1//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The file defines the MachineFrameInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
15#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Support/DataTypes.h"
19#include <cassert>
20#include <vector>
21
22namespace llvm {
23class raw_ostream;
24class DataLayout;
25class TargetRegisterClass;
26class Type;
27class MachineFunction;
28class MachineBasicBlock;
29class TargetFrameLowering;
30class TargetMachine;
31class BitVector;
32class Value;
33class AllocaInst;
34
35/// The CalleeSavedInfo class tracks the information need to locate where a
36/// callee saved register is in the current frame.
37class CalleeSavedInfo {
38  unsigned Reg;
39  int FrameIdx;
40
41public:
42  explicit CalleeSavedInfo(unsigned R, int FI = 0)
43  : Reg(R), FrameIdx(FI) {}
44
45  // Accessors.
46  unsigned getReg()                        const { return Reg; }
47  int getFrameIdx()                        const { return FrameIdx; }
48  void setFrameIdx(int FI)                       { FrameIdx = FI; }
49};
50
51/// The MachineFrameInfo class represents an abstract stack frame until
52/// prolog/epilog code is inserted.  This class is key to allowing stack frame
53/// representation optimizations, such as frame pointer elimination.  It also
54/// allows more mundane (but still important) optimizations, such as reordering
55/// of abstract objects on the stack frame.
56///
57/// To support this, the class assigns unique integer identifiers to stack
58/// objects requested clients.  These identifiers are negative integers for
59/// fixed stack objects (such as arguments passed on the stack) or nonnegative
60/// for objects that may be reordered.  Instructions which refer to stack
61/// objects use a special MO_FrameIndex operand to represent these frame
62/// indexes.
63///
64/// Because this class keeps track of all references to the stack frame, it
65/// knows when a variable sized object is allocated on the stack.  This is the
66/// sole condition which prevents frame pointer elimination, which is an
67/// important optimization on register-poor architectures.  Because original
68/// variable sized alloca's in the source program are the only source of
69/// variable sized stack objects, it is safe to decide whether there will be
70/// any variable sized objects before all stack objects are known (for
71/// example, register allocator spill code never needs variable sized
72/// objects).
73///
74/// When prolog/epilog code emission is performed, the final stack frame is
75/// built and the machine instructions are modified to refer to the actual
76/// stack offsets of the object, eliminating all MO_FrameIndex operands from
77/// the program.
78///
79/// @brief Abstract Stack Frame Information
80class MachineFrameInfo {
81
82  // StackObject - Represent a single object allocated on the stack.
83  struct StackObject {
84    // SPOffset - The offset of this object from the stack pointer on entry to
85    // the function.  This field has no meaning for a variable sized element.
86    int64_t SPOffset;
87
88    // The size of this object on the stack. 0 means a variable sized object,
89    // ~0ULL means a dead object.
90    uint64_t Size;
91
92    // Alignment - The required alignment of this stack slot.
93    unsigned Alignment;
94
95    // isImmutable - If true, the value of the stack object is set before
96    // entering the function and is not modified inside the function. By
97    // default, fixed objects are immutable unless marked otherwise.
98    bool isImmutable;
99
100    // isSpillSlot - If true the stack object is used as spill slot. It
101    // cannot alias any other memory objects.
102    bool isSpillSlot;
103
104    /// Alloca - If this stack object is originated from an Alloca instruction
105    /// this value saves the original IR allocation. Can be NULL.
106    const AllocaInst *Alloca;
107
108    // PreAllocated - If true, the object was mapped into the local frame
109    // block and doesn't need additional handling for allocation beyond that.
110    bool PreAllocated;
111
112    StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
113                bool isSS, const AllocaInst *Val)
114      : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
115        isSpillSlot(isSS), Alloca(Val), PreAllocated(false) {}
116  };
117
118  const TargetMachine &TM;
119
120  /// Objects - The list of stack objects allocated...
121  ///
122  std::vector<StackObject> Objects;
123
124  /// NumFixedObjects - This contains the number of fixed objects contained on
125  /// the stack.  Because fixed objects are stored at a negative index in the
126  /// Objects list, this is also the index to the 0th object in the list.
127  ///
128  unsigned NumFixedObjects;
129
130  /// HasVarSizedObjects - This boolean keeps track of whether any variable
131  /// sized objects have been allocated yet.
