MachineRegisterInfo.h revision 9aa6e0a134358c681cc5918ec65b1ec9726b778e
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/CodeGen/MachineInstrBundle.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/IndexedMap.h"
21#include <vector>
22
23namespace llvm {
24
25/// MachineRegisterInfo - Keep track of information for virtual and physical
26/// registers, including vreg register classes, use/def chains for registers,
27/// etc.
28class MachineRegisterInfo {
29  const TargetRegisterInfo *const TRI;
30
31  /// IsSSA - True when the machine function is in SSA form and virtual
32  /// registers have a single def.
33  bool IsSSA;
34
35  /// TracksLiveness - True while register liveness is being tracked accurately.
36  /// Basic block live-in lists, kill flags, and implicit defs may not be
37  /// accurate when after this flag is cleared.
38  bool TracksLiveness;
39
40  /// VRegInfo - Information we keep for each virtual register.
41  ///
42  /// Each element in this list contains the register class of the vreg and the
43  /// start of the use/def list for the register.
44  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
45             VirtReg2IndexFunctor> VRegInfo;
46
47  /// RegAllocHints - This vector records register allocation hints for virtual
48  /// registers. For each virtual register, it keeps a register and hint type
49  /// pair making up the allocation hint. Hint type is target specific except
50  /// for the value 0 which means the second value of the pair is the preferred
51  /// register for allocation. For example, if the hint is <0, 1024>, it means
52  /// the allocator should prefer the physical register allocated to the virtual
53  /// register of the hint.
54  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
55
56  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
57  /// physical registers.
58  MachineOperand **PhysRegUseDefLists;
59
60  /// getRegUseDefListHead - Return the head pointer for the register use/def
61  /// list for the specified virtual or physical register.
62  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
63    if (TargetRegisterInfo::isVirtualRegister(RegNo))
64      return VRegInfo[RegNo].second;
65    return PhysRegUseDefLists[RegNo];
66  }
67
68  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
69    if (TargetRegisterInfo::isVirtualRegister(RegNo))
70      return VRegInfo[RegNo].second;
71    return PhysRegUseDefLists[RegNo];
72  }
73
74  /// Get the next element in the use-def chain.
75  static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
76    assert(MO && MO->isReg() && "This is not a register operand!");
77    return MO->Contents.Reg.Next;
78  }
79
80  /// UsedPhysRegs - This is a bit vector that is computed and set by the
81  /// register allocator, and must be kept up to date by passes that run after
82  /// register allocation (though most don't modify this).  This is used
83  /// so that the code generator knows which callee save registers to save and
84  /// for other target specific uses.
85  /// This vector only has bits set for registers explicitly used, not their
86  /// aliases.
87  BitVector UsedPhysRegs;
88
89  /// UsedPhysRegMask - Additional used physregs, but including aliases.
90  BitVector UsedPhysRegMask;
91
92  /// ReservedRegs - This is a bit vector of reserved registers.  The target
93  /// may change its mind about which registers should be reserved.  This
94  /// vector is the frozen set of reserved registers when register allocation
95  /// started.
96  BitVector ReservedRegs;
97
98  /// LiveIns/LiveOuts - Keep track of the physical registers that are
99  /// livein/liveout of the function.  Live in values are typically arguments in
100  /// registers, live out values are typically return values in registers.
101  /// LiveIn values are allowed to have virtual registers associated with them,
102  /// stored in the second element.
103  std::vector<std::pair<unsigned, unsigned> > LiveIns;
104  std::vector<unsigned> LiveOuts;
105
106  MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
107  void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
108public:
109  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
110  ~MachineRegisterInfo();
111
112  //===--------------------------------------------------------------------===//
113  // Function State
114  //===--------------------------------------------------------------------===//
115
116  // isSSA - Returns true when the machine function is in SSA form. Early
117  // passes require the machine function to be in SSA form where every virtual
118  // register has a single defining instruction.
119  //
120  // The TwoAddressInstructionPass and PHIElimination passes take the machine
121  // function out of SSA form when they introduce multiple defs per virtual
122  // register.
123  bool isSSA() const { return IsSSA; }
124
125  // leaveSSA - Indicates that the machine function is no longer in SSA form.
