MachineRegisterInfo.h revision e4fd907e72a599eddfa7a81eac4366b5b82523e3
1//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the MachineRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15#define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/CodeGen/MachineInstrBundle.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/IndexedMap.h"
21#include <vector>
22
23namespace llvm {
24
25/// MachineRegisterInfo - Keep track of information for virtual and physical
26/// registers, including vreg register classes, use/def chains for registers,
27/// etc.
28class MachineRegisterInfo {
29  const TargetRegisterInfo *const TRI;
30
31  /// IsSSA - True when the machine function is in SSA form and virtual
32  /// registers have a single def.
33  bool IsSSA;
34
35  /// VRegInfo - Information we keep for each virtual register.
36  ///
37  /// Each element in this list contains the register class of the vreg and the
38  /// start of the use/def list for the register.
39  IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
40             VirtReg2IndexFunctor> VRegInfo;
41
42  /// RegAllocHints - This vector records register allocation hints for virtual
43  /// registers. For each virtual register, it keeps a register and hint type
44  /// pair making up the allocation hint. Hint type is target specific except
45  /// for the value 0 which means the second value of the pair is the preferred
46  /// register for allocation. For example, if the hint is <0, 1024>, it means
47  /// the allocator should prefer the physical register allocated to the virtual
48  /// register of the hint.
49  IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
50
51  /// PhysRegUseDefLists - This is an array of the head of the use/def list for
52  /// physical registers.
53  MachineOperand **PhysRegUseDefLists;
54
55  /// UsedPhysRegs - This is a bit vector that is computed and set by the
56  /// register allocator, and must be kept up to date by passes that run after
57  /// register allocation (though most don't modify this).  This is used
58  /// so that the code generator knows which callee save registers to save and
59  /// for other target specific uses.
60  /// This vector only has bits set for registers explicitly used, not their
61  /// aliases.
62  BitVector UsedPhysRegs;
63
64  /// UsedPhysRegMask - Additional used physregs, but including aliases.
65  BitVector UsedPhysRegMask;
66
67  /// ReservedRegs - This is a bit vector of reserved registers.  The target
68  /// may change its mind about which registers should be reserved.  This
69  /// vector is the frozen set of reserved registers when register allocation
70  /// started.
71  BitVector ReservedRegs;
72
73  /// AllocatableRegs - From TRI->getAllocatableSet.
74  mutable BitVector AllocatableRegs;
75
76  /// LiveIns/LiveOuts - Keep track of the physical registers that are
77  /// livein/liveout of the function.  Live in values are typically arguments in
78  /// registers, live out values are typically return values in registers.
79  /// LiveIn values are allowed to have virtual registers associated with them,
80  /// stored in the second element.
81  std::vector<std::pair<unsigned, unsigned> > LiveIns;
82  std::vector<unsigned> LiveOuts;
83
84  MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
85  void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
86public:
87  explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
88  ~MachineRegisterInfo();
89
90  //===--------------------------------------------------------------------===//
91  // Function State
92  //===--------------------------------------------------------------------===//
93
94  // isSSA - Returns true when the machine function is in SSA form. Early
95  // passes require the machine function to be in SSA form where every virtual
96  // register has a single defining instruction.
97  //
98  // The TwoAddressInstructionPass and PHIElimination passes take the machine
99  // function out of SSA form when they introduce multiple defs per virtual
100  // register.
101  bool isSSA() const { return IsSSA; }
102
103  // leaveSSA - Indicates that the machine function is no longer in SSA form.
104  void leaveSSA() { IsSSA = false; }
105
106  //===--------------------------------------------------------------------===//
107  // Register Info
108  //===--------------------------------------------------------------------===//
109
110  /// reg_begin/reg_end - Provide iteration support to walk over all definitions
111  /// and uses of a register within the MachineFunction that corresponds to this
112  /// MachineRegisterInfo object.
113  template<bool Uses, bool Defs, bool SkipDebug>
114  class defusechain_iterator;
115
116  /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
117  /// register.
118  typedef defusechain_iterator<true,true,false> reg_iterator;
119  reg_iterator reg_begin(unsigned RegNo) const {
120    return reg_iterator(getRegUseDefListHead(RegNo));
121  }
122  static reg_iterator reg_end() { return reg_iterator(0); }
123
124  /// reg_empty - Return true if there are no instructions using or defining the
125  /// specified register (it may be live-in).
126  bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
127
128  /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
129  /// of the specified register, skipping those marked as Debug.
130  typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
131  reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
132    return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
133  }
134  static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
135
136  /// reg_nodbg_empty - Return true if the only instructions using or defining
137  /// Reg are Debug instructions.