132  ///
133  bool HasVarSizedObjects;
134
135  /// FrameAddressTaken - This boolean keeps track of whether there is a call
136  /// to builtin \@llvm.frameaddress.
137  bool FrameAddressTaken;
138
139  /// ReturnAddressTaken - This boolean keeps track of whether there is a call
140  /// to builtin \@llvm.returnaddress.
141  bool ReturnAddressTaken;
142
143  /// HasStackMap - This boolean keeps track of whether there is a call
144  /// to builtin \@llvm.experimental.stackmap.
145  bool HasStackMap;
146
147  /// HasPatchPoint - This boolean keeps track of whether there is a call
148  /// to builtin \@llvm.experimental.patchpoint.
149  bool HasPatchPoint;
150
151  /// StackSize - The prolog/epilog code inserter calculates the final stack
152  /// offsets for all of the fixed size objects, updating the Objects list
153  /// above.  It then updates StackSize to contain the number of bytes that need
154  /// to be allocated on entry to the function.
155  ///
156  uint64_t StackSize;
157
158  /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
159  /// have the actual offset from the stack/frame pointer.  The exact usage of
160  /// this is target-dependent, but it is typically used to adjust between
161  /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
162  /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
163  /// to the distance between the initial SP and the value in FP.  For many
164  /// targets, this value is only used when generating debug info (via
165  /// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
166  /// corresponding adjustments are performed directly.
167  int OffsetAdjustment;
168
169  /// MaxAlignment - The prolog/epilog code inserter may process objects
170  /// that require greater alignment than the default alignment the target
171  /// provides. To handle this, MaxAlignment is set to the maximum alignment
172  /// needed by the objects on the current frame.  If this is greater than the
173  /// native alignment maintained by the compiler, dynamic alignment code will
174  /// be needed.
175  ///
176  unsigned MaxAlignment;
177
178  /// AdjustsStack - Set to true if this function adjusts the stack -- e.g.,
179  /// when calling another function. This is only valid during and after
180  /// prolog/epilog code insertion.
181  bool AdjustsStack;
182
183  /// HasCalls - Set to true if this function has any function calls.
184  bool HasCalls;
185
186  /// StackProtectorIdx - The frame index for the stack protector.
187  int StackProtectorIdx;
188
189  /// FunctionContextIdx - The frame index for the function context. Used for
190  /// SjLj exceptions.
191  int FunctionContextIdx;
192
193  /// MaxCallFrameSize - This contains the size of the largest call frame if the
194  /// target uses frame setup/destroy pseudo instructions (as defined in the
195  /// TargetFrameInfo class).  This information is important for frame pointer
196  /// elimination.  If is only valid during and after prolog/epilog code
197  /// insertion.
198  ///
199  unsigned MaxCallFrameSize;
200
201  /// CSInfo - The prolog/epilog code inserter fills in this vector with each
202  /// callee saved register saved in the frame.  Beyond its use by the prolog/
203  /// epilog code inserter, this data used for debug info and exception
204  /// handling.
205  std::vector<CalleeSavedInfo> CSInfo;
206
207  /// CSIValid - Has CSInfo been set yet?
208  bool CSIValid;
209
210  /// LocalFrameObjects - References to frame indices which are mapped
211  /// into the local frame allocation block. <FrameIdx, LocalOffset>
212  SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
213
214  /// LocalFrameSize - Size of the pre-allocated local frame block.
215  int64_t LocalFrameSize;
216
217  /// Required alignment of the local object blob, which is the strictest
218  /// alignment of any object in it.
219  unsigned LocalFrameMaxAlign;
220
221  /// Whether the local object blob needs to be allocated together. If not,
222  /// PEI should ignore the isPreAllocated flags on the stack objects and
223  /// just allocate them normally.
224  bool UseLocalStackAllocationBlock;
225
226  /// Whether the "realign-stack" option is on.
227  bool RealignOption;
228
229  /// True if the function includes inline assembly that adjusts the stack
230  /// pointer.