126  void leaveSSA() { IsSSA = false; }
127
128  /// tracksLiveness - Returns true when tracking register liveness accurately.
129  ///
130  /// While this flag is true, register liveness information in basic block
131  /// live-in lists and machine instruction operands is accurate. This means it
132  /// can be used to change the code in ways that affect the values in
133  /// registers, for example by the register scavenger.
134  ///
135  /// When this flag is false, liveness is no longer reliable.
136  bool tracksLiveness() const { return TracksLiveness; }
137
138  /// invalidateLiveness - Indicates that register liveness is no longer being
139  /// tracked accurately.
140  ///
141  /// This should be called by late passes that invalidate the liveness
142  /// information.
143  void invalidateLiveness() { TracksLiveness = false; }
144
145  //===--------------------------------------------------------------------===//
146  // Register Info
147  //===--------------------------------------------------------------------===//
148
149  // Strictly for use by MachineInstr.cpp.
150  void addRegOperandToUseList(MachineOperand *MO);
151
152  // Strictly for use by MachineInstr.cpp.
153  void removeRegOperandFromUseList(MachineOperand *MO);
154
155  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
156  /// and uses of a register within the MachineFunction that corresponds to this
157  /// MachineRegisterInfo object.
158  template<bool Uses, bool Defs, bool SkipDebug>
159  class defusechain_iterator;
160
161  // Make it a friend so it can access getNextOperandForReg().
162  template<bool, bool, bool> friend class defusechain_iterator;
163
164  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
165  /// register.
166  typedef defusechain_iterator<true,true,false> reg_iterator;
167  reg_iterator reg_begin(unsigned RegNo) const {
168    return reg_iterator(getRegUseDefListHead(RegNo));
169  }
170  static reg_iterator reg_end() { return reg_iterator(0); }
171
172  /// reg_empty - Return true if there are no instructions using or defining the
173  /// specified register (it may be live-in).
174  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
175
176  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
177  /// of the specified register, skipping those marked as Debug.
178  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
179  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
180    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
181  }
182  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
183
184  /// reg_nodbg_empty - Return true if the only instructions using or defining
185  /// Reg are Debug instructions.
186  bool reg_nodbg_empty(unsigned RegNo) const {
187    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
188  }
189
190  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
191  typedef defusechain_iterator<false,true,false> def_iterator;
192  def_iterator def_begin(unsigned RegNo) const {
193    return def_iterator(getRegUseDefListHead(RegNo));
194  }
195  static def_iterator def_end() { return def_iterator(0); }
196
197  /// def_empty - Return true if there are no instructions defining the
198  /// specified register (it may be live-in).
199  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
200
201  /// hasOneDef - Return true if there is exactly one instruction defining the
202  /// specified register.
203  bool hasOneDef(unsigned RegNo) const {
204    def_iterator DI = def_begin(RegNo);
205    if (DI == def_end())
206      return false;
207    return ++DI == def_end();
208  }
209
210  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
211  typedef defusechain_iterator<true,false,false> use_iterator;
212  use_iterator use_begin(unsigned RegNo) const {
213    return use_iterator(getRegUseDefListHead(RegNo));
214  }
215  static use_iterator use_end() { return use_iterator(0); }
216
217  /// use_empty - Return true if there are no instructions using the specified
218  /// register.
219  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
220
221  /// hasOneUse - Return true if there is exactly one instruction using the
222  /// specified register.
223  bool hasOneUse(unsigned RegNo) const {
224    use_iterator UI = use_begin(RegNo);
225    if (UI == use_end())
226      return false;
227    return ++UI == use_end();
228  }
229
230  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
231  /// specified register, skipping those marked as Debug.
232  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
233  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
234    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
235  }
236  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
237
238  /// use_nodbg_empty - Return true if there are no non-Debug instructions
239  /// using the specified register.
240  bool use_nodbg_empty(unsigned RegNo) const {
241    return use_nodbg_begin(RegNo) == use_nodbg_end();
242  }
243
244  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
245  /// instruction using the specified register.
