MachineBasicBlock.h revision 8c741b8064f1116d8d8dc435b60b75abdf5c4d57
1//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/ADT/GraphTraits.h"
19#include "llvm/Support/DataTypes.h"
20#include <functional>
21
22namespace llvm {
23
24class Pass;
25class BasicBlock;
26class MachineFunction;
27class MCSymbol;
28class SlotIndexes;
29class StringRef;
30class raw_ostream;
31class MachineBranchProbabilityInfo;
32
33template <>
34struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
35private:
36  mutable ilist_half_node<MachineInstr> Sentinel;
37
38  // this is only set by the MachineBasicBlock owning the LiveList
39  friend class MachineBasicBlock;
40  MachineBasicBlock* Parent;
41
42public:
43  MachineInstr *createSentinel() const {
44    return static_cast<MachineInstr*>(&Sentinel);
45  }
46  void destroySentinel(MachineInstr *) const {}
47
48  MachineInstr *provideInitialHead() const { return createSentinel(); }
49  MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
50  static void noteHead(MachineInstr*, MachineInstr*) {}
51
52  void addNodeToList(MachineInstr* N);
53  void removeNodeFromList(MachineInstr* N);
54  void transferNodesFromList(ilist_traits &SrcTraits,
55                             ilist_iterator<MachineInstr> first,
56                             ilist_iterator<MachineInstr> last);
57  void deleteNode(MachineInstr *N);
58private:
59  void createNode(const MachineInstr &);
60};
61
62class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
63  typedef ilist<MachineInstr> Instructions;
64  Instructions Insts;
65  const BasicBlock *BB;
66  int Number;
67  MachineFunction *xParent;
68
69  /// Predecessors/Successors - Keep track of the predecessor / successor
70  /// basicblocks.
71  std::vector<MachineBasicBlock *> Predecessors;
72  std::vector<MachineBasicBlock *> Successors;
73
74
75  /// Weights - Keep track of the weights to the successors. This vector
76  /// has the same order as Successors, or it is empty if we don't use it
77  /// (disable optimization).
78  std::vector<uint32_t> Weights;
79  typedef std::vector<uint32_t>::iterator weight_iterator;
80
81  /// LiveIns - Keep track of the physical registers that are livein of
82  /// the basicblock.
83  std::vector<unsigned> LiveIns;
84
85  /// Alignment - Alignment of the basic block. Zero if the basic block does
86  /// not need to be aligned.
87  /// The alignment is specified as log2(bytes).
88  unsigned Alignment;
89
90  /// IsLandingPad - Indicate that this basic block is entered via an
91  /// exception handler.
92  bool IsLandingPad;
93
94  /// AddressTaken - Indicate that this basic block is potentially the
95  /// target of an indirect branch.
96  bool AddressTaken;
97
98  // Intrusive list support
99  MachineBasicBlock() {}
100
101  explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
102
103  ~MachineBasicBlock();
104
105  // MachineBasicBlocks are allocated and owned by MachineFunction.
106  friend class MachineFunction;
107
108public:
109  /// getBasicBlock - Return the LLVM basic block that this instance
110  /// corresponded to originally. Note that this may be NULL if this instance
111  /// does not correspond directly to an LLVM basic block.
112  ///
113  const BasicBlock *getBasicBlock() const { return BB; }
114
115  /// getName - Return the name of the corresponding LLVM basic block, or
116  /// "(null)".
117  StringRef getName() const;
118
119  /// hasAddressTaken - Test whether this block is potentially the target
120  /// of an indirect branch.
121  bool hasAddressTaken() const { return AddressTaken; }
122
123  /// setHasAddressTaken - Set this block to reflect that it potentially
124  /// is the target of an indirect branch.
125  void setHasAddressTaken() { AddressTaken = true; }
126
127  /// getParent - Return the MachineFunction containing this basic block.
