MachineRegisterInfo.h revision 4b1aa961fdbb75035a963f8c6a01c8c5f1dc3f16
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/CodeGen/MachineInstrBundle.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/IndexedMap.h"
21#include <vector>
22
23namespace llvm {
24
25/// MachineRegisterInfo - Keep track of information for virtual and physical
26/// registers, including vreg register classes, use/def chains for registers,
27/// etc.
28class MachineRegisterInfo {
29  const TargetRegisterInfo *const TRI;
30
31  /// IsSSA - True when the machine function is in SSA form and virtual
32  /// registers have a single def.
33  bool IsSSA;
34
35  /// TracksLiveness - True while register liveness is being tracked accurately.
36  /// Basic block live-in lists, kill flags, and implicit defs may not be
37  /// accurate when after this flag is cleared.
38  bool TracksLiveness;
39
40  /// VRegInfo - Information we keep for each virtual register.
41  ///
42  /// Each element in this list contains the register class of the vreg and the
43  /// start of the use/def list for the register.
44  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45             VirtReg2IndexFunctor> VRegInfo;
46
47  /// RegAllocHints - This vector records register allocation hints for virtual
48  /// registers. For each virtual register, it keeps a register and hint type
49  /// pair making up the allocation hint. Hint type is target specific except
50  /// for the value 0 which means the second value of the pair is the preferred
51  /// register for allocation. For example, if the hint is <0, 1024>, it means
52  /// the allocator should prefer the physical register allocated to the virtual
53  /// register of the hint.
54  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55
56  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57  /// physical registers.
58  MachineOperand **PhysRegUseDefLists;
59
60  /// getRegUseDefListHead - Return the head pointer for the register use/def
61  /// list for the specified virtual or physical register.
62  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
63    if (TargetRegisterInfo::isVirtualRegister(RegNo))
64      return VRegInfo[RegNo].second;
65    return PhysRegUseDefLists[RegNo];
66  }
67
68  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
69    if (TargetRegisterInfo::isVirtualRegister(RegNo))
70      return VRegInfo[RegNo].second;
71    return PhysRegUseDefLists[RegNo];
72  }
73
74  /// Get the next element in the use-def chain.
75  static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
76    assert(MO && MO->isReg() && "This is not a register operand!");
77    return MO->Contents.Reg.Next;
78  }
79
80  /// UsedRegUnits - This is a bit vector that is computed and set by the
81  /// register allocator, and must be kept up to date by passes that run after
82  /// register allocation (though most don't modify this).  This is used
83  /// so that the code generator knows which callee save registers to save and
84  /// for other target specific uses.
85  /// This vector has bits set for register units that are modified in the
86  /// current function. It doesn't include registers clobbered by function
87  /// calls with register mask operands.
88  BitVector UsedRegUnits;
89
90  /// UsedPhysRegMask - Additional used physregs including aliases.
91  /// This bit vector represents all the registers clobbered by function calls.
92  /// It can model things that UsedRegUnits can't, such as function calls that
93  /// clobber ymm7 but preserve the low half in xmm7.
94  BitVector UsedPhysRegMask;
95
96  /// ReservedRegs - This is a bit vector of reserved registers.  The target
97  /// may change its mind about which registers should be reserved.  This
98  /// vector is the frozen set of reserved registers when register allocation
99  /// started.
100  BitVector ReservedRegs;
101
102  /// LiveIns/LiveOuts - Keep track of the physical registers that are
103  /// livein/liveout of the function.  Live in values are typically arguments in
104  /// registers, live out values are typically return values in registers.
105  /// LiveIn values are allowed to have virtual registers associated with them,
106  /// stored in the second element.
107  std::vector<std::pair<unsigned, unsigned> > LiveIns;
108  std::vector<unsigned> LiveOuts;
109
110  MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
111  void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
112public:
113  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
114  ~MachineRegisterInfo();
115
116  //===--------------------------------------------------------------------===//
117  // Function State
118  //===--------------------------------------------------------------------===//
119
120  // isSSA - Returns true when the machine function is in SSA form. Early
121  // passes require the machine function to be in SSA form where every virtual
122  // register has a single defining instruction.