246  bool hasOneNonDBGUse(unsigned RegNo) const;
247
248  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
249  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
250  /// except that it also changes any definitions of the register as well.
251  ///
252  /// Note that it is usually necessary to first constrain ToReg's register
253  /// class to match the FromReg constraints using:
254  ///
255  ///   constrainRegClass(ToReg, getRegClass(FromReg))
256  ///
257  /// That function will return NULL if the virtual registers have incompatible
258  /// constraints.
259  void replaceRegWith(unsigned FromReg, unsigned ToReg);
260
261  /// getVRegDef - Return the machine instr that defines the specified virtual
262  /// register or null if none is found.  This assumes that the code is in SSA
263  /// form, so there should only be one definition.
264  MachineInstr *getVRegDef(unsigned Reg) const;
265
266  /// getUniqueVRegDef - Return the unique machine instr that defines the
267  /// specified virtual register or null if none is found.  If there are
268  /// multiple definitions or no definition, return null.
269  MachineInstr *getUniqueVRegDef(unsigned Reg) const;
270
271  /// clearKillFlags - Iterate over all the uses of the given register and
272  /// clear the kill flag from the MachineOperand. This function is used by
273  /// optimization passes which extend register lifetimes and need only
274  /// preserve conservative kill flag information.
275  void clearKillFlags(unsigned Reg) const;
276
277#ifndef NDEBUG
278  void dumpUses(unsigned RegNo) const;
279#endif
280
281  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
282  /// throughout the function.  It is safe to move instructions that read such
283  /// a physreg.
284  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
285
286  //===--------------------------------------------------------------------===//
287  // Virtual Register Info
288  //===--------------------------------------------------------------------===//
289
290  /// getRegClass - Return the register class of the specified virtual register.
291  ///
292  const TargetRegisterClass *getRegClass(unsigned Reg) const {
293    return VRegInfo[Reg].first;
294  }
295
296  /// setRegClass - Set the register class of the specified virtual register.
297  ///
298  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
299
300  /// constrainRegClass - Constrain the register class of the specified virtual
301  /// register to be a common subclass of RC and the current register class,
302  /// but only if the new class has at least MinNumRegs registers.  Return the
303  /// new register class, or NULL if no such class exists.
304  /// This should only be used when the constraint is known to be trivial, like
305  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
306  ///
307  const TargetRegisterClass *constrainRegClass(unsigned Reg,
308                                               const TargetRegisterClass *RC,
309                                               unsigned MinNumRegs = 0);
310
311  /// recomputeRegClass - Try to find a legal super-class of Reg's register
312  /// class that still satisfies the constraints from the instructions using
313  /// Reg.  Returns true if Reg was upgraded.
314  ///
315  /// This method can be used after constraints have been removed from a
316  /// virtual register, for example after removing instructions or splitting
317  /// the live range.
318  ///
319  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
320
321  /// createVirtualRegister - Create and return a new virtual register in the
322  /// function with the specified register class.
323  ///
324  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
325
326  /// getNumVirtRegs - Return the number of virtual registers created.
327  ///
328  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
329
330  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
331  void clearVirtRegs();
332
333  /// setRegAllocationHint - Specify a register allocation hint for the
334  /// specified virtual register.
335  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
336    RegAllocHints[Reg].first  = Type;
337    RegAllocHints[Reg].second = PrefReg;
338  }
339
340  /// getRegAllocationHint - Return the register allocation hint for the
341  /// specified virtual register.
342  std::pair<unsigned, unsigned>
343  getRegAllocationHint(unsigned Reg) const {
344    return RegAllocHints[Reg];
345  }
346
347  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
348  /// standard simple hint (Type == 0) is not set.
349  unsigned getSimpleHint(unsigned Reg) const {
350    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
351    return Hint.first ? 0 : Hint.second;
352  }
353
354
355  //===--------------------------------------------------------------------===//
356  // Physical Register Use Info
357  //===--------------------------------------------------------------------===//
358
359  /// isPhysRegUsed - Return true if the specified register is used in this
360  /// function. Also check for clobbered aliases and registers clobbered by
361  /// function calls with register mask operands.
362  ///
363  /// This only works after register allocation. It is primarily used by
364  /// PrologEpilogInserter to determine which callee-saved registers need
365  /// spilling.