128  ///
129  const MachineFunction *getParent() const { return xParent; }
130  MachineFunction *getParent() { return xParent; }
131
132  typedef Instructions::iterator                              iterator;
133  typedef Instructions::const_iterator                  const_iterator;
134  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
135  typedef std::reverse_iterator<iterator>             reverse_iterator;
136
137  unsigned size() const { return (unsigned)Insts.size(); }
138  bool empty() const { return Insts.empty(); }
139
140  MachineInstr& front() { return Insts.front(); }
141  MachineInstr& back()  { return Insts.back(); }
142  const MachineInstr& front() const { return Insts.front(); }
143  const MachineInstr& back()  const { return Insts.back(); }
144
145  iterator                begin()       { return Insts.begin();  }
146  const_iterator          begin() const { return Insts.begin();  }
147  iterator                  end()       { return Insts.end();    }
148  const_iterator            end() const { return Insts.end();    }
149  reverse_iterator       rbegin()       { return Insts.rbegin(); }
150  const_reverse_iterator rbegin() const { return Insts.rbegin(); }
151  reverse_iterator       rend  ()       { return Insts.rend();   }
152  const_reverse_iterator rend  () const { return Insts.rend();   }
153
154  // Machine-CFG iterators
155  typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
156  typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
157  typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
158  typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
159  typedef std::vector<MachineBasicBlock *>::reverse_iterator
160                                                         pred_reverse_iterator;
161  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
162                                                   const_pred_reverse_iterator;
163  typedef std::vector<MachineBasicBlock *>::reverse_iterator
164                                                         succ_reverse_iterator;
165  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
166                                                   const_succ_reverse_iterator;
167
168  pred_iterator        pred_begin()       { return Predecessors.begin(); }
169  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
170  pred_iterator        pred_end()         { return Predecessors.end();   }
171  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
172  pred_reverse_iterator        pred_rbegin()
173                                          { return Predecessors.rbegin();}
174  const_pred_reverse_iterator  pred_rbegin() const
175                                          { return Predecessors.rbegin();}
176  pred_reverse_iterator        pred_rend()
177                                          { return Predecessors.rend();  }
178  const_pred_reverse_iterator  pred_rend()   const
179                                          { return Predecessors.rend();  }
180  unsigned             pred_size()  const {
181    return (unsigned)Predecessors.size();
182  }
183  bool                 pred_empty() const { return Predecessors.empty(); }
184  succ_iterator        succ_begin()       { return Successors.begin();   }
185  const_succ_iterator  succ_begin() const { return Successors.begin();   }
186  succ_iterator        succ_end()         { return Successors.end();     }
187  const_succ_iterator  succ_end()   const { return Successors.end();     }
188  succ_reverse_iterator        succ_rbegin()
189                                          { return Successors.rbegin();  }
190  const_succ_reverse_iterator  succ_rbegin() const
191                                          { return Successors.rbegin();  }
192  succ_reverse_iterator        succ_rend()
193                                          { return Successors.rend();    }
194  const_succ_reverse_iterator  succ_rend()   const
195                                          { return Successors.rend();    }
196  unsigned             succ_size()  const {
197    return (unsigned)Successors.size();
198  }
199  bool                 succ_empty() const { return Successors.empty();   }
200
201  // LiveIn management methods.
202
203  /// addLiveIn - Add the specified register as a live in.  Note that it
204  /// is an error to add the same register to the same set more than once.
205  void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
206
207  /// removeLiveIn - Remove the specified register from the live in set.
208  ///
209  void removeLiveIn(unsigned Reg);
210
211  /// isLiveIn - Return true if the specified register is in the live in set.
212  ///
213  bool isLiveIn(unsigned Reg) const;
214
215  // Iteration support for live in sets.  These sets are kept in sorted
216  // order by their register number.
217  typedef std::vector<unsigned>::const_iterator livein_iterator;
218  livein_iterator livein_begin() const { return LiveIns.begin(); }
219  livein_iterator livein_end()   const { return LiveIns.end(); }
220  bool            livein_empty() const { return LiveIns.empty(); }
221
222  /// getAlignment - Return alignment of the basic block.
