MachineBasicBlock.h revision 9b04104a5e9fb51b24b7aeb55912d319802049b2
1//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Collect the sequence of machine instructions for a basic block.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
15#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16
17#include "llvm/ADT/GraphTraits.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/Support/DataTypes.h"
20#include <functional>
21
22namespace llvm {
23
24class Pass;
25class BasicBlock;
26class MachineFunction;
27class MCSymbol;
28class SlotIndexes;
29class StringRef;
30class raw_ostream;
31class MachineBranchProbabilityInfo;
32
33template <>
34struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
35private:
36  mutable ilist_half_node<MachineInstr> Sentinel;
37
38  // this is only set by the MachineBasicBlock owning the LiveList
39  friend class MachineBasicBlock;
40  MachineBasicBlock* Parent;
41
42public:
43  MachineInstr *createSentinel() const {
44    return static_cast<MachineInstr*>(&Sentinel);
45  }
46  void destroySentinel(MachineInstr *) const {}
47
48  MachineInstr *provideInitialHead() const { return createSentinel(); }
49  MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
50  static void noteHead(MachineInstr*, MachineInstr*) {}
51
52  void addNodeToList(MachineInstr* N);
53  void removeNodeFromList(MachineInstr* N);
54  void transferNodesFromList(ilist_traits &SrcTraits,
55                             ilist_iterator<MachineInstr> first,
56                             ilist_iterator<MachineInstr> last);
57  void deleteNode(MachineInstr *N);
58private:
59  void createNode(const MachineInstr &);
60};
61
62class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
63  typedef ilist<MachineInstr> Instructions;
64  Instructions Insts;
65  const BasicBlock *BB;
66  int Number;
67  MachineFunction *xParent;
68
69  /// Predecessors/Successors - Keep track of the predecessor / successor
70  /// basicblocks.
71  std::vector<MachineBasicBlock *> Predecessors;
72  std::vector<MachineBasicBlock *> Successors;
73
74
75  /// Weights - Keep track of the weights to the successors. This vector
76  /// has the same order as Successors, or it is empty if we don't use it
77  /// (disable optimization).
78  std::vector<uint32_t> Weights;
79  typedef std::vector<uint32_t>::iterator weight_iterator;
80  typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
81
82  /// LiveIns - Keep track of the physical registers that are livein of
83  /// the basicblock.
84  std::vector<unsigned> LiveIns;
85
86  /// Alignment - Alignment of the basic block. Zero if the basic block does
87  /// not need to be aligned.
88  /// The alignment is specified as log2(bytes).
89  unsigned Alignment;
90
91  /// IsLandingPad - Indicate that this basic block is entered via an
92  /// exception handler.
93  bool IsLandingPad;
94
95  /// AddressTaken - Indicate that this basic block is potentially the
96  /// target of an indirect branch.
97  bool AddressTaken;
98
99  // Intrusive list support
100  MachineBasicBlock() {}
101
102  explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
103
104  ~MachineBasicBlock();
105
106  // MachineBasicBlocks are allocated and owned by MachineFunction.
107  friend class MachineFunction;
108
109public:
110  /// getBasicBlock - Return the LLVM basic block that this instance
111  /// corresponded to originally. Note that this may be NULL if this instance
112  /// does not correspond directly to an LLVM basic block.
113  ///
114  const BasicBlock *getBasicBlock() const { return BB; }
115
116  /// getName - Return the name of the corresponding LLVM basic block, or
117  /// "(null)".
118  StringRef getName() const;
119
120  /// getFullName - Return a formatted string to identify this block and its
121  /// parent function.
122  std::string getFullName() const;
123
124  /// hasAddressTaken - Test whether this block is potentially the target
125  /// of an indirect branch.
126  bool hasAddressTaken() const { return AddressTaken; }
127
128  /// setHasAddressTaken - Set this block to reflect that it potentially
129  /// is the target of an indirect branch.
130  void setHasAddressTaken() { AddressTaken = true; }
131
132  /// getParent - Return the MachineFunction containing this basic block.
133  ///
134  const MachineFunction *getParent() const { return xParent; }
135  MachineFunction *getParent() { return xParent; }
136
137
138  /// bundle_iterator - MachineBasicBlock iterator that automatically skips over
139  /// MIs that are inside bundles (i.e. walk top level MIs only).