366  bool isPhysRegUsed(unsigned Reg) const {
367    if (UsedPhysRegMask.test(Reg))
368      return true;
369    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
370      if (UsedPhysRegs.test(*AI))
371        return true;
372    return false;
373  }
374
375  /// setPhysRegUsed - Mark the specified register used in this function.
376  /// This should only be called during and after register allocation.
377  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
378
379  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
380  /// This corresponds to the bit mask attached to register mask operands.
381  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
382    UsedPhysRegMask.setBitsNotInMask(RegMask);
383  }
384
385  /// setPhysRegUnused - Mark the specified register unused in this function.
386  /// This should only be called during and after register allocation.
387  void setPhysRegUnused(unsigned Reg) {
388    UsedPhysRegs.reset(Reg);
389    UsedPhysRegMask.reset(Reg);
390  }
391
392
393  //===--------------------------------------------------------------------===//
394  // Reserved Register Info
395  //===--------------------------------------------------------------------===//
396  //
397  // The set of reserved registers must be invariant during register
398  // allocation.  For example, the target cannot suddenly decide it needs a
399  // frame pointer when the register allocator has already used the frame
400  // pointer register for something else.
401  //
402  // These methods can be used by target hooks like hasFP() to avoid changing
403  // the reserved register set during register allocation.
404
405  /// freezeReservedRegs - Called by the register allocator to freeze the set
406  /// of reserved registers before allocation begins.
407  void freezeReservedRegs(const MachineFunction&);
408
409  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
410  /// to ensure the set of reserved registers stays constant.
411  bool reservedRegsFrozen() const {
412    return !ReservedRegs.empty();
413  }
414
415  /// canReserveReg - Returns true if PhysReg can be used as a reserved
416  /// register.  Any register can be reserved before freezeReservedRegs() is
417  /// called.
418  bool canReserveReg(unsigned PhysReg) const {
419    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
420  }
421
422  /// getReservedRegs - Returns a reference to the frozen set of reserved
423  /// registers. This method should always be preferred to calling
424  /// TRI::getReservedRegs() when possible.
425  const BitVector &getReservedRegs() const {
426    assert(reservedRegsFrozen() &&
427           "Reserved registers haven't been frozen yet. "
428           "Use TRI::getReservedRegs().");
429    return ReservedRegs;
430  }
431
432  /// isReserved - Returns true when PhysReg is a reserved register.
433  ///
434  /// Reserved registers may belong to an allocatable register class, but the
435  /// target has explicitly requested that they are not used.
436  ///
437  bool isReserved(unsigned PhysReg) const {
438    return getReservedRegs().test(PhysReg);
439  }
440
441  /// isAllocatable - Returns true when PhysReg belongs to an allocatable
442  /// register class and it hasn't been reserved.
443  ///
444  /// Allocatable registers may show up in the allocation order of some virtual
445  /// register, so a register allocator needs to track its liveness and
446  /// availability.
447  bool isAllocatable(unsigned PhysReg) const {
448    return TRI->isInAllocatableClass(PhysReg) && !isReserved(PhysReg);
449  }
450
451  //===--------------------------------------------------------------------===//
452  // LiveIn/LiveOut Management
453  //===--------------------------------------------------------------------===//
454
455  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
456  /// is an error to add the same register to the same set more than once.
457  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
458    LiveIns.push_back(std::make_pair(Reg, vreg));
459  }
460  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
461
462  // Iteration support for live in/out sets.  These sets are kept in sorted
463  // order by their register number.
464  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
465  livein_iterator;
466  typedef std::vector<unsigned>::const_iterator liveout_iterator;
467  livein_iterator livein_begin() const { return LiveIns.begin(); }
468  livein_iterator livein_end()   const { return LiveIns.end(); }
469  bool            livein_empty() const { return LiveIns.empty(); }
470  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
471  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
472  bool             liveout_empty() const { return LiveOuts.empty(); }
473
474  bool isLiveIn(unsigned Reg) const;
475  bool isLiveOut(unsigned Reg) const;
476
477  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
478  /// corresponding live-in physical register.