223  /// The alignment is specified as log2(bytes).
224  ///
225  unsigned getAlignment() const { return Alignment; }
226
227  /// setAlignment - Set alignment of the basic block.
228  /// The alignment is specified as log2(bytes).
229  ///
230  void setAlignment(unsigned Align) { Alignment = Align; }
231
232  /// isLandingPad - Returns true if the block is a landing pad. That is
233  /// this basic block is entered via an exception handler.
234  bool isLandingPad() const { return IsLandingPad; }
235
236  /// setIsLandingPad - Indicates the block is a landing pad.  That is
237  /// this basic block is entered via an exception handler.
238  void setIsLandingPad(bool V = true) { IsLandingPad = V; }
239
240  /// getLandingPadSuccessor - If this block has a successor that is a landing
241  /// pad, return it. Otherwise return NULL.
242  const MachineBasicBlock *getLandingPadSuccessor() const;
243
244  // Code Layout methods.
245
246  /// moveBefore/moveAfter - move 'this' block before or after the specified
247  /// block.  This only moves the block, it does not modify the CFG or adjust
248  /// potential fall-throughs at the end of the block.
249  void moveBefore(MachineBasicBlock *NewAfter);
250  void moveAfter(MachineBasicBlock *NewBefore);
251
252  /// updateTerminator - Update the terminator instructions in block to account
253  /// for changes to the layout. If the block previously used a fallthrough,
254  /// it may now need a branch, and if it previously used branching it may now
255  /// be able to use a fallthrough.
256  void updateTerminator();
257
258  // Machine-CFG mutators
259
260  /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
261  /// The Predecessors list of succ is automatically updated. WEIGHT
262  /// parameter is stored in Weights list and it may be used by
263  /// MachineBranchProbabilityInfo analysis to calculate branch probability.
264  ///
265  void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
266
267  /// removeSuccessor - Remove successor from the successors list of this
268  /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
269  ///
270  void removeSuccessor(MachineBasicBlock *succ);
271
272  /// removeSuccessor - Remove specified successor from the successors list of
273  /// this MachineBasicBlock. The Predecessors list of succ is automatically
274  /// updated.  Return the iterator to the element after the one removed.
275  ///
276  succ_iterator removeSuccessor(succ_iterator I);
277
278  /// replaceSuccessor - Replace successor OLD with NEW and update weight info.
279  ///
280  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
281
282
283  /// transferSuccessors - Transfers all the successors from MBB to this
284  /// machine basic block (i.e., copies all the successors fromMBB and
285  /// remove all the successors from fromMBB).
286  void transferSuccessors(MachineBasicBlock *fromMBB);
287
288  /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
289  /// in transferSuccessors, and update PHI operands in the successor blocks
290  /// which refer to fromMBB to refer to this.
291  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
292
293  /// isSuccessor - Return true if the specified MBB is a successor of this
294  /// block.
295  bool isSuccessor(const MachineBasicBlock *MBB) const;
296
297  /// isLayoutSuccessor - Return true if the specified MBB will be emitted
298  /// immediately after this block, such that if this block exits by
299  /// falling through, control will transfer to the specified MBB. Note
300  /// that MBB need not be a successor at all, for example if this block
301  /// ends with an unconditional branch to some other block.
302  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
303
304  /// canFallThrough - Return true if the block can implicitly transfer
305  /// control to the block after it by falling off the end of it.  This should
306  /// return false if it can reach the block after it, but it uses an explicit
307  /// branch to do so (e.g., a table jump).  True is a conservative answer.
308  bool canFallThrough();
309
310  /// Returns a pointer to the first instructon in this block that is not a
311  /// PHINode instruction. When adding instruction to the beginning of the
312  /// basic block, they should be added before the returned value, not before
313  /// the first instruction, which might be PHI.
314  /// Returns end() is there's no non-PHI instruction.
