SelectionDAGNodes.h revision 1a6d31aee6acd2b9b715b4f11f09481608f13179
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/ilist_node.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/RecyclingAllocator.h"
32#include "llvm/Support/DataTypes.h"
33#include "llvm/CodeGen/DebugLoc.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class Value;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46template <typename T> struct ilist_traits;
47
48/// SDVTList - This represents a list of ValueType's that has been intern'd by
49/// a SelectionDAG.  Instances of this simple value class are returned by
50/// SelectionDAG::getVTList(...).
51///
52struct SDVTList {
53  const MVT *VTs;
54  unsigned short NumVTs;
55};
56
57/// ISD namespace - This namespace contains an enum which represents all of the
58/// SelectionDAG node types and value types.
59///
60namespace ISD {
61
62  //===--------------------------------------------------------------------===//
63  /// ISD::NodeType enum - This enum defines the target-independent operators
64  /// for a SelectionDAG.
65  ///
66  /// Targets may also define target-dependent operator codes for SDNodes. For
67  /// example, on x86, these are the enum values in the X86ISD namespace.
68  /// Targets should aim to use target-independent operators to model their
69  /// instruction sets as much as possible, and only use target-dependent
70  /// operators when they have special requirements.
71  ///
72  /// Finally, during and after selection proper, SNodes may use special
73  /// operator codes that correspond directly with MachineInstr opcodes. These
74  /// are used to represent selected instructions. See the isMachineOpcode()
75  /// and getMachineOpcode() member functions of SDNode.
76  ///
77  enum NodeType {
78    // DELETED_NODE - This is an illegal flag value that is used to catch
79    // errors.  This opcode is not a legal opcode for any node.
80    DELETED_NODE,
81
82    // EntryToken - This is the marker used to indicate the start of the region.
83    EntryToken,
84
85    // TokenFactor - This node takes multiple tokens as input and produces a
86    // single token result.  This is used to represent the fact that the operand
87    // operators are independent of each other.
88    TokenFactor,
89
90    // AssertSext, AssertZext - These nodes record if a register contains a
91    // value that has already been zero or sign extended from a narrower type.
92    // These nodes take two operands.  The first is the node that has already
93    // been extended, and the second is a value type node indicating the width
94    // of the extension
95    AssertSext, AssertZext,
96
97    // Various leaf nodes.
98    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
99    Constant, ConstantFP,
100    GlobalAddress, GlobalTLSAddress, FrameIndex,
101    JumpTable, ConstantPool, ExternalSymbol,
102
103    // The address of the GOT
104    GLOBAL_OFFSET_TABLE,
105
106    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
107    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
108    // of the frame or return address to return.  An index of zero corresponds
109    // to the current function's frame or return address, an index of one to the
110    // parent's frame or return address, and so on.
111    FRAMEADDR, RETURNADDR,
112
113    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
114    // first (possible) on-stack argument. This is needed for correct stack
115    // adjustment during unwind.
116    FRAME_TO_ARGS_OFFSET,
117
118    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
119    // address of the exception block on entry to an landing pad block.
120    EXCEPTIONADDR,
121
122    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
123    // the selection index of the exception thrown.
124    EHSELECTION,
125
126    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
127    // 'eh_return' gcc dwarf builtin, which is used to return from
128    // exception. The general meaning is: adjust stack by OFFSET and pass
129    // execution to HANDLER. Many platform-related details also :)
130    EH_RETURN,
131
132    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
133    // simplification of the constant.
134    TargetConstant,
135    TargetConstantFP,
136
137    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
138    // anything else with this node, and this is valid in the target-specific
139    // dag, turning into a GlobalAddress operand.
140    TargetGlobalAddress,
141    TargetGlobalTLSAddress,
142    TargetFrameIndex,
143    TargetJumpTable,
144    TargetConstantPool,
145    TargetExternalSymbol,
146
147    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
148    /// This node represents a target intrinsic function with no side effects.
149    /// The first operand is the ID number of the intrinsic from the
150    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
151    /// node has returns the result of the intrinsic.
152    INTRINSIC_WO_CHAIN,
153
154    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
155    /// This node represents a target intrinsic function with side effects that
156    /// returns a result.  The first operand is a chain pointer.  The second is
157    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
158    /// operands to the intrinsic follow.  The node has two results, the result
159    /// of the intrinsic and an output chain.
160    INTRINSIC_W_CHAIN,
161
162    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
163    /// This node represents a target intrinsic function with side effects that
164    /// does not return a result.  The first operand is a chain pointer.  The
165    /// second is the ID number of the intrinsic from the llvm::Intrinsic
166    /// namespace.  The operands to the intrinsic follow.
167    INTRINSIC_VOID,
168
169    // CopyToReg - This node has three operands: a chain, a register number to
170    // set to this value, and a value.
171    CopyToReg,
172
173    // CopyFromReg - This node indicates that the input value is a virtual or
174    // physical register that is defined outside of the scope of this
175    // SelectionDAG.  The register is available from the RegisterSDNode object.
176    CopyFromReg,
177
178    // UNDEF - An undefined node
179    UNDEF,
180
181    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
182    /// represents the formal arguments for a function.  CC# is a Constant value
183    /// indicating the calling convention of the function, and ISVARARG is a
184    /// flag that indicates whether the function is varargs or not. This node
185    /// has one result value for each incoming argument, plus one for the output
186    /// chain. It must be custom legalized. See description of CALL node for
187    /// FLAG argument contents explanation.
188    ///
189    FORMAL_ARGUMENTS,
190
191    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
192    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
193    /// This node represents a fully general function call, before the legalizer
194    /// runs.  This has one result value for each argument / flag pair, plus
195    /// a chain result. It must be custom legalized. Flag argument indicates
196    /// misc. argument attributes. Currently:
197    /// Bit 0 - signness
198    /// Bit 1 - 'inreg' attribute
199    /// Bit 2 - 'sret' attribute
200    /// Bit 4 - 'byval' attribute
201    /// Bit 5 - 'nest' attribute
202    /// Bit 6-9 - alignment of byval structures
203    /// Bit 10-26 - size of byval structures
204    /// Bits 31:27 - argument ABI alignment in the first argument piece and
205    /// alignment '1' in other argument pieces.
206    ///
207    /// CALL nodes use the CallSDNode subclass of SDNode, which
208    /// additionally carries information about the calling convention,
209    /// whether the call is varargs, and if it's marked as a tail call.
210    ///
211    CALL,
212
213    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
214    // a Constant, which is required to be operand #1) half of the integer or
215    // float value specified as operand #0.  This is only for use before
216    // legalization, for values that will be broken into multiple registers.
217    EXTRACT_ELEMENT,
218
219    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
220    // two values of the same integer value type, this produces a value twice as
221    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
222    BUILD_PAIR,
223
224    // MERGE_VALUES - This node takes multiple discrete operands and returns
225    // them all as its individual results.  This nodes has exactly the same
226    // number of inputs and outputs, and is only valid before legalization.
227    // This node is useful for some pieces of the code generator that want to
228    // think about a single node with multiple results, not multiple nodes.
229    MERGE_VALUES,
230
231    // Simple integer binary arithmetic operators.
232    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
233
234    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
235    // a signed/unsigned value of type i[2*N], and return the full value as
236    // two results, each of type iN.
237    SMUL_LOHI, UMUL_LOHI,
238
239    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
240    // remainder result.
241    SDIVREM, UDIVREM,
242
243    // CARRY_FALSE - This node is used when folding other nodes,
244    // like ADDC/SUBC, which indicate the carry result is always false.
245    CARRY_FALSE,
246
247    // Carry-setting nodes for multiple precision addition and subtraction.
248    // These nodes take two operands of the same value type, and produce two
249    // results.  The first result is the normal add or sub result, the second
250    // result is the carry flag result.
251    ADDC, SUBC,
252
253    // Carry-using nodes for multiple precision addition and subtraction.  These
254    // nodes take three operands: The first two are the normal lhs and rhs to
255    // the add or sub, and the third is the input carry flag.  These nodes
256    // produce two results; the normal result of the add or sub, and the output
257    // carry flag.  These nodes both read and write a carry flag to allow them
258    // to them to be chained together for add and sub of arbitrarily large
259    // values.
