MachineRegisterInfo.h revision 269120cd9b45b24665433ea28eb7d092c138ca76
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/CodeGen/MachineInstrBundle.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/IndexedMap.h"
21#include <vector>
22
23namespace llvm {
24
25/// MachineRegisterInfo - Keep track of information for virtual and physical
26/// registers, including vreg register classes, use/def chains for registers,
27/// etc.
28class MachineRegisterInfo {
29  const TargetRegisterInfo *const TRI;
30
31  /// IsSSA - True when the machine function is in SSA form and virtual
32  /// registers have a single def.
33  bool IsSSA;
34
35  /// TracksLiveness - True while register liveness is being tracked accurately.
36  /// Basic block live-in lists, kill flags, and implicit defs may not be
37  /// accurate when after this flag is cleared.
38  bool TracksLiveness;
39
40  /// VRegInfo - Information we keep for each virtual register.
41  ///
42  /// Each element in this list contains the register class of the vreg and the
43  /// start of the use/def list for the register.
44  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45             VirtReg2IndexFunctor> VRegInfo;
46
47  /// RegAllocHints - This vector records register allocation hints for virtual
48  /// registers. For each virtual register, it keeps a register and hint type
49  /// pair making up the allocation hint. Hint type is target specific except
50  /// for the value 0 which means the second value of the pair is the preferred
51  /// register for allocation. For example, if the hint is <0, 1024>, it means
52  /// the allocator should prefer the physical register allocated to the virtual
53  /// register of the hint.
54  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55
56  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57  /// physical registers.
58  MachineOperand **PhysRegUseDefLists;
59
60  /// UsedPhysRegs - This is a bit vector that is computed and set by the
61  /// register allocator, and must be kept up to date by passes that run after
62  /// register allocation (though most don't modify this).  This is used
63  /// so that the code generator knows which callee save registers to save and
64  /// for other target specific uses.
65  /// This vector only has bits set for registers explicitly used, not their
66  /// aliases.
67  BitVector UsedPhysRegs;
68
69  /// UsedPhysRegMask - Additional used physregs, but including aliases.
70  BitVector UsedPhysRegMask;
71
72  /// ReservedRegs - This is a bit vector of reserved registers.  The target
73  /// may change its mind about which registers should be reserved.  This
74  /// vector is the frozen set of reserved registers when register allocation
75  /// started.
76  BitVector ReservedRegs;
77
78  /// AllocatableRegs - From TRI->getAllocatableSet.
79  mutable BitVector AllocatableRegs;
80
81  /// LiveIns/LiveOuts - Keep track of the physical registers that are
82  /// livein/liveout of the function.  Live in values are typically arguments in
83  /// registers, live out values are typically return values in registers.
84  /// LiveIn values are allowed to have virtual registers associated with them,
85  /// stored in the second element.
86  std::vector<std::pair<unsigned, unsigned> > LiveIns;
87  std::vector<unsigned> LiveOuts;
88
89  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
90  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
91public:
92  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
93  ~MachineRegisterInfo();
94
95  //===--------------------------------------------------------------------===//
96  // Function State
97  //===--------------------------------------------------------------------===//
98
99  // isSSA - Returns true when the machine function is in SSA form. Early
100  // passes require the machine function to be in SSA form where every virtual
101  // register has a single defining instruction.
102  //
103  // The TwoAddressInstructionPass and PHIElimination passes take the machine
104  // function out of SSA form when they introduce multiple defs per virtual
105  // register.
106  bool isSSA() const { return IsSSA; }
107
108  // leaveSSA - Indicates that the machine function is no longer in SSA form.
109  void leaveSSA() { IsSSA = false; }
110
111  /// tracksLiveness - Returns true when tracking register liveness accurately.
112  ///
113  /// While this flag is true, register liveness information in basic block
114  /// live-in lists and machine instruction operands is accurate. This means it
115  /// can be used to change the code in ways that affect the values in
116  /// registers, for example by the register scavenger.
117  ///
118  /// When this flag is false, liveness is no longer reliable.
119  bool tracksLiveness() const { return TracksLiveness; }
120
121  /// invalidateLiveness - Indicates that register liveness is no longer being
122  /// tracked accurately.
123  ///
124  /// This should be called by late passes that invalidate the liveness
125  /// information.
126  void invalidateLiveness() { TracksLiveness = false; }
127
128  //===--------------------------------------------------------------------===//
129  // Register Info
130  //===--------------------------------------------------------------------===//
131
132  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
133  /// and uses of a register within the MachineFunction that corresponds to this
134  /// MachineRegisterInfo object.
135  template<bool Uses, bool Defs, bool SkipDebug>
136  class defusechain_iterator;
137
138  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
139  /// register.