231  bool HasInlineAsmWithSPAdjust;
232
233  const TargetFrameLowering *getFrameLowering() const;
234public:
235    explicit MachineFrameInfo(const TargetMachine &TM, bool RealignOpt)
236    : TM(TM), RealignOption(RealignOpt) {
237    StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
238    HasVarSizedObjects = false;
239    FrameAddressTaken = false;
240    ReturnAddressTaken = false;
241    HasStackMap = false;
242    HasPatchPoint = false;
243    AdjustsStack = false;
244    HasCalls = false;
245    StackProtectorIdx = -1;
246    FunctionContextIdx = -1;
247    MaxCallFrameSize = 0;
248    CSIValid = false;
249    LocalFrameSize = 0;
250    LocalFrameMaxAlign = 0;
251    UseLocalStackAllocationBlock = false;
252    HasInlineAsmWithSPAdjust = false;
253  }
254
255  /// hasStackObjects - Return true if there are any stack objects in this
256  /// function.
257  ///
258  bool hasStackObjects() const { return !Objects.empty(); }
259
260  /// hasVarSizedObjects - This method may be called any time after instruction
261  /// selection is complete to determine if the stack frame for this function
262  /// contains any variable sized objects.
263  ///
264  bool hasVarSizedObjects() const { return HasVarSizedObjects; }
265
266  /// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
267  /// stack protector object.
268  ///
269  int getStackProtectorIndex() const { return StackProtectorIdx; }
270  void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
271
272  /// getFunctionContextIndex/setFunctionContextIndex - Return the index for the
273  /// function context object. This object is used for SjLj exceptions.
274  int getFunctionContextIndex() const { return FunctionContextIdx; }
275  void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
276
277  /// isFrameAddressTaken - This method may be called any time after instruction
278  /// selection is complete to determine if there is a call to
279  /// \@llvm.frameaddress in this function.
280  bool isFrameAddressTaken() const { return FrameAddressTaken; }
281  void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
282
283  /// isReturnAddressTaken - This method may be called any time after
284  /// instruction selection is complete to determine if there is a call to
285  /// \@llvm.returnaddress in this function.
286  bool isReturnAddressTaken() const { return ReturnAddressTaken; }
287  void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
288
289  /// hasStackMap - This method may be called any time after instruction
290  /// selection is complete to determine if there is a call to builtin
291  /// \@llvm.experimental.stackmap.
292  bool hasStackMap() const { return HasStackMap; }
293  void setHasStackMap(bool s = true) { HasStackMap = s; }
294
295  /// hasPatchPoint - This method may be called any time after instruction
296  /// selection is complete to determine if there is a call to builtin
297  /// \@llvm.experimental.patchpoint.
298  bool hasPatchPoint() const { return HasPatchPoint; }
299  void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
300
301  /// getObjectIndexBegin - Return the minimum frame object index.
302  ///
303  int getObjectIndexBegin() const { return -NumFixedObjects; }
304
305  /// getObjectIndexEnd - Return one past the maximum frame object index.
306  ///
307  int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
308
309  /// getNumFixedObjects - Return the number of fixed objects.
310  unsigned getNumFixedObjects() const { return NumFixedObjects; }
311
312  /// getNumObjects - Return the number of objects.
313  ///
314  unsigned getNumObjects() const { return Objects.size(); }
315
316  /// mapLocalFrameObject - Map a frame index into the local object block
317  void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
318    LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
319    Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
320  }
321
322  /// getLocalFrameObjectMap - Get the local offset mapping for a for an object
323  std::pair<int, int64_t> getLocalFrameObjectMap(int i) {
324    assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
325            "Invalid local object reference!");
326    return LocalFrameObjects[i];
327  }
328
329  /// getLocalFrameObjectCount - Return the number of objects allocated into
330  /// the local object block.
331  int64_t getLocalFrameObjectCount() { return LocalFrameObjects.size(); }
332
333  /// setLocalFrameSize - Set the size of the local object blob.
334  void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
335
336  /// getLocalFrameSize - Get the size of the local object blob.
337  int64_t getLocalFrameSize() const { return LocalFrameSize; }
338
339  /// setLocalFrameMaxAlign - Required alignment of the local object blob,
340  /// which is the strictest alignment of any object in it.
341  void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
342
343  /// getLocalFrameMaxAlign - Return the required alignment of the local
344  /// object blob.