260    ADDE, SUBE,
261
262    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
263    // These nodes take two operands: the normal LHS and RHS to the add. They
264    // produce two results: the normal result of the add, and a boolean that
265    // indicates if an overflow occured (*not* a flag, because it may be stored
266    // to memory, etc.).  If the type of the boolean is not i1 then the high
267    // bits conform to getBooleanContents.
268    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
269    SADDO, UADDO,
270
271    // Same for subtraction
272    SSUBO, USUBO,
273
274    // Same for multiplication
275    SMULO, UMULO,
276
277    // Simple binary floating point operators.
278    FADD, FSUB, FMUL, FDIV, FREM,
279
280    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
281    // DAG node does not require that X and Y have the same type, just that they
282    // are both floating point.  X and the result must have the same type.
283    // FCOPYSIGN(f32, f64) is allowed.
284    FCOPYSIGN,
285
286    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
287    // value as an integer 0/1 value.
288    FGETSIGN,
289
290    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
291    /// with the specified, possibly variable, elements.  The number of elements
292    /// is required to be a power of two.
293    BUILD_VECTOR,
294
295    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
296    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
297    /// element type then VAL is truncated before replacement.
298    INSERT_VECTOR_ELT,
299
300    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
301    /// identified by the (potentially variable) element number IDX.
302    EXTRACT_VECTOR_ELT,
303
304    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
305    /// vector type with the same length and element type, this produces a
306    /// concatenated vector result value, with length equal to the sum of the
307    /// lengths of the input vectors.
308    CONCAT_VECTORS,
309
310    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
311    /// vector value) starting with the (potentially variable) element number
312    /// IDX, which must be a multiple of the result vector length.
313    EXTRACT_SUBVECTOR,
314
315    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
316    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
317    /// (maybe of an illegal datatype) or undef that indicate which value each
318    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
319    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
320    /// that the indices must be constants and are in terms of the element size
321    /// of VEC1/VEC2, not in terms of bytes.
322    VECTOR_SHUFFLE,
323
324    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
325    /// scalar value into element 0 of the resultant vector type.  The top
326    /// elements 1 to N-1 of the N-element vector are undefined.
327    SCALAR_TO_VECTOR,
328
329    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
330    // This node takes a superreg and a constant sub-register index as operands.
331    // Note sub-register indices must be increasing. That is, if the
332    // sub-register index of a 8-bit sub-register is N, then the index for a
333    // 16-bit sub-register must be at least N+1.
334    EXTRACT_SUBREG,
335
336    // INSERT_SUBREG - This node is used to insert a sub-register value.
337    // This node takes a superreg, a subreg value, and a constant sub-register
338    // index as operands.
339    INSERT_SUBREG,
340
341    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
342    // an unsigned/signed value of type i[2*N], then return the top part.
343    MULHU, MULHS,
344
345    // Bitwise operators - logical and, logical or, logical xor, shift left,
346    // shift right algebraic (shift in sign bits), shift right logical (shift in
347    // zeroes), rotate left, rotate right, and byteswap.
348    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
349
350    // Counting operators
351    CTTZ, CTLZ, CTPOP,
352
353    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
354    // i1 then the high bits must conform to getBooleanContents.
355    SELECT,
356
357    // Select with condition operator - This selects between a true value and
358    // a false value (ops #2 and #3) based on the boolean result of comparing
359    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
360    // condition code in op #4, a CondCodeSDNode.
361    SELECT_CC,
362
363    // SetCC operator - This evaluates to a true value iff the condition is
364    // true.  If the result value type is not i1 then the high bits conform
365    // to getBooleanContents.  The operands to this are the left and right
366    // operands to compare (ops #0, and #1) and the condition code to compare
367    // them with (op #2) as a CondCodeSDNode.
368    SETCC,
369
370    // Vector SetCC operator - This evaluates to a vector of integer elements
371    // with the high bit in each element set to true if the comparison is true
372    // and false if the comparison is false.  All other bits in each element
373    // are undefined.  The operands to this are the left and right operands
374    // to compare (ops #0, and #1) and the condition code to compare them with
375    // (op #2) as a CondCodeSDNode.
376    VSETCC,
377
378    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
379    // integer shift operations, just like ADD/SUB_PARTS.  The operation
380    // ordering is:
381    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
382    SHL_PARTS, SRA_PARTS, SRL_PARTS,
383
384    // Conversion operators.  These are all single input single output
385    // operations.  For all of these, the result type must be strictly
386    // wider or narrower (depending on the operation) than the source
387    // type.
388
389    // SIGN_EXTEND - Used for integer types, replicating the sign bit
390    // into new bits.
391    SIGN_EXTEND,
392
393    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
394    ZERO_EXTEND,
395
396    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
397    ANY_EXTEND,
398
399    // TRUNCATE - Completely drop the high bits.
400    TRUNCATE,
401
402    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
403    // depends on the first letter) to floating point.
404    SINT_TO_FP,
405    UINT_TO_FP,
406
407    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
408    // sign extend a small value in a large integer register (e.g. sign
409    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
410    // with the 7th bit).  The size of the smaller type is indicated by the 1th
411    // operand, a ValueType node.
412    SIGN_EXTEND_INREG,
413
414    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
415    /// integer.
416    FP_TO_SINT,
417    FP_TO_UINT,
418
419    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
420    /// down to the precision of the destination VT.  TRUNC is a flag, which is
421    /// always an integer that is zero or one.  If TRUNC is 0, this is a
422    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
423    /// value of Y.
424    ///
425    /// The TRUNC = 1 case is used in cases where we know that the value will
426    /// not be modified by the node, because Y is not using any of the extra
427    /// precision of source type.  This allows certain transformations like
428    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
429    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
430    FP_ROUND,
431
432    // FLT_ROUNDS_ - Returns current rounding mode:
433    // -1 Undefined
434    //  0 Round to 0
435    //  1 Round to nearest
436    //  2 Round to +inf
437    //  3 Round to -inf
438    FLT_ROUNDS_,
439
440    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
441    /// rounds it to a floating point value.  It then promotes it and returns it
442    /// in a register of the same size.  This operation effectively just
443    /// discards excess precision.  The type to round down to is specified by
444    /// the VT operand, a VTSDNode.
445    FP_ROUND_INREG,
446
447    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
448    FP_EXTEND,
449
450    // BIT_CONVERT - Theis operator converts between integer and FP values, as
451    // if one was stored to memory as integer and the other was loaded from the
452    // same address (or equivalently for vector format conversions, etc).  The
453    // source and result are required to have the same bit size (e.g.
454    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
455    // conversions, but that is a noop, deleted by getNode().
456    BIT_CONVERT,
457
458    // CONVERT_RNDSAT - This operator is used to support various conversions
459    // between various types (float, signed, unsigned and vectors of those
460    // types) with rounding and saturation. NOTE: Avoid using this operator as
461    // most target don't support it and the operator might be removed in the
462    // future. It takes the following arguments:
463    //   0) value
464    //   1) dest type (type to convert to)
465    //   2) src type (type to convert from)
466    //   3) rounding imm
467    //   4) saturation imm
468    //   5) ISD::CvtCode indicating the type of conversion to do
469    CONVERT_RNDSAT,
470
471    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
472    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
473    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
474    // point operations. These are inspired by libm.
475    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
476    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
477    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
478
479    // LOAD and STORE have token chains as their first operand, then the same
480    // operands as an LLVM load/store instruction, then an offset node that
481    // is added / subtracted from the base pointer to form the address (for
482    // indexed memory ops).
483    LOAD, STORE,
484
485    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
486    // to a specified boundary.  This node always has two return values: a new
487    // stack pointer value and a chain. The first operand is the token chain,
488    // the second is the number of bytes to allocate, and the third is the
489    // alignment boundary.  The size is guaranteed to be a multiple of the stack
490    // alignment, and the alignment is guaranteed to be bigger than the stack
491    // alignment (if required) or 0 to get standard stack alignment.