315  iterator getFirstNonPHI();
316
317  /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
318  /// not a PHI or a label. This is the correct point to insert copies at the
319  /// beginning of a basic block.
320  iterator SkipPHIsAndLabels(iterator I);
321
322  /// getFirstTerminator - returns an iterator to the first terminator
323  /// instruction of this basic block. If a terminator does not exist,
324  /// it returns end()
325  iterator getFirstTerminator();
326
327  const_iterator getFirstTerminator() const {
328    return const_cast<MachineBasicBlock*>(this)->getFirstTerminator();
329  }
330
331  /// getLastNonDebugInstr - returns an iterator to the last non-debug
332  /// instruction in the basic block, or end()
333  iterator getLastNonDebugInstr();
334
335  const_iterator getLastNonDebugInstr() const {
336    return const_cast<MachineBasicBlock*>(this)->getLastNonDebugInstr();
337  }
338
339  /// SplitCriticalEdge - Split the critical edge from this block to the
340  /// given successor block, and return the newly created block, or null
341  /// if splitting is not possible.
342  ///
343  /// This function updates LiveVariables, MachineDominatorTree, and
344  /// MachineLoopInfo, as applicable.
345  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
346
347  void pop_front() { Insts.pop_front(); }
348  void pop_back() { Insts.pop_back(); }
349  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
350  template<typename IT>
351  void insert(iterator I, IT S, IT E) { Insts.insert(I, S, E); }
352  iterator insert(iterator I, MachineInstr *M) { return Insts.insert(I, M); }
353  iterator insertAfter(iterator I, MachineInstr *M) {
354    return Insts.insertAfter(I, M);
355  }
356
357  // erase - Remove the specified element or range from the instruction list.
358  // These functions delete any instructions removed.
359  //
360  iterator erase(iterator I)             { return Insts.erase(I); }
361  iterator erase(iterator I, iterator E) { return Insts.erase(I, E); }
362  MachineInstr *remove(MachineInstr *I)  { return Insts.remove(I); }
363  void clear()                           { Insts.clear(); }
364
365  /// splice - Take an instruction from MBB 'Other' at the position From,
366  /// and insert it into this MBB right before 'where'.
367  void splice(iterator where, MachineBasicBlock *Other, iterator From) {
368    Insts.splice(where, Other->Insts, From);
369  }
370
371  /// splice - Take a block of instructions from MBB 'Other' in the range [From,
372  /// To), and insert them into this MBB right before 'where'.
373  void splice(iterator where, MachineBasicBlock *Other, iterator From,
374              iterator To) {
375    Insts.splice(where, Other->Insts, From, To);
376  }
377
378  /// removeFromParent - This method unlinks 'this' from the containing
379  /// function, and returns it, but does not delete it.
380  MachineBasicBlock *removeFromParent();
381
382  /// eraseFromParent - This method unlinks 'this' from the containing
383  /// function and deletes it.
384  void eraseFromParent();
385
386  /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
387  /// 'Old', change the code and CFG so that it branches to 'New' instead.
388  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
389
390  /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
391  /// the CFG to be inserted.  If we have proven that MBB can only branch to
392  /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
393  /// DestB can be null. Besides DestA and DestB, retain other edges leading
394  /// to LandingPads (currently there can be only one; we don't check or require
395  /// that here). Note it is possible that DestA and/or DestB are LandingPads.
396  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
397                            MachineBasicBlock *DestB,
398                            bool isCond);
399
400  /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
401  /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
402  DebugLoc findDebugLoc(MachineBasicBlock::iterator &MBBI);
403
404  // Debugging methods.
405  void dump() const;
406  void print(raw_ostream &OS, SlotIndexes* = 0) const;
407
408  /// getNumber - MachineBasicBlocks are uniquely numbered at the function
409  /// level, unless they're not in a MachineFunction yet, in which case this
410  /// will return -1.