345  unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
346
347  /// getUseLocalStackAllocationBlock - Get whether the local allocation blob
348  /// should be allocated together or let PEI allocate the locals in it
349  /// directly.
350  bool getUseLocalStackAllocationBlock() {return UseLocalStackAllocationBlock;}
351
352  /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
353  /// should be allocated together or let PEI allocate the locals in it
354  /// directly.
355  void setUseLocalStackAllocationBlock(bool v) {
356    UseLocalStackAllocationBlock = v;
357  }
358
359  /// isObjectPreAllocated - Return true if the object was pre-allocated into
360  /// the local block.
361  bool isObjectPreAllocated(int ObjectIdx) const {
362    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
363           "Invalid Object Idx!");
364    return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
365  }
366
367  /// getObjectSize - Return the size of the specified object.
368  ///
369  int64_t getObjectSize(int ObjectIdx) const {
370    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
371           "Invalid Object Idx!");
372    return Objects[ObjectIdx+NumFixedObjects].Size;
373  }
374
375  /// setObjectSize - Change the size of the specified stack object.
376  void setObjectSize(int ObjectIdx, int64_t Size) {
377    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
378           "Invalid Object Idx!");
379    Objects[ObjectIdx+NumFixedObjects].Size = Size;
380  }
381
382  /// getObjectAlignment - Return the alignment of the specified stack object.
383  unsigned getObjectAlignment(int ObjectIdx) const {
384    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
385           "Invalid Object Idx!");
386    return Objects[ObjectIdx+NumFixedObjects].Alignment;
387  }
388
389  /// setObjectAlignment - Change the alignment of the specified stack object.
390  void setObjectAlignment(int ObjectIdx, unsigned Align) {
391    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
392           "Invalid Object Idx!");
393    Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
394    ensureMaxAlignment(Align);
395  }
396
397  /// getObjectAllocation - Return the underlying Alloca of the specified
398  /// stack object if it exists. Returns 0 if none exists.
399  const AllocaInst* getObjectAllocation(int ObjectIdx) const {
400    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
401           "Invalid Object Idx!");
402    return Objects[ObjectIdx+NumFixedObjects].Alloca;
403  }
404
405  /// getObjectOffset - Return the assigned stack offset of the specified object
406  /// from the incoming stack pointer.
407  ///
408  int64_t getObjectOffset(int ObjectIdx) const {
409    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
410           "Invalid Object Idx!");
411    assert(!isDeadObjectIndex(ObjectIdx) &&
412           "Getting frame offset for a dead object?");
413    return Objects[ObjectIdx+NumFixedObjects].SPOffset;
414  }
415
416  /// setObjectOffset - Set the stack frame offset of the specified object.  The
417  /// offset is relative to the stack pointer on entry to the function.
418  ///
419  void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
420    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
421           "Invalid Object Idx!");
422    assert(!isDeadObjectIndex(ObjectIdx) &&
423           "Setting frame offset for a dead object?");
424    Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
425  }
426
427  /// getStackSize - Return the number of bytes that must be allocated to hold
428  /// all of the fixed size frame objects.  This is only valid after
429  /// Prolog/Epilog code insertion has finalized the stack frame layout.
430  ///
431  uint64_t getStackSize() const { return StackSize; }
432
433  /// setStackSize - Set the size of the stack...
434  ///
435  void setStackSize(uint64_t Size) { StackSize = Size; }
436
437  /// Estimate and return the size of the stack frame.
438  unsigned estimateStackSize(const MachineFunction &MF) const;
439
440  /// getOffsetAdjustment - Return the correction for frame offsets.
441  ///
442  int getOffsetAdjustment() const { return OffsetAdjustment; }
443
444  /// setOffsetAdjustment - Set the correction for frame offsets.
445  ///
446  void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
447
448  /// getMaxAlignment - Return the alignment in bytes that this function must be
449  /// aligned to, which is greater than the default stack alignment provided by
450  /// the target.
451  ///
452  unsigned getMaxAlignment() const { return MaxAlignment; }
453
454  /// ensureMaxAlignment - Make sure the function is at least Align bytes
455  /// aligned.
456  void ensureMaxAlignment(unsigned Align);
457
458  /// AdjustsStack - Return true if this function adjusts the stack -- e.g.,
459  /// when calling another function. This is only valid during and after
460  /// prolog/epilog code insertion.