492    DYNAMIC_STACKALLOC,
493
494    // Control flow instructions.  These all have token chains.
495
496    // BR - Unconditional branch.  The first operand is the chain
497    // operand, the second is the MBB to branch to.
498    BR,
499
500    // BRIND - Indirect branch.  The first operand is the chain, the second
501    // is the value to branch to, which must be of the same type as the target's
502    // pointer type.
503    BRIND,
504
505    // BR_JT - Jumptable branch. The first operand is the chain, the second
506    // is the jumptable index, the last one is the jumptable entry index.
507    BR_JT,
508
509    // BRCOND - Conditional branch.  The first operand is the chain, the
510    // second is the condition, the third is the block to branch to if the
511    // condition is true.  If the type of the condition is not i1, then the
512    // high bits must conform to getBooleanContents.
513    BRCOND,
514
515    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
516    // that the condition is represented as condition code, and two nodes to
517    // compare, rather than as a combined SetCC node.  The operands in order are
518    // chain, cc, lhs, rhs, block to branch to if condition is true.
519    BR_CC,
520
521    // RET - Return from function.  The first operand is the chain,
522    // and any subsequent operands are pairs of return value and return value
523    // attributes (see CALL for description of attributes) for the function.
524    // This operation can have variable number of operands.
525    RET,
526
527    // INLINEASM - Represents an inline asm block.  This node always has two
528    // return values: a chain and a flag result.  The inputs are as follows:
529    //   Operand #0   : Input chain.
530    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
531    //   Operand #2n+2: A RegisterNode.
532    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
533    //   Operand #last: Optional, an incoming flag.
534    INLINEASM,
535
536    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
537    // locations needed for debug and exception handling tables.  These nodes
538    // take a chain as input and return a chain.
539    DBG_LABEL,
540    EH_LABEL,
541
542    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
543    // local variable declarations for debugging information. First operand is
544    // a chain, while the next two operands are first two arguments (address
545    // and variable) of a llvm.dbg.declare instruction.
546    DECLARE,
547
548    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
549    // value, the same type as the pointer type for the system, and an output
550    // chain.
551    STACKSAVE,
552
553    // STACKRESTORE has two operands, an input chain and a pointer to restore to
554    // it returns an output chain.
555    STACKRESTORE,
556
557    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
558    // a call sequence, and carry arbitrary information that target might want
559    // to know.  The first operand is a chain, the rest are specified by the
560    // target and not touched by the DAG optimizers.
561    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
562    CALLSEQ_START,  // Beginning of a call sequence
563    CALLSEQ_END,    // End of a call sequence
564
565    // VAARG - VAARG has three operands: an input chain, a pointer, and a
566    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
567    VAARG,
568
569    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
570    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
571    // source.
572    VACOPY,
573
574    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
575    // pointer, and a SRCVALUE.
576    VAEND, VASTART,
577
578    // SRCVALUE - This is a node type that holds a Value* that is used to
579    // make reference to a value in the LLVM IR.
580    SRCVALUE,
581
582    // MEMOPERAND - This is a node that contains a MachineMemOperand which
583    // records information about a memory reference. This is used to make
584    // AliasAnalysis queries from the backend.
585    MEMOPERAND,
586
587    // PCMARKER - This corresponds to the pcmarker intrinsic.
588    PCMARKER,
589
590    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
591    // The only operand is a chain and a value and a chain are produced.  The
592    // value is the contents of the architecture specific cycle counter like
593    // register (or other high accuracy low latency clock source)
594    READCYCLECOUNTER,
595
596    // HANDLENODE node - Used as a handle for various purposes.
597    HANDLENODE,
598
599    // DBG_STOPPOINT - This node is used to represent a source location for
600    // debug info.  It takes token chain as input, and carries a line number,
601    // column number, and a pointer to a CompileUnit object identifying
602    // the containing compilation unit.  It produces a token chain as output.
603    DBG_STOPPOINT,
604
605    // DEBUG_LOC - This node is used to represent source line information
606    // embedded in the code.  It takes a token chain as input, then a line
607    // number, then a column then a file id (provided by MachineModuleInfo.) It
608    // produces a token chain as output.
609    DEBUG_LOC,
610
611    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
612    // It takes as input a token chain, the pointer to the trampoline,
613    // the pointer to the nested function, the pointer to pass for the
614    // 'nest' parameter, a SRCVALUE for the trampoline and another for
615    // the nested function (allowing targets to access the original
616    // Function*).  It produces the result of the intrinsic and a token
617    // chain as output.
618    TRAMPOLINE,
619
620    // TRAP - Trapping instruction
621    TRAP,
622
623    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
624    // their first operand. The other operands are the address to prefetch,
625    // read / write specifier, and locality specifier.
626    PREFETCH,
627
628    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
629    //                       store-store, device)
630    // This corresponds to the memory.barrier intrinsic.
631    // it takes an input chain, 4 operands to specify the type of barrier, an
632    // operand specifying if the barrier applies to device and uncached memory
633    // and produces an output chain.
634    MEMBARRIER,
635
636    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
637    // this corresponds to the atomic.lcs intrinsic.
638    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
639    // the return is always the original value in *ptr
640    ATOMIC_CMP_SWAP,
641
642    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
643    // this corresponds to the atomic.swap intrinsic.
644    // amt is stored to *ptr atomically.
645    // the return is always the original value in *ptr
646    ATOMIC_SWAP,
647
648    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
649    // this corresponds to the atomic.load.[OpName] intrinsic.
650    // op(*ptr, amt) is stored to *ptr atomically.
651    // the return is always the original value in *ptr
652    ATOMIC_LOAD_ADD,
653    ATOMIC_LOAD_SUB,
654    ATOMIC_LOAD_AND,
655    ATOMIC_LOAD_OR,
656    ATOMIC_LOAD_XOR,
657    ATOMIC_LOAD_NAND,
658    ATOMIC_LOAD_MIN,
659    ATOMIC_LOAD_MAX,
660    ATOMIC_LOAD_UMIN,
661    ATOMIC_LOAD_UMAX,
662
663    // BUILTIN_OP_END - This must be the last enum value in this list.
664    BUILTIN_OP_END
665  };
666
667  /// Node predicates
668
669  /// isBuildVectorAllOnes - Return true if the specified node is a
670  /// BUILD_VECTOR where all of the elements are ~0 or undef.
671  bool isBuildVectorAllOnes(const SDNode *N);
672
673  /// isBuildVectorAllZeros - Return true if the specified node is a
674  /// BUILD_VECTOR where all of the elements are 0 or undef.
675  bool isBuildVectorAllZeros(const SDNode *N);
676
677  /// isScalarToVector - Return true if the specified node is a
678  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
679  /// element is not an undef.
680  bool isScalarToVector(const SDNode *N);
681
682  /// isDebugLabel - Return true if the specified node represents a debug
683  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
684  bool isDebugLabel(const SDNode *N);
685
686  //===--------------------------------------------------------------------===//
687  /// MemIndexedMode enum - This enum defines the load / store indexed
688  /// addressing modes.
689  ///
690  /// UNINDEXED    "Normal" load / store. The effective address is already
691  ///              computed and is available in the base pointer. The offset
692  ///              operand is always undefined. In addition to producing a
693  ///              chain, an unindexed load produces one value (result of the
694  ///              load); an unindexed store does not produce a value.
695  ///
696  /// PRE_INC      Similar to the unindexed mode where the effective address is
697  /// PRE_DEC      the value of the base pointer add / subtract the offset.
698  ///              It considers the computation as being folded into the load /
699  ///              store operation (i.e. the load / store does the address
700  ///              computation as well as performing the memory transaction).
701  ///              The base operand is always undefined. In addition to
702  ///              producing a chain, pre-indexed load produces two values
703  ///              (result of the load and the result of the address
704  ///              computation); a pre-indexed store produces one value (result
705  ///              of the address computation).