138  bool reg_nodbg_empty(unsigned RegNo) const {
139    return reg_nodbg_begin(RegNo) == reg_nodbg_end();
140  }
141
142  /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
143  typedef defusechain_iterator<false,true,false> def_iterator;
144  def_iterator def_begin(unsigned RegNo) const {
145    return def_iterator(getRegUseDefListHead(RegNo));
146  }
147  static def_iterator def_end() { return def_iterator(0); }
148
149  /// def_empty - Return true if there are no instructions defining the
150  /// specified register (it may be live-in).
151  bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
152
153  /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
154  typedef defusechain_iterator<true,false,false> use_iterator;
155  use_iterator use_begin(unsigned RegNo) const {
156    return use_iterator(getRegUseDefListHead(RegNo));
157  }
158  static use_iterator use_end() { return use_iterator(0); }
159
160  /// use_empty - Return true if there are no instructions using the specified
161  /// register.
162  bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
163
164  /// hasOneUse - Return true if there is exactly one instruction using the
165  /// specified register.
166  bool hasOneUse(unsigned RegNo) const;
167
168  /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
169  /// specified register, skipping those marked as Debug.
170  typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
171  use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
172    return use_nodbg_iterator(getRegUseDefListHead(RegNo));
173  }
174  static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
175
176  /// use_nodbg_empty - Return true if there are no non-Debug instructions
177  /// using the specified register.
178  bool use_nodbg_empty(unsigned RegNo) const {
179    return use_nodbg_begin(RegNo) == use_nodbg_end();
180  }
181
182  /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
183  /// instruction using the specified register.
184  bool hasOneNonDBGUse(unsigned RegNo) const;
185
186  /// replaceRegWith - Replace all instances of FromReg with ToReg in the
187  /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
188  /// except that it also changes any definitions of the register as well.
189  ///
190  /// Note that it is usually necessary to first constrain ToReg's register
191  /// class to match the FromReg constraints using:
192  ///
193  ///   constrainRegClass(ToReg, getRegClass(FromReg))
194  ///
195  /// That function will return NULL if the virtual registers have incompatible
196  /// constraints.
197  void replaceRegWith(unsigned FromReg, unsigned ToReg);
198
199  /// getRegUseDefListHead - Return the head pointer for the register use/def
200  /// list for the specified virtual or physical register.
201  MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
202    if (TargetRegisterInfo::isVirtualRegister(RegNo))
203      return VRegInfo[RegNo].second;
204    return PhysRegUseDefLists[RegNo];
205  }
206
207  MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
208    if (TargetRegisterInfo::isVirtualRegister(RegNo))
209      return VRegInfo[RegNo].second;
210    return PhysRegUseDefLists[RegNo];
211  }
212
213  /// getVRegDef - Return the machine instr that defines the specified virtual
214  /// register or null if none is found.  This assumes that the code is in SSA
215  /// form, so there should only be one definition.
216  MachineInstr *getVRegDef(unsigned Reg) const;
217
218  /// clearKillFlags - Iterate over all the uses of the given register and
219  /// clear the kill flag from the MachineOperand. This function is used by
220  /// optimization passes which extend register lifetimes and need only
221  /// preserve conservative kill flag information.
222  void clearKillFlags(unsigned Reg) const;
223
224#ifndef NDEBUG
225  void dumpUses(unsigned RegNo) const;
226#endif
227
228  /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
229  /// throughout the function.  It is safe to move instructions that read such
230  /// a physreg.
231  bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
232
233  //===--------------------------------------------------------------------===//
234  // Virtual Register Info
235  //===--------------------------------------------------------------------===//
236
237  /// getRegClass - Return the register class of the specified virtual register.
238  ///
239  const TargetRegisterClass *getRegClass(unsigned Reg) const {
240    return VRegInfo[Reg].first;
241  }
242
243  /// setRegClass - Set the register class of the specified virtual register.
244  ///
245  void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
246
247  /// constrainRegClass - Constrain the register class of the specified virtual
248  /// register to be a common subclass of RC and the current register class,
249  /// but only if the new class has at least MinNumRegs registers.  Return the
250  /// new register class, or NULL if no such class exists.
251  /// This should only be used when the constraint is known to be trivial, like
252  /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
253  ///
254  const TargetRegisterClass *constrainRegClass(unsigned Reg,
255                                               const TargetRegisterClass *RC,
256                                               unsigned MinNumRegs = 0);
257
258  /// recomputeRegClass - Try to find a legal super-class of Reg's register
259  /// class that still satisfies the constraints from the instructions using
260  /// Reg.  Returns true if Reg was upgraded.
