MachineRegisterInfo.h revision 73e7dced3892f2abb4344526147d4df0f62aee61
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/IndexedMap.h"
20#include <vector>
21
22namespace llvm {
23
24/// MachineRegisterInfo - Keep track of information for virtual and physical
25/// registers, including vreg register classes, use/def chains for registers,
26/// etc.
27class MachineRegisterInfo {
28  /// IsSSA - True when the machine function is in SSA form and virtual
29  /// registers have a single def.
30  bool IsSSA;
31
32  /// VRegInfo - Information we keep for each virtual register.
33  ///
34  /// Each element in this list contains the register class of the vreg and the
35  /// start of the use/def list for the register.
36  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
37             VirtReg2IndexFunctor> VRegInfo;
38
39  /// RegAllocHints - This vector records register allocation hints for virtual
40  /// registers. For each virtual register, it keeps a register and hint type
41  /// pair making up the allocation hint. Hint type is target specific except
42  /// for the value 0 which means the second value of the pair is the preferred
43  /// register for allocation. For example, if the hint is <0, 1024>, it means
44  /// the allocator should prefer the physical register allocated to the virtual
45  /// register of the hint.
46  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
47
48  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
49  /// physical registers.
50  MachineOperand **PhysRegUseDefLists;
51
52  /// UsedPhysRegs - This is a bit vector that is computed and set by the
53  /// register allocator, and must be kept up to date by passes that run after
54  /// register allocation (though most don't modify this).  This is used
55  /// so that the code generator knows which callee save registers to save and
56  /// for other target specific uses.
57  BitVector UsedPhysRegs;
58
59  /// LiveIns/LiveOuts - Keep track of the physical registers that are
60  /// livein/liveout of the function.  Live in values are typically arguments in
61  /// registers, live out values are typically return values in registers.
62  /// LiveIn values are allowed to have virtual registers associated with them,
63  /// stored in the second element.
64  std::vector<std::pair<unsigned, unsigned> > LiveIns;
65  std::vector<unsigned> LiveOuts;
66
67  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
68  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
69public:
70  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
71  ~MachineRegisterInfo();
72
73  //===--------------------------------------------------------------------===//
74  // Function State
75  //===--------------------------------------------------------------------===//
76
77  // isSSA - Returns true when the machine function is in SSA form. Early
78  // passes require the machine function to be in SSA form where every virtual
79  // register has a single defining instruction.
80  //
81  // The TwoAddressInstructionPass and PHIElimination passes take the machine
82  // function out of SSA form when they introduce multiple defs per virtual
83  // register.
84  bool isSSA() const { return IsSSA; }
85
86  // leaveSSA - Indicates that the machine function is no longer in SSA form.
87  void leaveSSA() { IsSSA = false; }
88
89  //===--------------------------------------------------------------------===//
90  // Register Info
91  //===--------------------------------------------------------------------===//
92
93  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
94  /// and uses of a register within the MachineFunction that corresponds to this
95  /// MachineRegisterInfo object.
96  template<bool Uses, bool Defs, bool SkipDebug>
97  class defusechain_iterator;
98
99  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
100  /// register.
101  typedef defusechain_iterator<true,true,false> reg_iterator;
102  reg_iterator reg_begin(unsigned RegNo) const {
103    return reg_iterator(getRegUseDefListHead(RegNo));
104  }
105  static reg_iterator reg_end() { return reg_iterator(0); }
106
107  /// reg_empty - Return true if there are no instructions using or defining the
108  /// specified register (it may be live-in).
109  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
110
111  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
112  /// of the specified register, skipping those marked as Debug.
113  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
114  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
115    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
116  }
117  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
118
119  /// reg_nodbg_empty - Return true if the only instructions using or defining
120  /// Reg are Debug instructions.
121  bool reg_nodbg_empty(unsigned RegNo) const {
122    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
123  }
124
125  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
126  typedef defusechain_iterator<false,true,false> def_iterator;
127  def_iterator def_begin(unsigned RegNo) const {
128    return def_iterator(getRegUseDefListHead(RegNo));
129  }
130  static def_iterator def_end() { return def_iterator(0); }
131
132  /// def_empty - Return true if there are no instructions defining the
133  /// specified register (it may be live-in).
134  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
135
136  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
137  typedef defusechain_iterator<true,false,false> use_iterator;
138  use_iterator use_begin(unsigned RegNo) const {
139    return use_iterator(getRegUseDefListHead(RegNo));
140  }
141  static use_iterator use_end() { return use_iterator(0); }
142
143  /// use_empty - Return true if there are no instructions using the specified
144  /// register.