706  ///
707  /// POST_INC     The effective address is the value of the base pointer. The
708  /// POST_DEC     value of the offset operand is then added to / subtracted
709  ///              from the base after memory transaction. In addition to
710  ///              producing a chain, post-indexed load produces two values
711  ///              (the result of the load and the result of the base +/- offset
712  ///              computation); a post-indexed store produces one value (the
713  ///              the result of the base +/- offset computation).
714  ///
715  enum MemIndexedMode {
716    UNINDEXED = 0,
717    PRE_INC,
718    PRE_DEC,
719    POST_INC,
720    POST_DEC,
721    LAST_INDEXED_MODE
722  };
723
724  //===--------------------------------------------------------------------===//
725  /// LoadExtType enum - This enum defines the three variants of LOADEXT
726  /// (load with extension).
727  ///
728  /// SEXTLOAD loads the integer operand and sign extends it to a larger
729  ///          integer result type.
730  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
731  ///          integer result type.
732  /// EXTLOAD  is used for three things: floating point extending loads,
733  ///          integer extending loads [the top bits are undefined], and vector
734  ///          extending loads [load into low elt].
735  ///
736  enum LoadExtType {
737    NON_EXTLOAD = 0,
738    EXTLOAD,
739    SEXTLOAD,
740    ZEXTLOAD,
741    LAST_LOADEXT_TYPE
742  };
743
744  //===--------------------------------------------------------------------===//
745  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
746  /// below work out, when considering SETFALSE (something that never exists
747  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
748  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
749  /// to.  If the "N" column is 1, the result of the comparison is undefined if
750  /// the input is a NAN.
751  ///
752  /// All of these (except for the 'always folded ops') should be handled for
753  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
754  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
755  ///
756  /// Note that these are laid out in a specific order to allow bit-twiddling
757  /// to transform conditions.
758  enum CondCode {
759    // Opcode          N U L G E       Intuitive operation
760    SETFALSE,      //    0 0 0 0       Always false (always folded)
761    SETOEQ,        //    0 0 0 1       True if ordered and equal
762    SETOGT,        //    0 0 1 0       True if ordered and greater than
763    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
764    SETOLT,        //    0 1 0 0       True if ordered and less than
765    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
766    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
767    SETO,          //    0 1 1 1       True if ordered (no nans)
768    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
769    SETUEQ,        //    1 0 0 1       True if unordered or equal
770    SETUGT,        //    1 0 1 0       True if unordered or greater than
771    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
772    SETULT,        //    1 1 0 0       True if unordered or less than
773    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
774    SETUNE,        //    1 1 1 0       True if unordered or not equal
775    SETTRUE,       //    1 1 1 1       Always true (always folded)
776    // Don't care operations: undefined if the input is a nan.
777    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
778    SETEQ,         //  1 X 0 0 1       True if equal
779    SETGT,         //  1 X 0 1 0       True if greater than
780    SETGE,         //  1 X 0 1 1       True if greater than or equal
781    SETLT,         //  1 X 1 0 0       True if less than
782    SETLE,         //  1 X 1 0 1       True if less than or equal
783    SETNE,         //  1 X 1 1 0       True if not equal
784    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
785
786    SETCC_INVALID       // Marker value.
787  };
788
789  /// isSignedIntSetCC - Return true if this is a setcc instruction that
790  /// performs a signed comparison when used with integer operands.
791  inline bool isSignedIntSetCC(CondCode Code) {
792    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
793  }
794
795  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
796  /// performs an unsigned comparison when used with integer operands.
797  inline bool isUnsignedIntSetCC(CondCode Code) {
798    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
799  }
800
801  /// isTrueWhenEqual - Return true if the specified condition returns true if
802  /// the two operands to the condition are equal.  Note that if one of the two
803  /// operands is a NaN, this value is meaningless.
804  inline bool isTrueWhenEqual(CondCode Cond) {
805    return ((int)Cond & 1) != 0;
806  }
807
808  /// getUnorderedFlavor - This function returns 0 if the condition is always
809  /// false if an operand is a NaN, 1 if the condition is always true if the
810  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
811  /// NaN.
812  inline unsigned getUnorderedFlavor(CondCode Cond) {
813    return ((int)Cond >> 3) & 3;
814  }
815
816  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
817  /// 'op' is a valid SetCC operation.
818  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
819
820  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
821  /// when given the operation for (X op Y).
822  CondCode getSetCCSwappedOperands(CondCode Operation);
823
824  /// getSetCCOrOperation - Return the result of a logical OR between different
825  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
826  /// function returns SETCC_INVALID if it is not possible to represent the
827  /// resultant comparison.
828  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
829
830  /// getSetCCAndOperation - Return the result of a logical AND between
831  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
832  /// function returns SETCC_INVALID if it is not possible to represent the
833  /// resultant comparison.
834  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
835
836  //===--------------------------------------------------------------------===//
837  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
838  /// supports.
839  enum CvtCode {
840    CVT_FF,     // Float from Float
841    CVT_FS,     // Float from Signed
842    CVT_FU,     // Float from Unsigned
843    CVT_SF,     // Signed from Float
844    CVT_UF,     // Unsigned from Float
845    CVT_SS,     // Signed from Signed
846    CVT_SU,     // Signed from Unsigned
847    CVT_US,     // Unsigned from Signed
848    CVT_UU,     // Unsigned from Unsigned
849    CVT_INVALID // Marker - Invalid opcode
850  };
851}  // end llvm::ISD namespace
852
853
854//===----------------------------------------------------------------------===//
855/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
856/// values as the result of a computation.  Many nodes return multiple values,
857/// from loads (which define a token and a return value) to ADDC (which returns
858/// a result and a carry value), to calls (which may return an arbitrary number
859/// of values).
860///
861/// As such, each use of a SelectionDAG computation must indicate the node that
862/// computes it as well as which return value to use from that node.  This pair
863/// of information is represented with the SDValue value type.
864///
865class SDValue {
866  SDNode *Node;       // The node defining the value we are using.
867  unsigned ResNo;     // Which return value of the node we are using.
868public:
869  SDValue() : Node(0), ResNo(0) {}
870  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
871
872  /// get the index which selects a specific result in the SDNode
873  unsigned getResNo() const { return ResNo; }
874
875  /// get the SDNode which holds the desired result
876  SDNode *getNode() const { return Node; }
877
878  /// set the SDNode
879  void setNode(SDNode *N) { Node = N; }
880
881  bool operator==(const SDValue &O) const {
882    return Node == O.Node && ResNo == O.ResNo;
883  }
884  bool operator!=(const SDValue &O) const {
885    return !operator==(O);
886  }
887  bool operator<(const SDValue &O) const {
888    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
889  }
890
891  SDValue getValue(unsigned R) const {
892    return SDValue(Node, R);
893  }
894
895  // isOperandOf - Return true if this node is an operand of N.
896  bool isOperandOf(SDNode *N) const;
897
898  /// getValueType - Return the ValueType of the referenced return value.
899  ///
900  inline MVT getValueType() const;
901
902  /// getValueSizeInBits - Returns the size of the value in bits.
903  ///
904  unsigned getValueSizeInBits() const {
905    return getValueType().getSizeInBits();
906  }
907
908  // Forwarding methods - These forward to the corresponding methods in SDNode.
909  inline unsigned getOpcode() const;
910  inline unsigned getNumOperands() const;
911  inline const SDValue &getOperand(unsigned i) const;
912  inline uint64_t getConstantOperandVal(unsigned i) const;
913  inline bool isTargetOpcode() const;
914  inline bool isMachineOpcode() const;
915  inline unsigned getMachineOpcode() const;
916  inline const DebugLoc getDebugLoc() const;
917
918
919  /// reachesChainWithoutSideEffects - Return true if this operand (which must
920  /// be a chain) reaches the specified operand without crossing any
921  /// side-effecting instructions.  In practice, this looks through token
922  /// factors and non-volatile loads.  In order to remain efficient, this only
923  /// looks a couple of nodes in, it does not do an exhaustive search.