123  //
124  // The TwoAddressInstructionPass and PHIElimination passes take the machine
125  // function out of SSA form when they introduce multiple defs per virtual
126  // register.
127  bool isSSA() const { return IsSSA; }
128
129  // leaveSSA - Indicates that the machine function is no longer in SSA form.
130  void leaveSSA() { IsSSA = false; }
131
132  /// tracksLiveness - Returns true when tracking register liveness accurately.
133  ///
134  /// While this flag is true, register liveness information in basic block
135  /// live-in lists and machine instruction operands is accurate. This means it
136  /// can be used to change the code in ways that affect the values in
137  /// registers, for example by the register scavenger.
138  ///
139  /// When this flag is false, liveness is no longer reliable.
140  bool tracksLiveness() const { return TracksLiveness; }
141
142  /// invalidateLiveness - Indicates that register liveness is no longer being
143  /// tracked accurately.
144  ///
145  /// This should be called by late passes that invalidate the liveness
146  /// information.
147  void invalidateLiveness() { TracksLiveness = false; }
148
149  //===--------------------------------------------------------------------===//
150  // Register Info
151  //===--------------------------------------------------------------------===//
152
153  // Strictly for use by MachineInstr.cpp.
154  void addRegOperandToUseList(MachineOperand *MO);
155
156  // Strictly for use by MachineInstr.cpp.
157  void removeRegOperandFromUseList(MachineOperand *MO);
158
159  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
160  /// and uses of a register within the MachineFunction that corresponds to this
161  /// MachineRegisterInfo object.
162  template<bool Uses, bool Defs, bool SkipDebug>
163  class defusechain_iterator;
164
165  // Make it a friend so it can access getNextOperandForReg().
166  template<bool, bool, bool> friend class defusechain_iterator;
167
168  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
169  /// register.
170  typedef defusechain_iterator<true,true,false> reg_iterator;
171  reg_iterator reg_begin(unsigned RegNo) const {
172    return reg_iterator(getRegUseDefListHead(RegNo));
173  }
174  static reg_iterator reg_end() { return reg_iterator(0); }
175
176  /// reg_empty - Return true if there are no instructions using or defining the
177  /// specified register (it may be live-in).
178  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
179
180  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
181  /// of the specified register, skipping those marked as Debug.
182  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
183  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
184    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
185  }
186  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
187
188  /// reg_nodbg_empty - Return true if the only instructions using or defining
189  /// Reg are Debug instructions.
190  bool reg_nodbg_empty(unsigned RegNo) const {
191    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
192  }
193
194  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
195  typedef defusechain_iterator<false,true,false> def_iterator;
196  def_iterator def_begin(unsigned RegNo) const {
197    return def_iterator(getRegUseDefListHead(RegNo));
198  }
199  static def_iterator def_end() { return def_iterator(0); }
200
201  /// def_empty - Return true if there are no instructions defining the
202  /// specified register (it may be live-in).
203  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
204
205  /// hasOneDef - Return true if there is exactly one instruction defining the
206  /// specified register.
207  bool hasOneDef(unsigned RegNo) const {
208    def_iterator DI = def_begin(RegNo);
209    if (DI == def_end())
210      return false;
211    return ++DI == def_end();
212  }
213
214  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
215  typedef defusechain_iterator<true,false,false> use_iterator;
216  use_iterator use_begin(unsigned RegNo) const {
217    return use_iterator(getRegUseDefListHead(RegNo));
218  }
219  static use_iterator use_end() { return use_iterator(0); }
220
221  /// use_empty - Return true if there are no instructions using the specified
222  /// register.
223  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
224
225  /// hasOneUse - Return true if there is exactly one instruction using the
226  /// specified register.
227  bool hasOneUse(unsigned RegNo) const {
228    use_iterator UI = use_begin(RegNo);
229    if (UI == use_end())
230      return false;
231    return ++UI == use_end();
232  }
233
234  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
235  /// specified register, skipping those marked as Debug.
236  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
237  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
238    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
239  }
240  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
241
242  /// use_nodbg_empty - Return true if there are no non-Debug instructions
243  /// using the specified register.
244  bool use_nodbg_empty(unsigned RegNo) const {
245    return use_nodbg_begin(RegNo) == use_nodbg_end();
246  }
247
248  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
249  /// instruction using the specified register.