140  typedef defusechain_iterator<true,true,false> reg_iterator;
141  reg_iterator reg_begin(unsigned RegNo) const {
142    return reg_iterator(getRegUseDefListHead(RegNo));
143  }
144  static reg_iterator reg_end() { return reg_iterator(0); }
145
146  /// reg_empty - Return true if there are no instructions using or defining the
147  /// specified register (it may be live-in).
148  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
149
150  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
151  /// of the specified register, skipping those marked as Debug.
152  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
153  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
154    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
155  }
156  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
157
158  /// reg_nodbg_empty - Return true if the only instructions using or defining
159  /// Reg are Debug instructions.
160  bool reg_nodbg_empty(unsigned RegNo) const {
161    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
162  }
163
164  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
165  typedef defusechain_iterator<false,true,false> def_iterator;
166  def_iterator def_begin(unsigned RegNo) const {
167    return def_iterator(getRegUseDefListHead(RegNo));
168  }
169  static def_iterator def_end() { return def_iterator(0); }
170
171  /// def_empty - Return true if there are no instructions defining the
172  /// specified register (it may be live-in).
173  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
174
175  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
176  typedef defusechain_iterator<true,false,false> use_iterator;
177  use_iterator use_begin(unsigned RegNo) const {
178    return use_iterator(getRegUseDefListHead(RegNo));
179  }
180  static use_iterator use_end() { return use_iterator(0); }
181
182  /// use_empty - Return true if there are no instructions using the specified
183  /// register.
184  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
185
186  /// hasOneUse - Return true if there is exactly one instruction using the
187  /// specified register.
188  bool hasOneUse(unsigned RegNo) const {
189    use_iterator UI = use_begin(RegNo);
190    if (UI == use_end())
191      return false;
192    return ++UI == use_end();
193  }
194
195  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
196  /// specified register, skipping those marked as Debug.
197  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
198  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
199    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
200  }
201  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
202
203  /// use_nodbg_empty - Return true if there are no non-Debug instructions
204  /// using the specified register.
205  bool use_nodbg_empty(unsigned RegNo) const {
206    return use_nodbg_begin(RegNo) == use_nodbg_end();
207  }
208
209  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
210  /// instruction using the specified register.
211  bool hasOneNonDBGUse(unsigned RegNo) const;
212
213  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
214  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
215  /// except that it also changes any definitions of the register as well.
216  ///
217  /// Note that it is usually necessary to first constrain ToReg's register
218  /// class to match the FromReg constraints using:
219  ///
220  ///   constrainRegClass(ToReg, getRegClass(FromReg))
221  ///
222  /// That function will return NULL if the virtual registers have incompatible
223  /// constraints.
224  void replaceRegWith(unsigned FromReg, unsigned ToReg);
225
226  /// getRegUseDefListHead - Return the head pointer for the register use/def
227  /// list for the specified virtual or physical register.
228  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
229    if (TargetRegisterInfo::isVirtualRegister(RegNo))
230      return VRegInfo[RegNo].second;
231    return PhysRegUseDefLists[RegNo];
232  }
233
234  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
235    if (TargetRegisterInfo::isVirtualRegister(RegNo))
236      return VRegInfo[RegNo].second;
237    return PhysRegUseDefLists[RegNo];
238  }
239
240  /// getVRegDef - Return the machine instr that defines the specified virtual
241  /// register or null if none is found.  This assumes that the code is in SSA
242  /// form, so there should only be one definition.
243  MachineInstr *getVRegDef(unsigned Reg) const;
244
245  /// getUniqueVRegDef - Return the unique machine instr that defines the
246  /// specified virtual register or null if none is found.  If there are
247  /// multiple definitions or no definition, return null.
248  MachineInstr *getUniqueVRegDef(unsigned Reg) const;
249
250  /// clearKillFlags - Iterate over all the uses of the given register and
251  /// clear the kill flag from the MachineOperand. This function is used by
252  /// optimization passes which extend register lifetimes and need only
253  /// preserve conservative kill flag information.
254  void clearKillFlags(unsigned Reg) const;
255
256#ifndef NDEBUG
257  void dumpUses(unsigned RegNo) const;
258#endif
259
260  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
261  /// throughout the function.  It is safe to move instructions that read such
262  /// a physreg.
263  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
264
265  //===--------------------------------------------------------------------===//
266  // Virtual Register Info
267  //===--------------------------------------------------------------------===//
268
269  /// getRegClass - Return the register class of the specified virtual register.
270  ///
271  const TargetRegisterClass *getRegClass(unsigned Reg) const {
272    return VRegInfo[Reg].first;
273  }
274
275  /// setRegClass - Set the register class of the specified virtual register.