924  bool reachesChainWithoutSideEffects(SDValue Dest,
925                                      unsigned Depth = 2) const;
926
927  /// use_empty - Return true if there are no nodes using value ResNo
928  /// of Node.
929  ///
930  inline bool use_empty() const;
931
932  /// hasOneUse - Return true if there is exactly one node using value
933  /// ResNo of Node.
934  ///
935  inline bool hasOneUse() const;
936};
937
938
939template<> struct DenseMapInfo<SDValue> {
940  static inline SDValue getEmptyKey() {
941    return SDValue((SDNode*)-1, -1U);
942  }
943  static inline SDValue getTombstoneKey() {
944    return SDValue((SDNode*)-1, 0);
945  }
946  static unsigned getHashValue(const SDValue &Val) {
947    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
948            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
949  }
950  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
951    return LHS == RHS;
952  }
953  static bool isPod() { return true; }
954};
955
956/// simplify_type specializations - Allow casting operators to work directly on
957/// SDValues as if they were SDNode*'s.
958template<> struct simplify_type<SDValue> {
959  typedef SDNode* SimpleType;
960  static SimpleType getSimplifiedValue(const SDValue &Val) {
961    return static_cast<SimpleType>(Val.getNode());
962  }
963};
964template<> struct simplify_type<const SDValue> {
965  typedef SDNode* SimpleType;
966  static SimpleType getSimplifiedValue(const SDValue &Val) {
967    return static_cast<SimpleType>(Val.getNode());
968  }
969};
970
971/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
972/// which records the SDNode being used and the result number, a
973/// pointer to the SDNode using the value, and Next and Prev pointers,
974/// which link together all the uses of an SDNode.
975///
976class SDUse {
977  /// Val - The value being used.
978  SDValue Val;
979  /// User - The user of this value.
980  SDNode *User;
981  /// Prev, Next - Pointers to the uses list of the SDNode referred by
982  /// this operand.
983  SDUse **Prev, *Next;
984
985  SDUse(const SDUse &U);          // Do not implement
986  void operator=(const SDUse &U); // Do not implement
987
988public:
989  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
990
991  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
992  operator const SDValue&() const { return Val; }
993
994  /// If implicit conversion to SDValue doesn't work, the get() method returns
995  /// the SDValue.
996  const SDValue &get() const { return Val; }
997
998  /// getUser - This returns the SDNode that contains this Use.
999  SDNode *getUser() { return User; }
1000
1001  /// getNext - Get the next SDUse in the use list.
1002  SDUse *getNext() const { return Next; }
1003
1004  /// getNode - Convenience function for get().getNode().
1005  SDNode *getNode() const { return Val.getNode(); }
1006  /// getResNo - Convenience function for get().getResNo().
1007  unsigned getResNo() const { return Val.getResNo(); }
1008  /// getValueType - Convenience function for get().getValueType().
1009  MVT getValueType() const { return Val.getValueType(); }
1010
1011  /// operator== - Convenience function for get().operator==
1012  bool operator==(const SDValue &V) const {
1013    return Val == V;
1014  }
1015
1016  /// operator!= - Convenience function for get().operator!=
1017  bool operator!=(const SDValue &V) const {
1018    return Val != V;
1019  }
1020
1021  /// operator< - Convenience function for get().operator<
1022  bool operator<(const SDValue &V) const {
1023    return Val < V;
1024  }
1025
1026private:
1027  friend class SelectionDAG;
1028  friend class SDNode;
1029
1030  void setUser(SDNode *p) { User = p; }
1031
1032  /// set - Remove this use from its existing use list, assign it the
1033  /// given value, and add it to the new value's node's use list.
1034  inline void set(const SDValue &V);
1035  /// setInitial - like set, but only supports initializing a newly-allocated
1036  /// SDUse with a non-null value.
1037  inline void setInitial(const SDValue &V);
1038  /// setNode - like set, but only sets the Node portion of the value,
1039  /// leaving the ResNo portion unmodified.
1040  inline void setNode(SDNode *N);
1041
1042  void addToList(SDUse **List) {
1043    Next = *List;
1044    if (Next) Next->Prev = &Next;
1045    Prev = List;
1046    *List = this;
1047  }
1048
1049  void removeFromList() {
1050    *Prev = Next;
1051    if (Next) Next->Prev = Prev;
1052  }
1053};
1054
1055/// simplify_type specializations - Allow casting operators to work directly on
1056/// SDValues as if they were SDNode*'s.
1057template<> struct simplify_type<SDUse> {
1058  typedef SDNode* SimpleType;
1059  static SimpleType getSimplifiedValue(const SDUse &Val) {
1060    return static_cast<SimpleType>(Val.getNode());
1061  }
1062};
1063template<> struct simplify_type<const SDUse> {
1064  typedef SDNode* SimpleType;
1065  static SimpleType getSimplifiedValue(const SDUse &Val) {
1066    return static_cast<SimpleType>(Val.getNode());
1067  }
1068};
1069
1070
1071/// SDNode - Represents one node in the SelectionDAG.
1072///
1073class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1074private:
1075  /// NodeType - The operation that this node performs.
1076  ///
1077  short NodeType;
1078
1079  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1080  /// then they will be delete[]'d when the node is destroyed.
1081  unsigned short OperandsNeedDelete : 1;
1082
1083protected:
1084  /// SubclassData - This member is defined by this class, but is not used for
1085  /// anything.  Subclasses can use it to hold whatever state they find useful.
1086  /// This field is initialized to zero by the ctor.
1087  unsigned short SubclassData : 15;
1088
1089private:
1090  /// NodeId - Unique id per SDNode in the DAG.
1091  int NodeId;
1092
1093  /// OperandList - The values that are used by this operation.
1094  ///
1095  SDUse *OperandList;
1096
1097  /// ValueList - The types of the values this node defines.  SDNode's may
1098  /// define multiple values simultaneously.
1099  const MVT *ValueList;
1100
1101  /// UseList - List of uses for this SDNode.
1102  SDUse *UseList;
1103
1104  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1105  unsigned short NumOperands, NumValues;
1106
1107  /// debugLoc - source line information.
1108  DebugLoc debugLoc;
1109
1110  /// getValueTypeList - Return a pointer to the specified value type.
1111  static const MVT *getValueTypeList(MVT VT);
1112
1113  friend class SelectionDAG;
1114  friend struct ilist_traits<SDNode>;
1115
1116public:
1117  //===--------------------------------------------------------------------===//
1118  //  Accessors
1119  //
1120
1121  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1122  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1123  /// are the opcode values in the ISD and <target>ISD namespaces. For
1124  /// post-isel opcodes, see getMachineOpcode.
1125  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1126
1127  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1128  /// \<target\>ISD namespace).
1129  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1130
1131  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1132  /// corresponding to a MachineInstr opcode.
1133  bool isMachineOpcode() const { return NodeType < 0; }
1134
1135  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1136  /// true. It returns the MachineInstr opcode value that the node's opcode
1137  /// corresponds to.
1138  unsigned getMachineOpcode() const {
1139    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1140    return ~NodeType;
1141  }
1142
1143  /// use_empty - Return true if there are no uses of this node.
1144  ///
1145  bool use_empty() const { return UseList == NULL; }
1146
1147  /// hasOneUse - Return true if there is exactly one use of this node.
1148  ///
1149  bool hasOneUse() const {
1150    return !use_empty() && next(use_begin()) == use_end();
1151  }
1152
1153  /// use_size - Return the number of uses of this node. This method takes
1154  /// time proportional to the number of uses.
1155  ///
1156  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1157
1158  /// getNodeId - Return the unique node id.
1159  ///
1160  int getNodeId() const { return NodeId; }
1161
1162  /// setNodeId - Set unique node id.
1163  void setNodeId(int Id) { NodeId = Id; }
1164
1165  /// getDebugLoc - Return the source location info.
1166  const DebugLoc getDebugLoc() const { return debugLoc; }
1167
1168  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1169  /// it in the constructor is preferable.