411  ///
412  int getNumber() const { return Number; }
413  void setNumber(int N) { Number = N; }
414
415  /// getSymbol - Return the MCSymbol for this basic block.
416  ///
417  MCSymbol *getSymbol() const;
418
419
420private:
421  /// getWeightIterator - Return weight iterator corresponding to the I
422  /// successor iterator.
423  weight_iterator getWeightIterator(succ_iterator I);
424
425  friend class MachineBranchProbabilityInfo;
426
427  /// getSuccWeight - Return weight of the edge from this block to MBB. This
428  /// method should NOT be called directly, but by using getEdgeWeight method
429  /// from MachineBranchProbabilityInfo class.
430  uint32_t getSuccWeight(MachineBasicBlock *succ);
431
432
433  // Methods used to maintain doubly linked list of blocks...
434  friend struct ilist_traits<MachineBasicBlock>;
435
436  // Machine-CFG mutators
437
438  /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
439  /// Don't do this unless you know what you're doing, because it doesn't
440  /// update pred's successors list. Use pred->addSuccessor instead.
441  ///
442  void addPredecessor(MachineBasicBlock *pred);
443
444  /// removePredecessor - Remove pred as a predecessor of this
445  /// MachineBasicBlock. Don't do this unless you know what you're
446  /// doing, because it doesn't update pred's successors list. Use
447  /// pred->removeSuccessor instead.
448  ///
449  void removePredecessor(MachineBasicBlock *pred);
450};
451
452raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
453
454void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
455
456// This is useful when building IndexedMaps keyed on basic block pointers.
457struct MBB2NumberFunctor :
458  public std::unary_function<const MachineBasicBlock*, unsigned> {
459  unsigned operator()(const MachineBasicBlock *MBB) const {
460    return MBB->getNumber();
461  }
462};
463
464//===--------------------------------------------------------------------===//
465// GraphTraits specializations for machine basic block graphs (machine-CFGs)
466//===--------------------------------------------------------------------===//
467
468// Provide specializations of GraphTraits to be able to treat a
469// MachineFunction as a graph of MachineBasicBlocks...
470//
471
472template <> struct GraphTraits<MachineBasicBlock *> {
473  typedef MachineBasicBlock NodeType;
474  typedef MachineBasicBlock::succ_iterator ChildIteratorType;
475
476  static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
477  static inline ChildIteratorType child_begin(NodeType *N) {
478    return N->succ_begin();
479  }
480  static inline ChildIteratorType child_end(NodeType *N) {
481    return N->succ_end();
482  }
483};
484
485template <> struct GraphTraits<const MachineBasicBlock *> {
486  typedef const MachineBasicBlock NodeType;
487  typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
488
489  static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
490  static inline ChildIteratorType child_begin(NodeType *N) {
491    return N->succ_begin();
492  }
493  static inline ChildIteratorType child_end(NodeType *N) {
494    return N->succ_end();
495  }
496};
497
498// Provide specializations of GraphTraits to be able to treat a
499// MachineFunction as a graph of MachineBasicBlocks... and to walk it
500// in inverse order.  Inverse order for a function is considered
501// to be when traversing the predecessor edges of a MBB
502// instead of the successor edges.
503//
504template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
505  typedef MachineBasicBlock NodeType;
506  typedef MachineBasicBlock::pred_iterator ChildIteratorType;
507  static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
508    return G.Graph;
509  }
510  static inline ChildIteratorType child_begin(NodeType *N) {
511    return N->pred_begin();
512  }
513  static inline ChildIteratorType child_end(NodeType *N) {
514    return N->pred_end();
515  }
516};
517
518template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
519  typedef const MachineBasicBlock NodeType;
520  typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
521  static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
522    return G.Graph;
523  }
524  static inline ChildIteratorType child_begin(NodeType *N) {
525    return N->pred_begin();
526  }
527  static inline ChildIteratorType child_end(NodeType *N) {
528    return N->pred_end();
529  }
530};
531
532} // End llvm namespace
533
534#endif
535