140  template<typename Ty, typename IterTy>
141  class bundle_iterator
142    : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
143    IterTy MII;
144
145  public:
146    bundle_iterator(IterTy mii) : MII(mii) {}
147
148    bundle_iterator(Ty &mi) : MII(mi) {
149      assert(!mi.isInsideBundle() &&
150             "It's not legal to initialize bundle_iterator with a bundled MI");
151    }
152    bundle_iterator(Ty *mi) : MII(mi) {
153      assert((!mi || !mi->isInsideBundle()) &&
154             "It's not legal to initialize bundle_iterator with a bundled MI");
155    }
156    // Template allows conversion from const to nonconst.
157    template<class OtherTy, class OtherIterTy>
158    bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
159      : MII(I.getInstrIterator()) {}
160    bundle_iterator() : MII(0) {}
161
162    Ty &operator*() const { return *MII; }
163    Ty *operator->() const { return &operator*(); }
164
165    operator Ty*() const { return MII; }
166
167    bool operator==(const bundle_iterator &x) const {
168      return MII == x.MII;
169    }
170    bool operator!=(const bundle_iterator &x) const {
171      return !operator==(x);
172    }
173
174    // Increment and decrement operators...
175    bundle_iterator &operator--() {      // predecrement - Back up
176      do --MII;
177      while (MII->isInsideBundle());
178      return *this;
179    }
180    bundle_iterator &operator++() {      // preincrement - Advance
181      IterTy E = MII->getParent()->instr_end();
182      do ++MII;
183      while (MII != E && MII->isInsideBundle());
184      return *this;
185    }
186    bundle_iterator operator--(int) {    // postdecrement operators...
187      bundle_iterator tmp = *this;
188      --*this;
189      return tmp;
190    }
191    bundle_iterator operator++(int) {    // postincrement operators...
192      bundle_iterator tmp = *this;
193      ++*this;
194      return tmp;
195    }
196
197    IterTy getInstrIterator() const {
198      return MII;
199    }
200  };
201
202  typedef Instructions::iterator                                 instr_iterator;
203  typedef Instructions::const_iterator                     const_instr_iterator;
204  typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
205  typedef
206  std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
207
208  typedef
209  bundle_iterator<MachineInstr,instr_iterator>                         iterator;
210  typedef
211  bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
212  typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
213  typedef std::reverse_iterator<iterator>                      reverse_iterator;
214
215
216  unsigned size() const { return (unsigned)Insts.size(); }
217  bool empty() const { return Insts.empty(); }
218
219  MachineInstr& front() { return Insts.front(); }
220  MachineInstr& back()  { return Insts.back(); }
221  const MachineInstr& front() const { return Insts.front(); }
222  const MachineInstr& back()  const { return Insts.back(); }
223
224  instr_iterator                instr_begin()       { return Insts.begin();  }
225  const_instr_iterator          instr_begin() const { return Insts.begin();  }
226  instr_iterator                  instr_end()       { return Insts.end();    }
227  const_instr_iterator            instr_end() const { return Insts.end();    }
228  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
229  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
230  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
231  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
232
233  iterator                begin()       { return instr_begin();  }
234  const_iterator          begin() const { return instr_begin();  }
235  iterator                end  ()       { return instr_end();    }
236  const_iterator          end  () const { return instr_end();    }
237  reverse_iterator       rbegin()       { return instr_rbegin(); }
238  const_reverse_iterator rbegin() const { return instr_rbegin(); }
239  reverse_iterator       rend  ()       { return instr_rend();   }
240  const_reverse_iterator rend  () const { return instr_rend();   }
241
242
243  // Machine-CFG iterators
244  typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
245  typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
246  typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
247  typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
248  typedef std::vector<MachineBasicBlock *>::reverse_iterator
249                                                         pred_reverse_iterator;
250  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
251                                                   const_pred_reverse_iterator;
252  typedef std::vector<MachineBasicBlock *>::reverse_iterator
253                                                         succ_reverse_iterator;
254  typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
255                                                   const_succ_reverse_iterator;
256
257  pred_iterator        pred_begin()       { return Predecessors.begin(); }
258  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
259  pred_iterator        pred_end()         { return Predecessors.end();   }
260  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
261  pred_reverse_iterator        pred_rbegin()
262                                          { return Predecessors.rbegin();}
263  const_pred_reverse_iterator  pred_rbegin() const
264                                          { return Predecessors.rbegin();}
265  pred_reverse_iterator        pred_rend()
266                                          { return Predecessors.rend();  }
267  const_pred_reverse_iterator  pred_rend()   const
268                                          { return Predecessors.rend();  }
269  unsigned             pred_size()  const {
270    return (unsigned)Predecessors.size();
271  }
272  bool                 pred_empty() const { return Predecessors.empty(); }
273  succ_iterator        succ_begin()       { return Successors.begin();   }
274  const_succ_iterator  succ_begin() const { return Successors.begin();   }
275  succ_iterator        succ_end()         { return Successors.end();     }
276  const_succ_iterator  succ_end()   const { return Successors.end();     }
277  succ_reverse_iterator        succ_rbegin()
278                                          { return Successors.rbegin();  }
279  const_succ_reverse_iterator  succ_rbegin() const
280                                          { return Successors.rbegin();  }
281  succ_reverse_iterator        succ_rend()
282                                          { return Successors.rend();    }
283  const_succ_reverse_iterator  succ_rend()   const
284                                          { return Successors.rend();    }
285  unsigned             succ_size()  const {
286    return (unsigned)Successors.size();
287  }
288  bool                 succ_empty() const { return Successors.empty();   }
289
290  // LiveIn management methods.