479  unsigned getLiveInPhysReg(unsigned VReg) const;
480
481  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
482  /// corresponding live-in physical register.
483  unsigned getLiveInVirtReg(unsigned PReg) const;
484
485  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
486  /// into the given entry block.
487  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
488                        const TargetRegisterInfo &TRI,
489                        const TargetInstrInfo &TII);
490
491  /// defusechain_iterator - This class provides iterator support for machine
492  /// operands in the function that use or define a specific register.  If
493  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
494  /// returns defs.  If neither are true then you are silly and it always
495  /// returns end().  If SkipDebug is true it skips uses marked Debug
496  /// when incrementing.
497  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
498  class defusechain_iterator
499    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
500    MachineOperand *Op;
501    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
502      // If the first node isn't one we're interested in, advance to one that
503      // we are interested in.
504      if (op) {
505        if ((!ReturnUses && op->isUse()) ||
506            (!ReturnDefs && op->isDef()) ||
507            (SkipDebug && op->isDebug()))
508          ++*this;
509      }
510    }
511    friend class MachineRegisterInfo;
512  public:
513    typedef std::iterator<std::forward_iterator_tag,
514                          MachineInstr, ptrdiff_t>::reference reference;
515    typedef std::iterator<std::forward_iterator_tag,
516                          MachineInstr, ptrdiff_t>::pointer pointer;
517
518    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
519    defusechain_iterator() : Op(0) {}
520
521    bool operator==(const defusechain_iterator &x) const {
522      return Op == x.Op;
523    }
524    bool operator!=(const defusechain_iterator &x) const {
525      return !operator==(x);
526    }
527
528    /// atEnd - return true if this iterator is equal to reg_end() on the value.
529    bool atEnd() const { return Op == 0; }
530
531    // Iterator traversal: forward iteration only
532    defusechain_iterator &operator++() {          // Preincrement
533      assert(Op && "Cannot increment end iterator!");
534      Op = getNextOperandForReg(Op);
535
536      // All defs come before the uses, so stop def_iterator early.
537      if (!ReturnUses) {
538        if (Op) {
539          if (Op->isUse())
540            Op = 0;
541          else
542            assert(!Op->isDebug() && "Can't have debug defs");
543        }
544      } else {
545        // If this is an operand we don't care about, skip it.
546        while (Op && ((!ReturnDefs && Op->isDef()) ||
547                      (SkipDebug && Op->isDebug())))
548          Op = getNextOperandForReg(Op);
549      }
550
551      return *this;
552    }
553    defusechain_iterator operator++(int) {        // Postincrement
554      defusechain_iterator tmp = *this; ++*this; return tmp;
555    }
556
557    /// skipInstruction - move forward until reaching a different instruction.
558    /// Return the skipped instruction that is no longer pointed to, or NULL if
559    /// already pointing to end().
560    MachineInstr *skipInstruction() {
561      if (!Op) return 0;
562      MachineInstr *MI = Op->getParent();
563      do ++*this;
564      while (Op && Op->getParent() == MI);
565      return MI;
566    }
567
568    MachineInstr *skipBundle() {
569      if (!Op) return 0;
570      MachineInstr *MI = getBundleStart(Op->getParent());
571      do ++*this;
572      while (Op && getBundleStart(Op->getParent()) == MI);
573      return MI;
574    }
575
576    MachineOperand &getOperand() const {
577      assert(Op && "Cannot dereference end iterator!");
578      return *Op;
579    }
580
581    /// getOperandNo - Return the operand # of this MachineOperand in its
582    /// MachineInstr.
583    unsigned getOperandNo() const {
584      assert(Op && "Cannot dereference end iterator!");
585      return Op - &Op->getParent()->getOperand(0);
586    }
587
588    // Retrieve a reference to the current operand.
589    MachineInstr &operator*() const {
590      assert(Op && "Cannot dereference end iterator!");
591      return *Op->getParent();
592    }
593
594    MachineInstr *operator->() const {
595      assert(Op && "Cannot dereference end iterator!");
596      return Op->getParent();
597    }
598  };
599
600};
601
602} // End llvm namespace
603
604#endif
605