261  ///
262  /// This method can be used after constraints have been removed from a
263  /// virtual register, for example after removing instructions or splitting
264  /// the live range.
265  ///
266  bool recomputeRegClass(unsigned Reg, const TargetMachine&);
267
268  /// createVirtualRegister - Create and return a new virtual register in the
269  /// function with the specified register class.
270  ///
271  unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
272
273  /// getNumVirtRegs - Return the number of virtual registers created.
274  ///
275  unsigned getNumVirtRegs() const { return VRegInfo.size(); }
276
277  /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
278  void clearVirtRegs();
279
280  /// setRegAllocationHint - Specify a register allocation hint for the
281  /// specified virtual register.
282  void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
283    RegAllocHints[Reg].first  = Type;
284    RegAllocHints[Reg].second = PrefReg;
285  }
286
287  /// getRegAllocationHint - Return the register allocation hint for the
288  /// specified virtual register.
289  std::pair<unsigned, unsigned>
290  getRegAllocationHint(unsigned Reg) const {
291    return RegAllocHints[Reg];
292  }
293
294  /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
295  /// standard simple hint (Type == 0) is not set.
296  unsigned getSimpleHint(unsigned Reg) const {
297    std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
298    return Hint.first ? 0 : Hint.second;
299  }
300
301
302  //===--------------------------------------------------------------------===//
303  // Physical Register Use Info
304  //===--------------------------------------------------------------------===//
305
306  /// isPhysRegUsed - Return true if the specified register is used in this
307  /// function.  This only works after register allocation.
308  bool isPhysRegUsed(unsigned Reg) const {
309    return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
310  }
311
312  /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
313  /// is used in this function.
314  bool isPhysRegOrOverlapUsed(unsigned Reg) const {
315    if (UsedPhysRegMask.test(Reg))
316      return true;
317    for (const uint16_t *AI = TRI->getOverlaps(Reg); *AI; ++AI)
318      if (UsedPhysRegs.test(*AI))
319        return true;
320    return false;
321  }
322
323  /// setPhysRegUsed - Mark the specified register used in this function.
324  /// This should only be called during and after register allocation.
325  void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
326
327  /// addPhysRegsUsed - Mark the specified registers used in this function.
328  /// This should only be called during and after register allocation.
329  void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
330
331  /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
332  /// This corresponds to the bit mask attached to register mask operands.
333  void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
334    UsedPhysRegMask.setBitsNotInMask(RegMask);
335  }
336
337  /// setPhysRegUnused - Mark the specified register unused in this function.
338  /// This should only be called during and after register allocation.
339  void setPhysRegUnused(unsigned Reg) {
340    UsedPhysRegs.reset(Reg);
341    UsedPhysRegMask.reset(Reg);
342  }
343
344
345  //===--------------------------------------------------------------------===//
346  // Reserved Register Info
347  //===--------------------------------------------------------------------===//
348  //
349  // The set of reserved registers must be invariant during register
350  // allocation.  For example, the target cannot suddenly decide it needs a
351  // frame pointer when the register allocator has already used the frame
352  // pointer register for something else.
353  //
354  // These methods can be used by target hooks like hasFP() to avoid changing
355  // the reserved register set during register allocation.
356
357  /// freezeReservedRegs - Called by the register allocator to freeze the set
358  /// of reserved registers before allocation begins.
359  void freezeReservedRegs(const MachineFunction&);
360
361  /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
362  /// to ensure the set of reserved registers stays constant.
363  bool reservedRegsFrozen() const {
364    return !ReservedRegs.empty();
365  }
366
367  /// canReserveReg - Returns true if PhysReg can be used as a reserved
368  /// register.  Any register can be reserved before freezeReservedRegs() is
369  /// called.
370  bool canReserveReg(unsigned PhysReg) const {
371    return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
372  }
373
374
375  //===--------------------------------------------------------------------===//
376  // LiveIn/LiveOut Management
377  //===--------------------------------------------------------------------===//
378
379  /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
380  /// is an error to add the same register to the same set more than once.
381  void addLiveIn(unsigned Reg, unsigned vreg = 0) {
382    LiveIns.push_back(std::make_pair(Reg, vreg));
383  }
384  void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
385
386  // Iteration support for live in/out sets.  These sets are kept in sorted
387  // order by their register number.