291
292  /// addLiveIn - Add the specified register as a live in.  Note that it
293  /// is an error to add the same register to the same set more than once.
294  void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
295
296  /// removeLiveIn - Remove the specified register from the live in set.
297  ///
298  void removeLiveIn(unsigned Reg);
299
300  /// isLiveIn - Return true if the specified register is in the live in set.
301  ///
302  bool isLiveIn(unsigned Reg) const;
303
304  // Iteration support for live in sets.  These sets are kept in sorted
305  // order by their register number.
306  typedef std::vector<unsigned>::const_iterator livein_iterator;
307  livein_iterator livein_begin() const { return LiveIns.begin(); }
308  livein_iterator livein_end()   const { return LiveIns.end(); }
309  bool            livein_empty() const { return LiveIns.empty(); }
310
311  /// getAlignment - Return alignment of the basic block.
312  /// The alignment is specified as log2(bytes).
313  ///
314  unsigned getAlignment() const { return Alignment; }
315
316  /// setAlignment - Set alignment of the basic block.
317  /// The alignment is specified as log2(bytes).
318  ///
319  void setAlignment(unsigned Align) { Alignment = Align; }
320
321  /// isLandingPad - Returns true if the block is a landing pad. That is
322  /// this basic block is entered via an exception handler.
323  bool isLandingPad() const { return IsLandingPad; }
324
325  /// setIsLandingPad - Indicates the block is a landing pad.  That is
326  /// this basic block is entered via an exception handler.
327  void setIsLandingPad(bool V = true) { IsLandingPad = V; }
328
329  /// getLandingPadSuccessor - If this block has a successor that is a landing
330  /// pad, return it. Otherwise return NULL.
331  const MachineBasicBlock *getLandingPadSuccessor() const;
332
333  // Code Layout methods.
334
335  /// moveBefore/moveAfter - move 'this' block before or after the specified
336  /// block.  This only moves the block, it does not modify the CFG or adjust
337  /// potential fall-throughs at the end of the block.
338  void moveBefore(MachineBasicBlock *NewAfter);
339  void moveAfter(MachineBasicBlock *NewBefore);
340
341  /// updateTerminator - Update the terminator instructions in block to account
342  /// for changes to the layout. If the block previously used a fallthrough,
343  /// it may now need a branch, and if it previously used branching it may now
344  /// be able to use a fallthrough.
345  void updateTerminator();
346
347  // Machine-CFG mutators
348
349  /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
350  /// The Predecessors list of succ is automatically updated. WEIGHT
351  /// parameter is stored in Weights list and it may be used by
352  /// MachineBranchProbabilityInfo analysis to calculate branch probability.
353  ///
354  /// Note that duplicate Machine CFG edges are not allowed.
355  ///
356  void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
357
358  /// removeSuccessor - Remove successor from the successors list of this
359  /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
360  ///
361  void removeSuccessor(MachineBasicBlock *succ);
362
363  /// removeSuccessor - Remove specified successor from the successors list of
364  /// this MachineBasicBlock. The Predecessors list of succ is automatically
365  /// updated.  Return the iterator to the element after the one removed.
366  ///
367  succ_iterator removeSuccessor(succ_iterator I);
368
369  /// replaceSuccessor - Replace successor OLD with NEW and update weight info.