461  bool adjustsStack() const { return AdjustsStack; }
462  void setAdjustsStack(bool V) { AdjustsStack = V; }
463
464  /// hasCalls - Return true if the current function has any function calls.
465  bool hasCalls() const { return HasCalls; }
466  void setHasCalls(bool V) { HasCalls = V; }
467
468  /// Returns true if the function contains any stack-adjusting inline assembly.
469  bool hasInlineAsmWithSPAdjust() const { return HasInlineAsmWithSPAdjust; }
470  void setHasInlineAsmWithSPAdjust(bool B) { HasInlineAsmWithSPAdjust = B; }
471
472  /// getMaxCallFrameSize - Return the maximum size of a call frame that must be
473  /// allocated for an outgoing function call.  This is only available if
474  /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
475  /// then only during or after prolog/epilog code insertion.
476  ///
477  unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
478  void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
479
480  /// CreateFixedObject - Create a new object at a fixed location on the stack.
481  /// All fixed objects should be created before other objects are created for
482  /// efficiency. By default, fixed objects are immutable. This returns an
483  /// index with a negative value.
484  ///
485  int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable);
486
487  /// CreateFixedSpillStackObject - Create a spill slot at a fixed location
488  /// on the stack.  Returns an index with a negative value.
489  int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset);
490
491  /// isFixedObjectIndex - Returns true if the specified index corresponds to a
492  /// fixed stack object.
493  bool isFixedObjectIndex(int ObjectIdx) const {
494    return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
495  }
496
497  /// isImmutableObjectIndex - Returns true if the specified index corresponds
498  /// to an immutable object.
499  bool isImmutableObjectIndex(int ObjectIdx) const {
500    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
501           "Invalid Object Idx!");
502    return Objects[ObjectIdx+NumFixedObjects].isImmutable;
503  }
504
505  /// isSpillSlotObjectIndex - Returns true if the specified index corresponds
506  /// to a spill slot..
507  bool isSpillSlotObjectIndex(int ObjectIdx) const {
508    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
509           "Invalid Object Idx!");
510    return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
511  }
512
513  /// isDeadObjectIndex - Returns true if the specified index corresponds to
514  /// a dead object.
515  bool isDeadObjectIndex(int ObjectIdx) const {
516    assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
517           "Invalid Object Idx!");
518    return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
519  }
520
521  /// CreateStackObject - Create a new statically sized stack object, returning
522  /// a nonnegative identifier to represent it.
523  ///
524  int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
525                        const AllocaInst *Alloca = nullptr);
526
527  /// CreateSpillStackObject - Create a new statically sized stack object that
528  /// represents a spill slot, returning a nonnegative identifier to represent
529  /// it.
530  ///
531  int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
532
533  /// RemoveStackObject - Remove or mark dead a statically sized stack object.
534  ///
535  void RemoveStackObject(int ObjectIdx) {
536    // Mark it dead.
537    Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
538  }
539
540  /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
541  /// variable sized object has been created.  This must be created whenever a
542  /// variable sized object is created, whether or not the index returned is
543  /// actually used.
544  ///
545  int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
546
547  /// getCalleeSavedInfo - Returns a reference to call saved info vector for the
548  /// current function.
549  const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
550    return CSInfo;
551  }
552
553  /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
554  /// callee saved information.
555  void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
556    CSInfo = CSI;
557  }
558
559  /// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
560  bool isCalleeSavedInfoValid() const { return CSIValid; }
561
562  void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
563
564  /// getPristineRegs - Return a set of physical registers that are pristine on
565  /// entry to the MBB.
566  ///
567  /// Pristine registers hold a value that is useless to the current function,
568  /// but that must be preserved - they are callee saved registers that have not
569  /// been saved yet.
570  ///
571  /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
572  /// method always returns an empty set.
573  BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
574
575  /// print - Used by the MachineFunction printer to print information about
576  /// stack objects. Implemented in MachineFunction.cpp
577  ///
578  void print(const MachineFunction &MF, raw_ostream &OS) const;
579
580  /// dump - Print the function to stderr.
581  void dump(const MachineFunction &MF) const;
582};
583
584} // End llvm namespace
585
586#endif
587