1170  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1171
1172  /// use_iterator - This class provides iterator support for SDUse
1173  /// operands that use a specific SDNode.
1174  class use_iterator
1175    : public forward_iterator<SDUse, ptrdiff_t> {
1176    SDUse *Op;
1177    explicit use_iterator(SDUse *op) : Op(op) {
1178    }
1179    friend class SDNode;
1180  public:
1181    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1182    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1183
1184    use_iterator(const use_iterator &I) : Op(I.Op) {}
1185    use_iterator() : Op(0) {}
1186
1187    bool operator==(const use_iterator &x) const {
1188      return Op == x.Op;
1189    }
1190    bool operator!=(const use_iterator &x) const {
1191      return !operator==(x);
1192    }
1193
1194    /// atEnd - return true if this iterator is at the end of uses list.
1195    bool atEnd() const { return Op == 0; }
1196
1197    // Iterator traversal: forward iteration only.
1198    use_iterator &operator++() {          // Preincrement
1199      assert(Op && "Cannot increment end iterator!");
1200      Op = Op->getNext();
1201      return *this;
1202    }
1203
1204    use_iterator operator++(int) {        // Postincrement
1205      use_iterator tmp = *this; ++*this; return tmp;
1206    }
1207
1208    /// Retrieve a pointer to the current user node.
1209    SDNode *operator*() const {
1210      assert(Op && "Cannot dereference end iterator!");
1211      return Op->getUser();
1212    }
1213
1214    SDNode *operator->() const { return operator*(); }
1215
1216    SDUse &getUse() const { return *Op; }
1217
1218    /// getOperandNo - Retrieve the operand # of this use in its user.
1219    ///
1220    unsigned getOperandNo() const {
1221      assert(Op && "Cannot dereference end iterator!");
1222      return (unsigned)(Op - Op->getUser()->OperandList);
1223    }
1224  };
1225
1226  /// use_begin/use_end - Provide iteration support to walk over all uses
1227  /// of an SDNode.
1228
1229  use_iterator use_begin() const {
1230    return use_iterator(UseList);
1231  }
1232
1233  static use_iterator use_end() { return use_iterator(0); }
1234
1235
1236  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1237  /// indicated value.  This method ignores uses of other values defined by this
1238  /// operation.
1239  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1240
1241  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1242  /// value. This method ignores uses of other values defined by this operation.
1243  bool hasAnyUseOfValue(unsigned Value) const;
1244
1245  /// isOnlyUserOf - Return true if this node is the only use of N.
1246  ///
1247  bool isOnlyUserOf(SDNode *N) const;
1248
1249  /// isOperandOf - Return true if this node is an operand of N.
1250  ///
1251  bool isOperandOf(SDNode *N) const;
1252
1253  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1254  /// node is either an operand of N or it can be reached by recursively
1255  /// traversing up the operands.
1256  /// NOTE: this is an expensive method. Use it carefully.
1257  bool isPredecessorOf(SDNode *N) const;
1258
1259  /// getNumOperands - Return the number of values used by this operation.
1260  ///
1261  unsigned getNumOperands() const { return NumOperands; }
1262
1263  /// getConstantOperandVal - Helper method returns the integer value of a
1264  /// ConstantSDNode operand.
1265  uint64_t getConstantOperandVal(unsigned Num) const;
1266
1267  const SDValue &getOperand(unsigned Num) const {
1268    assert(Num < NumOperands && "Invalid child # of SDNode!");
1269    return OperandList[Num];
1270  }
1271
1272  typedef SDUse* op_iterator;
1273  op_iterator op_begin() const { return OperandList; }
1274  op_iterator op_end() const { return OperandList+NumOperands; }
1275
1276  SDVTList getVTList() const {
1277    SDVTList X = { ValueList, NumValues };
1278    return X;
1279  };
1280
1281  /// getFlaggedNode - If this node has a flag operand, return the node
1282  /// to which the flag operand points. Otherwise return NULL.
1283  SDNode *getFlaggedNode() const {
1284    if (getNumOperands() != 0 &&
1285        getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
1286      return getOperand(getNumOperands()-1).getNode();
1287    return 0;
1288  }
1289
1290  // If this is a pseudo op, like copyfromreg, look to see if there is a
1291  // real target node flagged to it.  If so, return the target node.
1292  const SDNode *getFlaggedMachineNode() const {
1293    const SDNode *FoundNode = this;
1294
1295    // Climb up flag edges until a machine-opcode node is found, or the
1296    // end of the chain is reached.
1297    while (!FoundNode->isMachineOpcode()) {
1298      const SDNode *N = FoundNode->getFlaggedNode();
1299      if (!N) break;
1300      FoundNode = N;
1301    }
1302
1303    return FoundNode;
1304  }
1305
1306  /// getNumValues - Return the number of values defined/returned by this
1307  /// operator.
1308  ///
1309  unsigned getNumValues() const { return NumValues; }
1310
1311  /// getValueType - Return the type of a specified result.
1312  ///
1313  MVT getValueType(unsigned ResNo) const {
1314    assert(ResNo < NumValues && "Illegal result number!");
1315    return ValueList[ResNo];
1316  }
1317
1318  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1319  ///
1320  unsigned getValueSizeInBits(unsigned ResNo) const {
1321    return getValueType(ResNo).getSizeInBits();
1322  }
1323
1324  typedef const MVT* value_iterator;
1325  value_iterator value_begin() const { return ValueList; }
1326  value_iterator value_end() const { return ValueList+NumValues; }
1327
1328  /// getOperationName - Return the opcode of this operation for printing.
1329  ///
1330  std::string getOperationName(const SelectionDAG *G = 0) const;
1331  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1332  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1333  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1334  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1335  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1336  void dump() const;
1337  void dumpr() const;
1338  void dump(const SelectionDAG *G) const;
1339
1340  static bool classof(const SDNode *) { return true; }
1341
1342  /// Profile - Gather unique data for the node.
1343  ///
1344  void Profile(FoldingSetNodeID &ID) const;
1345
1346  /// addUse - This method should only be used by the SDUse class.
1347  ///
1348  void addUse(SDUse &U) { U.addToList(&UseList); }
1349
1350protected:
1351  static SDVTList getSDVTList(MVT VT) {
1352    SDVTList Ret = { getValueTypeList(VT), 1 };
1353    return Ret;
1354  }
1355
1356  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1357         unsigned NumOps)
1358    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1359      NodeId(-1),
1360      OperandList(NumOps ? new SDUse[NumOps] : 0),
1361      ValueList(VTs.VTs), UseList(NULL),
1362      NumOperands(NumOps), NumValues(VTs.NumVTs),
1363      debugLoc(dl) {
1364    for (unsigned i = 0; i != NumOps; ++i) {
1365      OperandList[i].setUser(this);
1366      OperandList[i].setInitial(Ops[i]);
1367    }
1368  }
1369
1370  /// This constructor adds no operands itself; operands can be
1371  /// set later with InitOperands.
1372  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1373    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1374      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1375      NumOperands(0), NumValues(VTs.NumVTs),
1376      debugLoc(dl) {}
1377
1378  /// InitOperands - Initialize the operands list of this with 1 operand.
1379  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1380    Ops[0].setUser(this);
1381    Ops[0].setInitial(Op0);
1382    NumOperands = 1;
1383    OperandList = Ops;
1384  }
1385
1386  /// InitOperands - Initialize the operands list of this with 2 operands.
1387  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1388    Ops[0].setUser(this);
1389    Ops[0].setInitial(Op0);
1390    Ops[1].setUser(this);
1391    Ops[1].setInitial(Op1);
1392    NumOperands = 2;
1393    OperandList = Ops;
1394  }
1395
1396  /// InitOperands - Initialize the operands list of this with 3 operands.
1397  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1398                    const SDValue &Op2) {
1399    Ops[0].setUser(this);
1400    Ops[0].setInitial(Op0);
1401    Ops[1].setUser(this);
1402    Ops[1].setInitial(Op1);
1403    Ops[2].setUser(this);
1404    Ops[2].setInitial(Op2);
1405    NumOperands = 3;
1406    OperandList = Ops;
1407  }
1408
1409  /// InitOperands - Initialize the operands list of this with 4 operands.