370  ///
371  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
372
373
374  /// transferSuccessors - Transfers all the successors from MBB to this
375  /// machine basic block (i.e., copies all the successors fromMBB and
376  /// remove all the successors from fromMBB).
377  void transferSuccessors(MachineBasicBlock *fromMBB);
378
379  /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
380  /// in transferSuccessors, and update PHI operands in the successor blocks
381  /// which refer to fromMBB to refer to this.
382  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
383
384  /// isPredecessor - Return true if the specified MBB is a predecessor of this
385  /// block.
386  bool isPredecessor(const MachineBasicBlock *MBB) const;
387
388  /// isSuccessor - Return true if the specified MBB is a successor of this
389  /// block.
390  bool isSuccessor(const MachineBasicBlock *MBB) const;
391
392  /// isLayoutSuccessor - Return true if the specified MBB will be emitted
393  /// immediately after this block, such that if this block exits by
394  /// falling through, control will transfer to the specified MBB. Note
395  /// that MBB need not be a successor at all, for example if this block
396  /// ends with an unconditional branch to some other block.
397  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
398
399  /// canFallThrough - Return true if the block can implicitly transfer
400  /// control to the block after it by falling off the end of it.  This should
401  /// return false if it can reach the block after it, but it uses an explicit
402  /// branch to do so (e.g., a table jump).  True is a conservative answer.
403  bool canFallThrough();
404
405  /// Returns a pointer to the first instructon in this block that is not a
406  /// PHINode instruction. When adding instruction to the beginning of the
407  /// basic block, they should be added before the returned value, not before
408  /// the first instruction, which might be PHI.
409  /// Returns end() is there's no non-PHI instruction.
410  iterator getFirstNonPHI();
411
412  /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
413  /// not a PHI or a label. This is the correct point to insert copies at the
414  /// beginning of a basic block.
415  iterator SkipPHIsAndLabels(iterator I);
416
417  /// getFirstTerminator - returns an iterator to the first terminator
418  /// instruction of this basic block. If a terminator does not exist,
419  /// it returns end()
420  iterator getFirstTerminator();
421  const_iterator getFirstTerminator() const;
422
423  /// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles
424  /// and return an instr_iterator instead.
425  instr_iterator getFirstInstrTerminator();
426
427  /// getLastNonDebugInstr - returns an iterator to the last non-debug
428  /// instruction in the basic block, or end()
429  iterator getLastNonDebugInstr();
430  const_iterator getLastNonDebugInstr() const;
431
432  /// SplitCriticalEdge - Split the critical edge from this block to the
433  /// given successor block, and return the newly created block, or null
434  /// if splitting is not possible.
435  ///
436  /// This function updates LiveVariables, MachineDominatorTree, and
437  /// MachineLoopInfo, as applicable.
438  MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
439
440  void pop_front() { Insts.pop_front(); }
441  void pop_back() { Insts.pop_back(); }
442  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
443
444  /// Insert MI into the instruction list before I, possibly inside a bundle.
445  ///
446  /// If the insertion point is inside a bundle, MI will be added to the bundle,
447  /// otherwise MI will not be added to any bundle. That means this function
448  /// alone can't be used to prepend or append instructions to bundles. See
449  /// MIBundleBuilder::insert() for a more reliable way of doing that.
450  instr_iterator insert(instr_iterator I, MachineInstr *M);
451
452  /// Insert a range of instructions into the instruction list before I.
453  template<typename IT>
454  void insert(iterator I, IT S, IT E) {
455    Insts.insert(I.getInstrIterator(), S, E);
456  }
457
458  /// Insert MI into the instruction list before I.
459  iterator insert(iterator I, MachineInstr *MI) {
460    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
461           "Cannot insert instruction with bundle flags");
462    return Insts.insert(I.getInstrIterator(), MI);
463  }
464
465  /// Insert MI into the instruction list after I.
466  iterator insertAfter(iterator I, MachineInstr *MI) {
467    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
468           "Cannot insert instruction with bundle flags");
469    return Insts.insertAfter(I.getInstrIterator(), MI);
470  }
471
472  /// Remove an instruction from the instruction list and delete it.
473  ///
474  /// If the instruction is part of a bundle, the other instructions in the
475  /// bundle will still be bundled after removing the single instruction.
476  instr_iterator erase(instr_iterator I);
477
478  /// Remove an instruction from the instruction list and delete it.