276  ///
277  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
278
279  /// constrainRegClass - Constrain the register class of the specified virtual
280  /// register to be a common subclass of RC and the current register class,
281  /// but only if the new class has at least MinNumRegs registers.  Return the
282  /// new register class, or NULL if no such class exists.
283  /// This should only be used when the constraint is known to be trivial, like
284  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
285  ///
286  const TargetRegisterClass *constrainRegClass(unsigned Reg,
287                                               const TargetRegisterClass *RC,
288                                               unsigned MinNumRegs = 0);
289
290  /// recomputeRegClass - Try to find a legal super-class of Reg's register
291  /// class that still satisfies the constraints from the instructions using
292  /// Reg.  Returns true if Reg was upgraded.
293  ///
294  /// This method can be used after constraints have been removed from a
295  /// virtual register, for example after removing instructions or splitting
296  /// the live range.
297  ///
298  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
299
300  /// createVirtualRegister - Create and return a new virtual register in the
301  /// function with the specified register class.
302  ///
303  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
304
305  /// getNumVirtRegs - Return the number of virtual registers created.
306  ///
307  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
308
309  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
310  void clearVirtRegs();
311
312  /// setRegAllocationHint - Specify a register allocation hint for the
313  /// specified virtual register.
314  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
315    RegAllocHints[Reg].first  = Type;
316    RegAllocHints[Reg].second = PrefReg;
317  }
318
319  /// getRegAllocationHint - Return the register allocation hint for the
320  /// specified virtual register.
321  std::pair<unsigned, unsigned>
322  getRegAllocationHint(unsigned Reg) const {
323    return RegAllocHints[Reg];
324  }
325
326  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
327  /// standard simple hint (Type == 0) is not set.
328  unsigned getSimpleHint(unsigned Reg) const {
329    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
330    return Hint.first ? 0 : Hint.second;
331  }
332
333
334  //===--------------------------------------------------------------------===//
335  // Physical Register Use Info
336  //===--------------------------------------------------------------------===//
337
338  /// isPhysRegUsed - Return true if the specified register is used in this
339  /// function.  This only works after register allocation.
340  bool isPhysRegUsed(unsigned Reg) const {
341    return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
342  }
343
344  /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
345  /// is used in this function.
346  bool isPhysRegOrOverlapUsed(unsigned Reg) const {
347    if (UsedPhysRegMask.test(Reg))
348      return true;
349    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
350      if (UsedPhysRegs.test(*AI))
351        return true;
352    return false;
353  }
354
355  /// setPhysRegUsed - Mark the specified register used in this function.
356  /// This should only be called during and after register allocation.
357  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
358
359  /// addPhysRegsUsed - Mark the specified registers used in this function.
360  /// This should only be called during and after register allocation.
361  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
362
363  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
364  /// This corresponds to the bit mask attached to register mask operands.
365  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
366    UsedPhysRegMask.setBitsNotInMask(RegMask);
367  }
368
369  /// setPhysRegUnused - Mark the specified register unused in this function.
370  /// This should only be called during and after register allocation.
371  void setPhysRegUnused(unsigned Reg) {
372    UsedPhysRegs.reset(Reg);
373    UsedPhysRegMask.reset(Reg);
374  }
375
376
377  //===--------------------------------------------------------------------===//
378  // Reserved Register Info
379  //===--------------------------------------------------------------------===//
380  //
381  // The set of reserved registers must be invariant during register
382  // allocation.  For example, the target cannot suddenly decide it needs a
383  // frame pointer when the register allocator has already used the frame
384  // pointer register for something else.
385  //
386  // These methods can be used by target hooks like hasFP() to avoid changing
387  // the reserved register set during register allocation.
388
389  /// freezeReservedRegs - Called by the register allocator to freeze the set
390  /// of reserved registers before allocation begins.
391  void freezeReservedRegs(const MachineFunction&);
392
393  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
394  /// to ensure the set of reserved registers stays constant.
395  bool reservedRegsFrozen() const {
396    return !ReservedRegs.empty();
397  }
398
399  /// canReserveReg - Returns true if PhysReg can be used as a reserved
400  /// register.  Any register can be reserved before freezeReservedRegs() is
401  /// called.
402  bool canReserveReg(unsigned PhysReg) const {
403    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
404  }
405
406
407  //===--------------------------------------------------------------------===//
408  // LiveIn/LiveOut Management
409  //===--------------------------------------------------------------------===//
410
411  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
412  /// is an error to add the same register to the same set more than once.