145  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
146
147  /// hasOneUse - Return true if there is exactly one instruction using the
148  /// specified register.
149  bool hasOneUse(unsigned RegNo) const;
150
151  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
152  /// specified register, skipping those marked as Debug.
153  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
154  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
155    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
156  }
157  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
158
159  /// use_nodbg_empty - Return true if there are no non-Debug instructions
160  /// using the specified register.
161  bool use_nodbg_empty(unsigned RegNo) const {
162    return use_nodbg_begin(RegNo) == use_nodbg_end();
163  }
164
165  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
166  /// instruction using the specified register.
167  bool hasOneNonDBGUse(unsigned RegNo) const;
168
169  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
170  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
171  /// except that it also changes any definitions of the register as well.
172  void replaceRegWith(unsigned FromReg, unsigned ToReg);
173
174  /// getRegUseDefListHead - Return the head pointer for the register use/def
175  /// list for the specified virtual or physical register.
176  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
177    if (TargetRegisterInfo::isVirtualRegister(RegNo))
178      return VRegInfo[RegNo].second;
179    return PhysRegUseDefLists[RegNo];
180  }
181
182  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
183    if (TargetRegisterInfo::isVirtualRegister(RegNo))
184      return VRegInfo[RegNo].second;
185    return PhysRegUseDefLists[RegNo];
186  }
187
188  /// getVRegDef - Return the machine instr that defines the specified virtual
189  /// register or null if none is found.  This assumes that the code is in SSA
190  /// form, so there should only be one definition.
191  MachineInstr *getVRegDef(unsigned Reg) const;
192
193  /// clearKillFlags - Iterate over all the uses of the given register and
194  /// clear the kill flag from the MachineOperand. This function is used by
195  /// optimization passes which extend register lifetimes and need only
196  /// preserve conservative kill flag information.
197  void clearKillFlags(unsigned Reg) const;
198
199#ifndef NDEBUG
200  void dumpUses(unsigned RegNo) const;
201#endif
202
203  //===--------------------------------------------------------------------===//
204  // Virtual Register Info
205  //===--------------------------------------------------------------------===//
206
207  /// getRegClass - Return the register class of the specified virtual register.
208  ///
209  const TargetRegisterClass *getRegClass(unsigned Reg) const {
210    return VRegInfo[Reg].first;
211  }
212
213  /// setRegClass - Set the register class of the specified virtual register.
214  ///
215  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
216
217  /// constrainRegClass - Constrain the register class of the specified virtual
218  /// register to be a common subclass of RC and the current register class.
219  /// Return the new register class, or NULL if no such class exists.
220  /// This should only be used when the constraint is known to be trivial, like
221  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
222  const TargetRegisterClass *constrainRegClass(unsigned Reg,
223                                               const TargetRegisterClass *RC);
224
225  /// createVirtualRegister - Create and return a new virtual register in the
226  /// function with the specified register class.
227  ///
228  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
229
230  /// getNumVirtRegs - Return the number of virtual registers created.
231  ///
232  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
233
234  /// setRegAllocationHint - Specify a register allocation hint for the
235  /// specified virtual register.
236  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
237    RegAllocHints[Reg].first  = Type;
238    RegAllocHints[Reg].second = PrefReg;
239  }
240
241  /// getRegAllocationHint - Return the register allocation hint for the
242  /// specified virtual register.
243  std::pair<unsigned, unsigned>
244  getRegAllocationHint(unsigned Reg) const {
245    return RegAllocHints[Reg];
246  }
247
248  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
249  /// standard simple hint (Type == 0) is not set.
250  unsigned getSimpleHint(unsigned Reg) const {
251    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
252    return Hint.first ? 0 : Hint.second;
253  }
254
255
256  //===--------------------------------------------------------------------===//
257  // Physical Register Use Info
258  //===--------------------------------------------------------------------===//
259
260  /// isPhysRegUsed - Return true if the specified register is used in this
261  /// function.  This only works after register allocation.
262  bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; }
263
264  /// setPhysRegUsed - Mark the specified register used in this function.
265  /// This should only be called during and after register allocation.
266  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; }
267
268  /// addPhysRegsUsed - Mark the specified registers used in this function.
269  /// This should only be called during and after register allocation.
270  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
271
272  /// setPhysRegUnused - Mark the specified register unused in this function.
273  /// This should only be called during and after register allocation.
274  void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; }
275
276  /// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over
277  /// subregisters. That means that if R is used, so are all subregisters.
278  void closePhysRegsUsed(const TargetRegisterInfo&);
279
280  //===--------------------------------------------------------------------===//
281  // LiveIn/LiveOut Management
282  //===--------------------------------------------------------------------===//
283
284  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
285  /// is an error to add the same register to the same set more than once.
