decidable from local
587                         ///< neighborhood.
588  };
589
590  /// computeRegisterLiveness - Return whether (physical) register \c Reg
591  /// has been <def>ined and not <kill>ed as of just before \c MI.
592  ///
593  /// Search is localised to a neighborhood of
594  /// \c Neighborhood instructions before (searching for defs or kills) and
595  /// Neighborhood instructions after (searching just for defs) MI.
596  ///
597  /// \c Reg must be a physical register.
598  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
599                                              unsigned Reg, MachineInstr *MI,
600                                              unsigned Neighborhood=10);
601
602  // Debugging methods.
603  void dump() const;
604  void print(raw_ostream &OS, SlotIndexes* = 0) const;
605
606  /// getNumber - MachineBasicBlocks are uniquely numbered at the function
607  /// level, unless they're not in a MachineFunction yet, in which case this
608  /// will return -1.
609  ///
610  int getNumber() const { return Number; }
611  void setNumber(int N) { Number = N; }
612
613  /// getSymbol - Return the MCSymbol for this basic block.
614  ///
615  MCSymbol *getSymbol() const;
616
617
618private:
619  /// getWeightIterator - Return weight iterator corresponding to the I
620  /// successor iterator.
621  weight_iterator getWeightIterator(succ_iterator I);
622  const_weight_iterator getWeightIterator(const_succ_iterator I) const;
623
624  friend class MachineBranchProbabilityInfo;
625
626  /// getSuccWeight - Return weight of the edge from this block to MBB. This
627  /// method should NOT be called directly, but by using getEdgeWeight method
628  /// from MachineBranchProbabilityInfo class.
629  uint32_t getSuccWeight(const_succ_iterator Succ) const;
630
631
632  // Methods used to maintain doubly linked list of blocks...
633  friend struct ilist_traits<MachineBasicBlock>;
634
635  // Machine-CFG mutators
636
637  /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
638  /// Don't do this unless you know what you're doing, because it doesn't
639  /// update pred's successors list. Use pred->addSuccessor instead.
640  ///
641  void addPredecessor(MachineBasicBlock *pred);
642
643  /// removePredecessor - Remove pred as a predecessor of this
644  /// MachineBasicBlock. Don't do this unless you know what you're
645  /// doing, because it doesn't update pred's successors list. Use
646  /// pred->removeSuccessor instead.
647  ///
648  void removePredecessor(MachineBasicBlock *pred);
649};
650
651raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
652
653void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
654
655// This is useful when building IndexedMaps keyed on basic block pointers.
656struct MBB2NumberFunctor :
657  public std::unary_function<const MachineBasicBlock*, unsigned> {
658  unsigned operator()(const MachineBasicBlock *MBB) const {
659    return MBB->getNumber();
660  }
661};
662
663//===--------------------------------------------------------------------===//
664// GraphTraits specializations for machine basic block graphs (machine-CFGs)
665//===--------------------------------------------------------------------===//
666
667// Provide specializations of GraphTraits to be able to treat a
668// MachineFunction as a graph of MachineBasicBlocks...
669//
670
671template <> struct GraphTraits<MachineBasicBlock *> {
672  typedef MachineBasicBlock NodeType;
673  typedef MachineBasicBlock::succ_iterator ChildIteratorType;
674
675  static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
676  static inline ChildIteratorType child_begin(NodeType *N) {
677    return N->succ_begin();
678  }
679  static inline ChildIteratorType child_end(NodeType *N) {
680    return N->succ_end();
681  }
682};
683
684template <> struct GraphTraits<const MachineBasicBlock *> {
685  typedef const MachineBasicBlock NodeType;
686  typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
687
688  static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
689  static inline ChildIteratorType child_begin(NodeType *N) {
690    return N->succ_begin();
691  }
692  static inline ChildIteratorType child_end(NodeType *N) {
693    return N->succ_end();
694  }
695};
696
697// Provide specializations of GraphTraits to be able to treat a
698// MachineFunction as a graph of MachineBasicBlocks... and to walk it
699// in inverse order.  Inverse order for a function is considered
700// to be when traversing the predecessor edges of a MBB
701// instead of the successor edges.
702//
703template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
704  typedef MachineBasicBlock NodeType;
705  typedef MachineBasicBlock::pred_iterator ChildIteratorType;
706  static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
707    return G.Graph;
708  }
709  static inline ChildIteratorType child_begin(NodeType *N) {
710    return N->pred_begin();
711  }
712  static inline ChildIteratorType child_end(NodeType *N) {
713    return N->pred_end();
714  }
715};
716
717template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
718  typedef const MachineBasicBlock NodeType;
719  typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
720  static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
721    return G.Graph;
722  }
723  static inline ChildIteratorType child_begin(NodeType *N) {
724    return N->pred_begin();
725  }
726  static inline ChildIteratorType child_end(NodeType *N) {
727    return N->pred_end();
728  }
729};
730
731} // End llvm namespace
732
733#endif
734