413  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
414    LiveIns.push_back(std::make_pair(Reg, vreg));
415  }
416  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
417
418  // Iteration support for live in/out sets.  These sets are kept in sorted
419  // order by their register number.
420  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
421  livein_iterator;
422  typedef std::vector<unsigned>::const_iterator liveout_iterator;
423  livein_iterator livein_begin() const { return LiveIns.begin(); }
424  livein_iterator livein_end()   const { return LiveIns.end(); }
425  bool            livein_empty() const { return LiveIns.empty(); }
426  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
427  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
428  bool             liveout_empty() const { return LiveOuts.empty(); }
429
430  bool isLiveIn(unsigned Reg) const;
431  bool isLiveOut(unsigned Reg) const;
432
433  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
434  /// corresponding live-in physical register.
435  unsigned getLiveInPhysReg(unsigned VReg) const;
436
437  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
438  /// corresponding live-in physical register.
439  unsigned getLiveInVirtReg(unsigned PReg) const;
440
441  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
442  /// into the given entry block.
443  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
444                        const TargetRegisterInfo &TRI,
445                        const TargetInstrInfo &TII);
446
447private:
448  void HandleVRegListReallocation();
449
450public:
451  /// defusechain_iterator - This class provides iterator support for machine
452  /// operands in the function that use or define a specific register.  If
453  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
454  /// returns defs.  If neither are true then you are silly and it always
455  /// returns end().  If SkipDebug is true it skips uses marked Debug
456  /// when incrementing.
457  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
458  class defusechain_iterator
459    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
460    MachineOperand *Op;
461    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
462      // If the first node isn't one we're interested in, advance to one that
463      // we are interested in.
464      if (op) {
465        if ((!ReturnUses && op->isUse()) ||
466            (!ReturnDefs && op->isDef()) ||
467            (SkipDebug && op->isDebug()))
468          ++*this;
469      }
470    }
471    friend class MachineRegisterInfo;
472  public:
473    typedef std::iterator<std::forward_iterator_tag,
474                          MachineInstr, ptrdiff_t>::reference reference;
475    typedef std::iterator<std::forward_iterator_tag,
476                          MachineInstr, ptrdiff_t>::pointer pointer;
477
478    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
479    defusechain_iterator() : Op(0) {}
480
481    bool operator==(const defusechain_iterator &x) const {
482      return Op == x.Op;
483    }
484    bool operator!=(const defusechain_iterator &x) const {
485      return !operator==(x);
486    }
487
488    /// atEnd - return true if this iterator is equal to reg_end() on the value.
489    bool atEnd() const { return Op == 0; }
490
491    // Iterator traversal: forward iteration only
492    defusechain_iterator &operator++() {          // Preincrement
493      assert(Op && "Cannot increment end iterator!");
494      Op = Op->getNextOperandForReg();
495
496      // If this is an operand we don't care about, skip it.
497      while (Op && ((!ReturnUses && Op->isUse()) ||
498                    (!ReturnDefs && Op->isDef()) ||
499                    (SkipDebug && Op->isDebug())))
500        Op = Op->getNextOperandForReg();
501
502      return *this;
503    }
504    defusechain_iterator operator++(int) {        // Postincrement
505      defusechain_iterator tmp = *this; ++*this; return tmp;
506    }
507
508    /// skipInstruction - move forward until reaching a different instruction.
509    /// Return the skipped instruction that is no longer pointed to, or NULL if
510    /// already pointing to end().
511    MachineInstr *skipInstruction() {
512      if (!Op) return 0;
513      MachineInstr *MI = Op->getParent();
514      do ++*this;
515      while (Op && Op->getParent() == MI);
516      return MI;
517    }
518
519    MachineInstr *skipBundle() {
520      if (!Op) return 0;
521      MachineInstr *MI = getBundleStart(Op->getParent());
522      do ++*this;
523      while (Op && getBundleStart(Op->getParent()) == MI);
524      return MI;
525    }
526
527    MachineOperand &getOperand() const {
528      assert(Op && "Cannot dereference end iterator!");
529      return *Op;
530    }
531
532    /// getOperandNo - Return the operand # of this MachineOperand in its
533    /// MachineInstr.
534    unsigned getOperandNo() const {
535      assert(Op && "Cannot dereference end iterator!");
536      return Op - &Op->getParent()->getOperand(0);
537    }
538
539    // Retrieve a reference to the current operand.
540    MachineInstr &operator*() const {
541      assert(Op && "Cannot dereference end iterator!");
542      return *Op->getParent();
543    }
544
545    MachineInstr *operator->() const {
546      assert(Op && "Cannot dereference end iterator!");
547      return Op->getParent();
548    }
549  };
550
551};
552
553} // End llvm namespace
554
555#endif
556