286  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
287    LiveIns.push_back(std::make_pair(Reg, vreg));
288  }
289  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
290
291  // Iteration support for live in/out sets.  These sets are kept in sorted
292  // order by their register number.
293  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
294  livein_iterator;
295  typedef std::vector<unsigned>::const_iterator liveout_iterator;
296  livein_iterator livein_begin() const { return LiveIns.begin(); }
297  livein_iterator livein_end()   const { return LiveIns.end(); }
298  bool            livein_empty() const { return LiveIns.empty(); }
299  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
300  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
301  bool             liveout_empty() const { return LiveOuts.empty(); }
302
303  bool isLiveIn(unsigned Reg) const;
304  bool isLiveOut(unsigned Reg) const;
305
306  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
307  /// corresponding live-in physical register.
308  unsigned getLiveInPhysReg(unsigned VReg) const;
309
310  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
311  /// corresponding live-in physical register.
312  unsigned getLiveInVirtReg(unsigned PReg) const;
313
314  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
315  /// into the given entry block.
316  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
317                        const TargetRegisterInfo &TRI,
318                        const TargetInstrInfo &TII);
319
320private:
321  void HandleVRegListReallocation();
322
323public:
324  /// defusechain_iterator - This class provides iterator support for machine
325  /// operands in the function that use or define a specific register.  If
326  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
327  /// returns defs.  If neither are true then you are silly and it always
328  /// returns end().  If SkipDebug is true it skips uses marked Debug
329  /// when incrementing.
330  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
331  class defusechain_iterator
332    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
333    MachineOperand *Op;
334    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
335      // If the first node isn't one we're interested in, advance to one that
336      // we are interested in.
337      if (op) {
338        if ((!ReturnUses && op->isUse()) ||
339            (!ReturnDefs && op->isDef()) ||
340            (SkipDebug && op->isDebug()))
341          ++*this;
342      }
343    }
344    friend class MachineRegisterInfo;
345  public:
346    typedef std::iterator<std::forward_iterator_tag,
347                          MachineInstr, ptrdiff_t>::reference reference;
348    typedef std::iterator<std::forward_iterator_tag,
349                          MachineInstr, ptrdiff_t>::pointer pointer;
350
351    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
352    defusechain_iterator() : Op(0) {}
353
354    bool operator==(const defusechain_iterator &x) const {
355      return Op == x.Op;
356    }
357    bool operator!=(const defusechain_iterator &x) const {
358      return !operator==(x);
359    }
360
361    /// atEnd - return true if this iterator is equal to reg_end() on the value.
362    bool atEnd() const { return Op == 0; }
363
364    // Iterator traversal: forward iteration only
365    defusechain_iterator &operator++() {          // Preincrement
366      assert(Op && "Cannot increment end iterator!");
367      Op = Op->getNextOperandForReg();
368
369      // If this is an operand we don't care about, skip it.
370      while (Op && ((!ReturnUses && Op->isUse()) ||
371                    (!ReturnDefs && Op->isDef()) ||
372                    (SkipDebug && Op->isDebug())))
373        Op = Op->getNextOperandForReg();
374
375      return *this;
376    }
377    defusechain_iterator operator++(int) {        // Postincrement
378      defusechain_iterator tmp = *this; ++*this; return tmp;
379    }
380
381    /// skipInstruction - move forward until reaching a different instruction.
382    /// Return the skipped instruction that is no longer pointed to, or NULL if
383    /// already pointing to end().
384    MachineInstr *skipInstruction() {
385      if (!Op) return 0;
386      MachineInstr *MI = Op->getParent();
387      do ++*this;
388      while (Op && Op->getParent() == MI);
389      return MI;
390    }
391
392    MachineOperand &getOperand() const {
393      assert(Op && "Cannot dereference end iterator!");
394      return *Op;
395    }
396
397    /// getOperandNo - Return the operand # of this MachineOperand in its
398    /// MachineInstr.
399    unsigned getOperandNo() const {
400      assert(Op && "Cannot dereference end iterator!");
401      return Op - &Op->getParent()->getOperand(0);
402    }
403
404    // Retrieve a reference to the current operand.
405    MachineInstr &operator*() const {
406      assert(Op && "Cannot dereference end iterator!");
407      return *Op->getParent();
408    }
409
410    MachineInstr *operator->() const {
411      assert(Op && "Cannot dereference end iterator!");
412      return Op->getParent();
413    }
414  };
415
416};
417
418} // End llvm namespace
419
420#endif
421