250  bool hasOneNonDBGUse(unsigned RegNo) const;
251
252  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
253  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
254  /// except that it also changes any definitions of the register as well.
255  ///
256  /// Note that it is usually necessary to first constrain ToReg's register
257  /// class to match the FromReg constraints using:
258  ///
259  ///   constrainRegClass(ToReg, getRegClass(FromReg))
260  ///
261  /// That function will return NULL if the virtual registers have incompatible
262  /// constraints.
263  void replaceRegWith(unsigned FromReg, unsigned ToReg);
264
265  /// getVRegDef - Return the machine instr that defines the specified virtual
266  /// register or null if none is found.  This assumes that the code is in SSA
267  /// form, so there should only be one definition.
268  MachineInstr *getVRegDef(unsigned Reg) const;
269
270  /// getUniqueVRegDef - Return the unique machine instr that defines the
271  /// specified virtual register or null if none is found.  If there are
272  /// multiple definitions or no definition, return null.
273  MachineInstr *getUniqueVRegDef(unsigned Reg) const;
274
275  /// clearKillFlags - Iterate over all the uses of the given register and
276  /// clear the kill flag from the MachineOperand. This function is used by
277  /// optimization passes which extend register lifetimes and need only
278  /// preserve conservative kill flag information.
279  void clearKillFlags(unsigned Reg) const;
280
281#ifndef NDEBUG
282  void dumpUses(unsigned RegNo) const;
283#endif
284
285  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
286  /// throughout the function.  It is safe to move instructions that read such
287  /// a physreg.
288  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
289
290  //===--------------------------------------------------------------------===//
291  // Virtual Register Info
292  //===--------------------------------------------------------------------===//
293
294  /// getRegClass - Return the register class of the specified virtual register.
295  ///
296  const TargetRegisterClass *getRegClass(unsigned Reg) const {
297    return VRegInfo[Reg].first;
298  }
299
300  /// setRegClass - Set the register class of the specified virtual register.
301  ///
302  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
303
304  /// constrainRegClass - Constrain the register class of the specified virtual
305  /// register to be a common subclass of RC and the current register class,
306  /// but only if the new class has at least MinNumRegs registers.  Return the
307  /// new register class, or NULL if no such class exists.
308  /// This should only be used when the constraint is known to be trivial, like
309  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
310  ///
311  const TargetRegisterClass *constrainRegClass(unsigned Reg,
312                                               const TargetRegisterClass *RC,
313                                               unsigned MinNumRegs = 0);
314
315  /// recomputeRegClass - Try to find a legal super-class of Reg's register
316  /// class that still satisfies the constraints from the instructions using
317  /// Reg.  Returns true if Reg was upgraded.
318  ///
319  /// This method can be used after constraints have been removed from a
320  /// virtual register, for example after removing instructions or splitting
321  /// the live range.
322  ///
323  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
324
325  /// createVirtualRegister - Create and return a new virtual register in the
326  /// function with the specified register class.
327  ///
328  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
329
330  /// getNumVirtRegs - Return the number of virtual registers created.
331  ///
332  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
333
334  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
335  void clearVirtRegs();
336
337  /// setRegAllocationHint - Specify a register allocation hint for the
338  /// specified virtual register.
339  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
340    RegAllocHints[Reg].first  = Type;
341    RegAllocHints[Reg].second = PrefReg;
342  }
343
344  /// getRegAllocationHint - Return the register allocation hint for the
345  /// specified virtual register.
346  std::pair<unsigned, unsigned>
347  getRegAllocationHint(unsigned Reg) const {
348    return RegAllocHints[Reg];
349  }
350
351  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
352  /// standard simple hint (Type == 0) is not set.
353  unsigned getSimpleHint(unsigned Reg) const {
354    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
355    return Hint.first ? 0 : Hint.second;
356  }
357
358
359  //===--------------------------------------------------------------------===//
360  // Physical Register Use Info
361  //===--------------------------------------------------------------------===//
362
363  /// isPhysRegUsed - Return true if the specified register is used in this
364  /// function. Also check for clobbered aliases and registers clobbered by
365  /// function calls with register mask operands.