479  ///
480  /// If the instruction is part of a bundle, the other instructions in the
481  /// bundle will still be bundled after removing the single instruction.
482  instr_iterator erase_instr(MachineInstr *I) {
483    return erase(instr_iterator(I));
484  }
485
486  /// Remove a range of instructions from the instruction list and delete them.
487  iterator erase(iterator I, iterator E) {
488    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
489  }
490
491  /// Remove an instruction or bundle from the instruction list and delete it.
492  ///
493  /// If I points to a bundle of instructions, they are all erased.
494  iterator erase(iterator I) {
495    return erase(I, llvm::next(I));
496  }
497
498  /// Remove an instruction from the instruction list and delete it.
499  ///
500  /// If I is the head of a bundle of instructions, the whole bundle will be
501  /// erased.
502  iterator erase(MachineInstr *I) {
503    return erase(iterator(I));
504  }
505
506  /// Remove the unbundled instruction from the instruction list without
507  /// deleting it.
508  ///
509  /// This function can not be used to remove bundled instructions, use
510  /// remove_instr to remove individual instructions from a bundle.
511  MachineInstr *remove(MachineInstr *I) {
512    assert(!I->isBundled() && "Cannot remove bundled instructions");
513    return Insts.remove(I);
514  }
515
516  /// Remove the possibly bundled instruction from the instruction list
517  /// without deleting it.
518  ///
519  /// If the instruction is part of a bundle, the other instructions in the
520  /// bundle will still be bundled after removing the single instruction.
521  MachineInstr *remove_instr(MachineInstr *I);
522
523  void clear() {
524    Insts.clear();
525  }
526
527  /// Take an instruction from MBB 'Other' at the position From, and insert it
528  /// into this MBB right before 'Where'.
529  ///
530  /// If From points to a bundle of instructions, the whole bundle is moved.
531  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
532    // The range splice() doesn't allow noop moves, but this one does.
533    if (Where != From)
534      splice(Where, Other, From, llvm::next(From));
535  }
536
537  /// Take a block of instructions from MBB 'Other' in the range [From, To),
538  /// and insert them into this MBB right before 'Where'.
539  ///
540  /// The instruction at 'Where' must not be included in the range of
541  /// instructions to move.
542  void splice(iterator Where, MachineBasicBlock *Other,
543              iterator From, iterator To) {
544    Insts.splice(Where.getInstrIterator(), Other->Insts,
545                 From.getInstrIterator(), To.getInstrIterator());
546  }
547
548  /// removeFromParent - This method unlinks 'this' from the containing
549  /// function, and returns it, but does not delete it.
550  MachineBasicBlock *removeFromParent();
551
552  /// eraseFromParent - This method unlinks 'this' from the containing
553  /// function and deletes it.
554  void eraseFromParent();
555
556  /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
557  /// 'Old', change the code and CFG so that it branches to 'New' instead.
558  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
559
560  /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
561  /// the CFG to be inserted.  If we have proven that MBB can only branch to
562  /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
563  /// DestB can be null. Besides DestA and DestB, retain other edges leading
564  /// to LandingPads (currently there can be only one; we don't check or require
565  /// that here). Note it is possible that DestA and/or DestB are LandingPads.
566  bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
567                            MachineBasicBlock *DestB,
568                            bool isCond);
569
570  /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
571  /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
572  DebugLoc findDebugLoc(instr_iterator MBBI);
573  DebugLoc findDebugLoc(iterator MBBI) {
574    return findDebugLoc(MBBI.getInstrIterator());
575  }
576
577  /// Possible outcome of a register liveness query to computeRegisterLiveness()
578  enum LivenessQueryResult {
579    LQR_Live,            ///< Register is known to be live.
580    LQR_OverlappingLive, ///< Register itself is not live, but some overlapping
581                         ///< register is.
582    LQR_Dead,            ///< Register is known to be dead.
583    LQR_Unknown          ///< Register liveness not decidable from local
584                         ///< neighborhood.
585  };
586
587  /// computeRegisterLiveness - Return whether (physical) register \c Reg
588  /// has been <def>ined and not <kill>ed as of just before \c MI.
589  ///
590  /// Search is localised to a neighborhood of
591  /// \c Neighborhood instructions before (searching for defs or kills) and
592  /// Neighborhood instructions after (searching just for defs) MI.
593  ///
594  /// \c Reg must be a physical register.
595  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
596                                              unsigned Reg, MachineInstr *MI,
597                                              unsigned Neighborhood=10);
598
599  // Debugging methods.