1410  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1411                    const SDValue &Op2, const SDValue &Op3) {
1412    Ops[0].setUser(this);
1413    Ops[0].setInitial(Op0);
1414    Ops[1].setUser(this);
1415    Ops[1].setInitial(Op1);
1416    Ops[2].setUser(this);
1417    Ops[2].setInitial(Op2);
1418    Ops[3].setUser(this);
1419    Ops[3].setInitial(Op3);
1420    NumOperands = 4;
1421    OperandList = Ops;
1422  }
1423
1424  /// InitOperands - Initialize the operands list of this with N operands.
1425  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1426    for (unsigned i = 0; i != N; ++i) {
1427      Ops[i].setUser(this);
1428      Ops[i].setInitial(Vals[i]);
1429    }
1430    NumOperands = N;
1431    OperandList = Ops;
1432  }
1433
1434  /// DropOperands - Release the operands and set this node to have
1435  /// zero operands.
1436  void DropOperands();
1437};
1438
1439
1440// Define inline functions from the SDValue class.
1441
1442inline unsigned SDValue::getOpcode() const {
1443  return Node->getOpcode();
1444}
1445inline MVT SDValue::getValueType() const {
1446  return Node->getValueType(ResNo);
1447}
1448inline unsigned SDValue::getNumOperands() const {
1449  return Node->getNumOperands();
1450}
1451inline const SDValue &SDValue::getOperand(unsigned i) const {
1452  return Node->getOperand(i);
1453}
1454inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1455  return Node->getConstantOperandVal(i);
1456}
1457inline bool SDValue::isTargetOpcode() const {
1458  return Node->isTargetOpcode();
1459}
1460inline bool SDValue::isMachineOpcode() const {
1461  return Node->isMachineOpcode();
1462}
1463inline unsigned SDValue::getMachineOpcode() const {
1464  return Node->getMachineOpcode();
1465}
1466inline bool SDValue::use_empty() const {
1467  return !Node->hasAnyUseOfValue(ResNo);
1468}
1469inline bool SDValue::hasOneUse() const {
1470  return Node->hasNUsesOfValue(1, ResNo);
1471}
1472inline const DebugLoc SDValue::getDebugLoc() const {
1473  return Node->getDebugLoc();
1474}
1475
1476// Define inline functions from the SDUse class.
1477
1478inline void SDUse::set(const SDValue &V) {
1479  if (Val.getNode()) removeFromList();
1480  Val = V;
1481  if (V.getNode()) V.getNode()->addUse(*this);
1482}
1483
1484inline void SDUse::setInitial(const SDValue &V) {
1485  Val = V;
1486  V.getNode()->addUse(*this);
1487}
1488
1489inline void SDUse::setNode(SDNode *N) {
1490  if (Val.getNode()) removeFromList();
1491  Val.setNode(N);
1492  if (N) N->addUse(*this);
1493}
1494
1495/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1496/// to allow co-allocation of node operands with the node itself.
1497class UnarySDNode : public SDNode {
1498  SDUse Op;
1499public:
1500  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1501    : SDNode(Opc, dl, VTs) {
1502    InitOperands(&Op, X);
1503  }
1504};
1505
1506/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1507/// to allow co-allocation of node operands with the node itself.
1508class BinarySDNode : public SDNode {
1509  SDUse Ops[2];
1510public:
1511  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1512    : SDNode(Opc, dl, VTs) {
1513    InitOperands(Ops, X, Y);
1514  }
1515};
1516
1517/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1518/// to allow co-allocation of node operands with the node itself.
1519class TernarySDNode : public SDNode {
1520  SDUse Ops[3];
1521public:
1522  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1523                SDValue Z)
1524    : SDNode(Opc, dl, VTs) {
1525    InitOperands(Ops, X, Y, Z);
1526  }
1527};
1528
1529
1530/// HandleSDNode - This class is used to form a handle around another node that
1531/// is persistant and is updated across invocations of replaceAllUsesWith on its
1532/// operand.  This node should be directly created by end-users and not added to
1533/// the AllNodes list.
1534class HandleSDNode : public SDNode {
1535  SDUse Op;
1536public:
1537  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1538  // fixed.
1539#ifdef __GNUC__
1540  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1541#else
1542  explicit HandleSDNode(SDValue X)
1543#endif
1544    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1545             getSDVTList(MVT::Other)) {
1546    InitOperands(&Op, X);
1547  }
1548  ~HandleSDNode();
1549  const SDValue &getValue() const { return Op; }
1550};
1551
1552/// Abstact virtual class for operations for memory operations
1553class MemSDNode : public SDNode {
1554private:
1555  // MemoryVT - VT of in-memory value.
1556  MVT MemoryVT;
1557
1558  //! SrcValue - Memory location for alias analysis.
1559  const Value *SrcValue;
1560
1561  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1562  int SVOffset;
1563
1564public:
1565  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT MemoryVT,
1566            const Value *srcValue, int SVOff,
1567            unsigned alignment, bool isvolatile);
1568
1569  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1570            unsigned NumOps, MVT MemoryVT, const Value *srcValue, int SVOff,
1571            unsigned alignment, bool isvolatile);
1572
1573  /// Returns alignment and volatility of the memory access
1574  unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
1575  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1576
1577  /// getRawSubclassData - Return the SubclassData value, which contains an
1578  /// encoding of the alignment and volatile information, as well as bits
1579  /// used by subclasses. This function should only be used to compute a
1580  /// FoldingSetNodeID value.
1581  unsigned getRawSubclassData() const {
1582    return SubclassData;
1583  }
1584
1585  /// Returns the SrcValue and offset that describes the location of the access
1586  const Value *getSrcValue() const { return SrcValue; }
1587  int getSrcValueOffset() const { return SVOffset; }
1588
1589  /// getMemoryVT - Return the type of the in-memory value.
1590  MVT getMemoryVT() const { return MemoryVT; }
1591
1592  /// getMemOperand - Return a MachineMemOperand object describing the memory
1593  /// reference performed by operation.
1594  MachineMemOperand getMemOperand() const;
1595
1596  const SDValue &getChain() const { return getOperand(0); }
1597  const SDValue &getBasePtr() const {
1598    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1599  }
1600
1601  // Methods to support isa and dyn_cast
1602  static bool classof(const MemSDNode *) { return true; }
1603  static bool classof(const SDNode *N) {
1604    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1605    // with either an intrinsic or a target opcode.
1606    return N->getOpcode() == ISD::LOAD                ||
1607           N->getOpcode() == ISD::STORE               ||
1608           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1609           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1610           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1611           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1612           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1613           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1614           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1615           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1616           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1617           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1618           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1619           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1620           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1621           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1622           N->isTargetOpcode();
1623  }
1624};
1625
1626/// AtomicSDNode - A SDNode reprenting atomic operations.
1627///
1628class AtomicSDNode : public MemSDNode {
1629  SDUse Ops[4];
1630
1631public:
1632  // Opc:   opcode for atomic
1633  // VTL:    value type list
1634  // Chain:  memory chain for operaand
1635  // Ptr:    address to update as a SDValue
1636  // Cmp:    compare value
1637  // Swp:    swap value
1638  // SrcVal: address to update as a Value (used for MemOperand)
1639  // Align:  alignment of memory
1640  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1641               SDValue Chain, SDValue Ptr,
1642               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1643               unsigned Align=0)
1644    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1645                Align, /*isVolatile=*/true) {
1646    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1647  }
1648  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1649               SDValue Chain, SDValue Ptr,
1650               SDValue Val, const Value* SrcVal, unsigned Align=0)
1651    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1652                Align, /*isVolatile=*/true) {
1653    InitOperands(Ops, Chain, Ptr, Val);
1654  }
1655
1656  const SDValue &getBasePtr() const { return getOperand(1); }
1657  const SDValue &getVal() const { return getOperand(2); }
1658
1659  bool isCompareAndSwap() const {
1660    unsigned Op = getOpcode();
1661    return Op == ISD::ATOMIC_CMP_SWAP;
1662  }
1663
1664  // Methods to support isa and dyn_cast
1665  static bool classof(const AtomicSDNode *) { return true; }
1666  static bool classof(const SDNode *N) {
1667    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1668           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1669           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1670           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1671           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1672           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1673           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1674           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1675           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1676           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1677           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1678           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1679  }
1680};
1681
1682/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1683/// memory and need an associated memory operand.