366  ///
367  /// This only works after register allocation. It is primarily used by
368  /// PrologEpilogInserter to determine which callee-saved registers need
369  /// spilling.
370  bool isPhysRegUsed(unsigned Reg) const {
371    if (UsedPhysRegMask.test(Reg))
372      return true;
373    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
374      if (UsedRegUnits.test(*Units))
375        return true;
376    return false;
377  }
378
379  /// setPhysRegUsed - Mark the specified register used in this function.
380  /// This should only be called during and after register allocation.
381  void setPhysRegUsed(unsigned Reg) {
382    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
383      UsedRegUnits.set(*Units);
384  }
385
386  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
387  /// This corresponds to the bit mask attached to register mask operands.
388  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
389    UsedPhysRegMask.setBitsNotInMask(RegMask);
390  }
391
392  /// setPhysRegUnused - Mark the specified register unused in this function.
393  /// This should only be called during and after register allocation.
394  void setPhysRegUnused(unsigned Reg) {
395    UsedPhysRegMask.reset(Reg);
396    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
397      UsedRegUnits.reset(*Units);
398  }
399
400
401  //===--------------------------------------------------------------------===//
402  // Reserved Register Info
403  //===--------------------------------------------------------------------===//
404  //
405  // The set of reserved registers must be invariant during register
406  // allocation.  For example, the target cannot suddenly decide it needs a
407  // frame pointer when the register allocator has already used the frame
408  // pointer register for something else.
409  //
410  // These methods can be used by target hooks like hasFP() to avoid changing
411  // the reserved register set during register allocation.
412
413  /// freezeReservedRegs - Called by the register allocator to freeze the set
414  /// of reserved registers before allocation begins.
415  void freezeReservedRegs(const MachineFunction&);
416
417  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
418  /// to ensure the set of reserved registers stays constant.
419  bool reservedRegsFrozen() const {
420    return !ReservedRegs.empty();
421  }
422
423  /// canReserveReg - Returns true if PhysReg can be used as a reserved
424  /// register.  Any register can be reserved before freezeReservedRegs() is
425  /// called.
426  bool canReserveReg(unsigned PhysReg) const {
427    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
428  }
429
430  /// getReservedRegs - Returns a reference to the frozen set of reserved
431  /// registers. This method should always be preferred to calling
432  /// TRI::getReservedRegs() when possible.
433  const BitVector &getReservedRegs() const {
434    assert(reservedRegsFrozen() &&
435           "Reserved registers haven't been frozen yet. "
436           "Use TRI::getReservedRegs().");
437    return ReservedRegs;
438  }
439
440  /// isReserved - Returns true when PhysReg is a reserved register.
441  ///
442  /// Reserved registers may belong to an allocatable register class, but the
443  /// target has explicitly requested that they are not used.
444  ///
445  bool isReserved(unsigned PhysReg) const {
446    return getReservedRegs().test(PhysReg);
447  }
448
449  /// isAllocatable - Returns true when PhysReg belongs to an allocatable
450  /// register class and it hasn't been reserved.
451  ///
452  /// Allocatable registers may show up in the allocation order of some virtual
453  /// register, so a register allocator needs to track its liveness and
454  /// availability.
455  bool isAllocatable(unsigned PhysReg) const {
456    return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg);
457  }
458
459  //===--------------------------------------------------------------------===//
460  // LiveIn/LiveOut Management
461  //===--------------------------------------------------------------------===//
462
463  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
464  /// is an error to add the same register to the same set more than once.
465  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
466    LiveIns.push_back(std::make_pair(Reg, vreg));
467  }
468  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
469
470  // Iteration support for live in/out sets.  These sets are kept in sorted
471  // order by their register number.
472  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
473  livein_iterator;
474  typedef std::vector<unsigned>::const_iterator liveout_iterator;
475  livein_iterator livein_begin() const { return LiveIns.begin(); }
476  livein_iterator livein_end()   const { return LiveIns.end(); }
477  bool            livein_empty() const { return LiveIns.empty(); }
478  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
479  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
480  bool             liveout_empty() const { return LiveOuts.empty(); }
481
482  bool isLiveIn(unsigned Reg) const;
483  bool isLiveOut(unsigned Reg) const;
484
485  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
486  /// corresponding live-in physical register.