388  typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
389  livein_iterator;
390  typedef std::vector<unsigned>::const_iterator liveout_iterator;
391  livein_iterator livein_begin() const { return LiveIns.begin(); }
392  livein_iterator livein_end()   const { return LiveIns.end(); }
393  bool            livein_empty() const { return LiveIns.empty(); }
394  liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
395  liveout_iterator liveout_end()   const { return LiveOuts.end(); }
396  bool             liveout_empty() const { return LiveOuts.empty(); }
397
398  bool isLiveIn(unsigned Reg) const;
399  bool isLiveOut(unsigned Reg) const;
400
401  /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
402  /// corresponding live-in physical register.
403  unsigned getLiveInPhysReg(unsigned VReg) const;
404
405  /// getLiveInVirtReg - If PReg is a live-in physical register, return the
406  /// corresponding live-in physical register.
407  unsigned getLiveInVirtReg(unsigned PReg) const;
408
409  /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
410  /// into the given entry block.
411  void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
412                        const TargetRegisterInfo &TRI,
413                        const TargetInstrInfo &TII);
414
415private:
416  void HandleVRegListReallocation();
417
418public:
419  /// defusechain_iterator - This class provides iterator support for machine
420  /// operands in the function that use or define a specific register.  If
421  /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
422  /// returns defs.  If neither are true then you are silly and it always
423  /// returns end().  If SkipDebug is true it skips uses marked Debug
424  /// when incrementing.
425  template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
426  class defusechain_iterator
427    : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
428    MachineOperand *Op;
429    explicit defusechain_iterator(MachineOperand *op) : Op(op) {
430      // If the first node isn't one we're interested in, advance to one that
431      // we are interested in.
432      if (op) {
433        if ((!ReturnUses && op->isUse()) ||
434            (!ReturnDefs && op->isDef()) ||
435            (SkipDebug && op->isDebug()))
436          ++*this;
437      }
438    }
439    friend class MachineRegisterInfo;
440  public:
441    typedef std::iterator<std::forward_iterator_tag,
442                          MachineInstr, ptrdiff_t>::reference reference;
443    typedef std::iterator<std::forward_iterator_tag,
444                          MachineInstr, ptrdiff_t>::pointer pointer;
445
446    defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
447    defusechain_iterator() : Op(0) {}
448
449    bool operator==(const defusechain_iterator &x) const {
450      return Op == x.Op;
451    }
452    bool operator!=(const defusechain_iterator &x) const {
453      return !operator==(x);
454    }
455
456    /// atEnd - return true if this iterator is equal to reg_end() on the value.
457    bool atEnd() const { return Op == 0; }
458
459    // Iterator traversal: forward iteration only
460    defusechain_iterator &operator++() {          // Preincrement
461      assert(Op && "Cannot increment end iterator!");
462      Op = Op->getNextOperandForReg();
463
464      // If this is an operand we don't care about, skip it.
465      while (Op && ((!ReturnUses && Op->isUse()) ||
466                    (!ReturnDefs && Op->isDef()) ||
467                    (SkipDebug && Op->isDebug())))
468        Op = Op->getNextOperandForReg();
469
470      return *this;
471    }
472    defusechain_iterator operator++(int) {        // Postincrement
473      defusechain_iterator tmp = *this; ++*this; return tmp;
474    }
475
476    /// skipInstruction - move forward until reaching a different instruction.
477    /// Return the skipped instruction that is no longer pointed to, or NULL if
478    /// already pointing to end().
479    MachineInstr *skipInstruction() {
480      if (!Op) return 0;
481      MachineInstr *MI = Op->getParent();
482      do ++*this;
483      while (Op && Op->getParent() == MI);
484      return MI;
485    }
486
487    MachineInstr *skipBundle() {
488      if (!Op) return 0;
489      MachineInstr *MI = getBundleStart(Op->getParent());
490      do ++*this;
491      while (Op && getBundleStart(Op->getParent()) == MI);
492      return MI;
493    }
494
495    MachineOperand &getOperand() const {
496      assert(Op && "Cannot dereference end iterator!");
497      return *Op;
498    }
499
500    /// getOperandNo - Return the operand # of this MachineOperand in its
501    /// MachineInstr.
502    unsigned getOperandNo() const {
503      assert(Op && "Cannot dereference end iterator!");
504      return Op - &Op->getParent()->getOperand(0);
505    }
506
507    // Retrieve a reference to the current operand.
508    MachineInstr &operator*() const {
509      assert(Op && "Cannot dereference end iterator!");
510      return *Op->getParent();
511    }
512
513    MachineInstr *operator->() const {
514      assert(Op && "Cannot dereference end iterator!");
515      return Op->getParent();
516    }
517  };
518
519};
520
521} // End llvm namespace
522
523#endif
524