600  void dump() const;
601  void print(raw_ostream &OS, SlotIndexes* = 0) const;
602
603  /// getNumber - MachineBasicBlocks are uniquely numbered at the function
604  /// level, unless they're not in a MachineFunction yet, in which case this
605  /// will return -1.
606  ///
607  int getNumber() const { return Number; }
608  void setNumber(int N) { Number = N; }
609
610  /// getSymbol - Return the MCSymbol for this basic block.
611  ///
612  MCSymbol *getSymbol() const;
613
614
615private:
616  /// getWeightIterator - Return weight iterator corresponding to the I
617  /// successor iterator.
618  weight_iterator getWeightIterator(succ_iterator I);
619  const_weight_iterator getWeightIterator(const_succ_iterator I) const;
620
621  friend class MachineBranchProbabilityInfo;
622
623  /// getSuccWeight - Return weight of the edge from this block to MBB. This
624  /// method should NOT be called directly, but by using getEdgeWeight method
625  /// from MachineBranchProbabilityInfo class.
626  uint32_t getSuccWeight(const_succ_iterator Succ) const;
627
628
629  // Methods used to maintain doubly linked list of blocks...
630  friend struct ilist_traits<MachineBasicBlock>;
631
632  // Machine-CFG mutators
633
634  /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
635  /// Don't do this unless you know what you're doing, because it doesn't
636  /// update pred's successors list. Use pred->addSuccessor instead.
637  ///
638  void addPredecessor(MachineBasicBlock *pred);
639
640  /// removePredecessor - Remove pred as a predecessor of this
641  /// MachineBasicBlock. Don't do this unless you know what you're
642  /// doing, because it doesn't update pred's successors list. Use
643  /// pred->removeSuccessor instead.
644  ///
645  void removePredecessor(MachineBasicBlock *pred);
646};
647
648raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
649
650void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
651
652// This is useful when building IndexedMaps keyed on basic block pointers.
653struct MBB2NumberFunctor :
654  public std::unary_function<const MachineBasicBlock*, unsigned> {
655  unsigned operator()(const MachineBasicBlock *MBB) const {
656    return MBB->getNumber();
657  }
658};
659
660//===--------------------------------------------------------------------===//
661// GraphTraits specializations for machine basic block graphs (machine-CFGs)
662//===--------------------------------------------------------------------===//
663
664// Provide specializations of GraphTraits to be able to treat a
665// MachineFunction as a graph of MachineBasicBlocks...
666//
667
668template <> struct GraphTraits<MachineBasicBlock *> {
669  typedef MachineBasicBlock NodeType;
670  typedef MachineBasicBlock::succ_iterator ChildIteratorType;
671
672  static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
673  static inline ChildIteratorType child_begin(NodeType *N) {
674    return N->succ_begin();
675  }
676  static inline ChildIteratorType child_end(NodeType *N) {
677    return N->succ_end();
678  }
679};
680
681template <> struct GraphTraits<const MachineBasicBlock *> {
682  typedef const MachineBasicBlock NodeType;
683  typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
684
685  static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
686  static inline ChildIteratorType child_begin(NodeType *N) {
687    return N->succ_begin();
688  }
689  static inline ChildIteratorType child_end(NodeType *N) {
690    return N->succ_end();
691  }
692};
693
694// Provide specializations of GraphTraits to be able to treat a
695// MachineFunction as a graph of MachineBasicBlocks... and to walk it
696// in inverse order.  Inverse order for a function is considered
697// to be when traversing the predecessor edges of a MBB
698// instead of the successor edges.
699//
700template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
701  typedef MachineBasicBlock NodeType;
702  typedef MachineBasicBlock::pred_iterator ChildIteratorType;
703  static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
704    return G.Graph;
705  }
706  static inline ChildIteratorType child_begin(NodeType *N) {
707    return N->pred_begin();
708  }
709  static inline ChildIteratorType child_end(NodeType *N) {
710    return N->pred_end();
711  }
712};
713
714template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
715  typedef const MachineBasicBlock NodeType;
716  typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
717  static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
718    return G.Graph;
719  }
720  static inline ChildIteratorType child_begin(NodeType *N) {
721    return N->pred_begin();
722  }
723  static inline ChildIteratorType child_end(NodeType *N) {
724    return N->pred_end();
725  }
726};
727
728} // End llvm namespace
729
730#endif
731