487  unsigned getLiveInPhysReg(unsigned VReg) const;
488
489  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
490  /// corresponding live-in physical register.
491  unsigned getLiveInVirtReg(unsigned PReg) const;
492
493  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
494  /// into the given entry block.
495  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
496                        const TargetRegisterInfo &TRI,
497                        const TargetInstrInfo &TII);
498
499  /// defusechain_iterator - This class provides iterator support for machine
500  /// operands in the function that use or define a specific register.  If
501  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
502  /// returns defs.  If neither are true then you are silly and it always
503  /// returns end().  If SkipDebug is true it skips uses marked Debug
504  /// when incrementing.
505  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
506  class defusechain_iterator
507    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
508    MachineOperand *Op;
509    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
510      // If the first node isn't one we're interested in, advance to one that
511      // we are interested in.
512      if (op) {
513        if ((!ReturnUses && op->isUse()) ||
514            (!ReturnDefs && op->isDef()) ||
515            (SkipDebug && op->isDebug()))
516          ++*this;
517      }
518    }
519    friend class MachineRegisterInfo;
520  public:
521    typedef std::iterator<std::forward_iterator_tag,
522                          MachineInstr, ptrdiff_t>::reference reference;
523    typedef std::iterator<std::forward_iterator_tag,
524                          MachineInstr, ptrdiff_t>::pointer pointer;
525
526    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
527    defusechain_iterator() : Op(0) {}
528
529    bool operator==(const defusechain_iterator &x) const {
530      return Op == x.Op;
531    }
532    bool operator!=(const defusechain_iterator &x) const {
533      return !operator==(x);
534    }
535
536    /// atEnd - return true if this iterator is equal to reg_end() on the value.
537    bool atEnd() const { return Op == 0; }
538
539    // Iterator traversal: forward iteration only
540    defusechain_iterator &operator++() {          // Preincrement
541      assert(Op && "Cannot increment end iterator!");
542      Op = getNextOperandForReg(Op);
543
544      // All defs come before the uses, so stop def_iterator early.
545      if (!ReturnUses) {
546        if (Op) {
547          if (Op->isUse())
548            Op = 0;
549          else
550            assert(!Op->isDebug() && "Can't have debug defs");
551        }
552      } else {
553        // If this is an operand we don't care about, skip it.
554        while (Op && ((!ReturnDefs && Op->isDef()) ||
555                      (SkipDebug && Op->isDebug())))
556          Op = getNextOperandForReg(Op);
557      }
558
559      return *this;
560    }
561    defusechain_iterator operator++(int) {        // Postincrement
562      defusechain_iterator tmp = *this; ++*this; return tmp;
563    }
564
565    /// skipInstruction - move forward until reaching a different instruction.
566    /// Return the skipped instruction that is no longer pointed to, or NULL if
567    /// already pointing to end().
568    MachineInstr *skipInstruction() {
569      if (!Op) return 0;
570      MachineInstr *MI = Op->getParent();
571      do ++*this;
572      while (Op && Op->getParent() == MI);
573      return MI;
574    }
575
576    MachineInstr *skipBundle() {
577      if (!Op) return 0;
578      MachineInstr *MI = getBundleStart(Op->getParent());
579      do ++*this;
580      while (Op && getBundleStart(Op->getParent()) == MI);
581      return MI;
582    }
583
584    MachineOperand &getOperand() const {
585      assert(Op && "Cannot dereference end iterator!");
586      return *Op;
587    }
588
589    /// getOperandNo - Return the operand # of this MachineOperand in its
590    /// MachineInstr.
591    unsigned getOperandNo() const {
592      assert(Op && "Cannot dereference end iterator!");
593      return Op - &Op->getParent()->getOperand(0);
594    }
595
596    // Retrieve a reference to the current operand.
597    MachineInstr &operator*() const {
598      assert(Op && "Cannot dereference end iterator!");
599      return *Op->getParent();
600    }
601
602    MachineInstr *operator->() const {
603      assert(Op && "Cannot dereference end iterator!");
604      return Op->getParent();
605    }
606  };
607
608};
609
610} // End llvm namespace
611
612#endif
613