1684///
1685class MemIntrinsicSDNode : public MemSDNode {
1686  bool ReadMem;  // Intrinsic reads memory
1687  bool WriteMem; // Intrinsic writes memory
1688public:
1689  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1690                     const SDValue *Ops, unsigned NumOps,
1691                     MVT MemoryVT, const Value *srcValue, int SVO,
1692                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1693    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1694      ReadMem(ReadMem), WriteMem(WriteMem) {
1695  }
1696
1697  bool readMem() const { return ReadMem; }
1698  bool writeMem() const { return WriteMem; }
1699
1700  // Methods to support isa and dyn_cast
1701  static bool classof(const MemIntrinsicSDNode *) { return true; }
1702  static bool classof(const SDNode *N) {
1703    // We lower some target intrinsics to their target opcode
1704    // early a node with a target opcode can be of this class
1705    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1706           N->getOpcode() == ISD::INTRINSIC_VOID ||
1707           N->isTargetOpcode();
1708  }
1709};
1710
1711class ConstantSDNode : public SDNode {
1712  const ConstantInt *Value;
1713protected:
1714  friend class SelectionDAG;
1715  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1716    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1717             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1718  }
1719public:
1720
1721  const ConstantInt *getConstantIntValue() const { return Value; }
1722  const APInt &getAPIntValue() const { return Value->getValue(); }
1723  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1724  int64_t getSExtValue() const { return Value->getSExtValue(); }
1725
1726  bool isNullValue() const { return Value->isNullValue(); }
1727  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1728
1729  static bool classof(const ConstantSDNode *) { return true; }
1730  static bool classof(const SDNode *N) {
1731    return N->getOpcode() == ISD::Constant ||
1732           N->getOpcode() == ISD::TargetConstant;
1733  }
1734};
1735
1736class ConstantFPSDNode : public SDNode {
1737  const ConstantFP *Value;
1738protected:
1739  friend class SelectionDAG;
1740  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1741    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1742             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1743  }
1744public:
1745
1746  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1747  const ConstantFP *getConstantFPValue() const { return Value; }
1748
1749  /// isExactlyValue - We don't rely on operator== working on double values, as
1750  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1751  /// As such, this method can be used to do an exact bit-for-bit comparison of
1752  /// two floating point values.
1753
1754  /// We leave the version with the double argument here because it's just so
1755  /// convenient to write "2.0" and the like.  Without this function we'd
1756  /// have to duplicate its logic everywhere it's called.
1757  bool isExactlyValue(double V) const {
1758    bool ignored;
1759    // convert is not supported on this type
1760    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1761      return false;
1762    APFloat Tmp(V);
1763    Tmp.convert(Value->getValueAPF().getSemantics(),
1764                APFloat::rmNearestTiesToEven, &ignored);
1765    return isExactlyValue(Tmp);
1766  }
1767  bool isExactlyValue(const APFloat& V) const;
1768
1769  bool isValueValidForType(MVT VT, const APFloat& Val);
1770
1771  static bool classof(const ConstantFPSDNode *) { return true; }
1772  static bool classof(const SDNode *N) {
1773    return N->getOpcode() == ISD::ConstantFP ||
1774           N->getOpcode() == ISD::TargetConstantFP;
1775  }
1776};
1777
1778class GlobalAddressSDNode : public SDNode {
1779  GlobalValue *TheGlobal;
1780  int64_t Offset;
1781protected:
1782  friend class SelectionDAG;
1783  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
1784                      int64_t o = 0);
1785public:
1786
1787  GlobalValue *getGlobal() const { return TheGlobal; }
1788  int64_t getOffset() const { return Offset; }
1789
1790  static bool classof(const GlobalAddressSDNode *) { return true; }
1791  static bool classof(const SDNode *N) {
1792    return N->getOpcode() == ISD::GlobalAddress ||
1793           N->getOpcode() == ISD::TargetGlobalAddress ||
1794           N->getOpcode() == ISD::GlobalTLSAddress ||
1795           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1796  }
1797};
1798
1799class FrameIndexSDNode : public SDNode {
1800  int FI;
1801protected:
1802  friend class SelectionDAG;
1803  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1804    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1805      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1806  }
1807public:
1808
1809  int getIndex() const { return FI; }
1810
1811  static bool classof(const FrameIndexSDNode *) { return true; }
1812  static bool classof(const SDNode *N) {
1813    return N->getOpcode() == ISD::FrameIndex ||
1814           N->getOpcode() == ISD::TargetFrameIndex;
1815  }
1816};
1817
1818class JumpTableSDNode : public SDNode {
1819  int JTI;
1820protected:
1821  friend class SelectionDAG;
1822  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1823    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1824      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti) {
1825  }
1826public:
1827
1828  int getIndex() const { return JTI; }
1829
1830  static bool classof(const JumpTableSDNode *) { return true; }
1831  static bool classof(const SDNode *N) {
1832    return N->getOpcode() == ISD::JumpTable ||
1833           N->getOpcode() == ISD::TargetJumpTable;
1834  }
1835};
1836
1837class ConstantPoolSDNode : public SDNode {
1838  union {
1839    Constant *ConstVal;
1840    MachineConstantPoolValue *MachineCPVal;
1841  } Val;
1842  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1843  unsigned Alignment;
1844protected:
1845  friend class SelectionDAG;
1846  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1847    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1848             DebugLoc::getUnknownLoc(),
1849             getSDVTList(VT)), Offset(o), Alignment(0) {
1850    assert((int)Offset >= 0 && "Offset is too large");
1851    Val.ConstVal = c;
1852  }
1853  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1854    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1855             DebugLoc::getUnknownLoc(),
1856             getSDVTList(VT)), Offset(o), Alignment(Align) {
1857    assert((int)Offset >= 0 && "Offset is too large");
1858    Val.ConstVal = c;
1859  }
1860  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1861                     MVT VT, int o=0)
1862    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1863             DebugLoc::getUnknownLoc(),
1864             getSDVTList(VT)), Offset(o), Alignment(0) {
1865    assert((int)Offset >= 0 && "Offset is too large");
1866    Val.MachineCPVal = v;
1867    Offset |= 1 << (sizeof(unsigned)*8-1);
1868  }
1869  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1870                     MVT VT, int o, unsigned Align)
1871    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1872             DebugLoc::getUnknownLoc(),
1873             getSDVTList(VT)), Offset(o), Alignment(Align) {
1874    assert((int)Offset >= 0 && "Offset is too large");
1875    Val.MachineCPVal = v;
1876    Offset |= 1 << (sizeof(unsigned)*8-1);
1877  }
1878public:
1879
1880  bool isMachineConstantPoolEntry() const {
1881    return (int)Offset < 0;
1882  }
1883
1884  Constant *getConstVal() const {
1885    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1886    return Val.ConstVal;
1887  }
1888
1889  MachineConstantPoolValue *getMachineCPVal() const {
1890    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1891    return Val.MachineCPVal;
1892  }
1893
1894  int getOffset() const {
1895    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1896  }
1897
1898  // Return the alignment of this constant pool object, which is either 0 (for
1899  // default alignment) or log2 of the desired value.
1900  unsigned getAlignment() const { return Alignment; }
1901
1902  const Type *getType() const;
1903
1904  static bool classof(const ConstantPoolSDNode *) { return true; }
1905  static bool classof(const SDNode *N) {
1906    return N->getOpcode() == ISD::ConstantPool ||
1907           N->getOpcode() == ISD::TargetConstantPool;
1908  }
1909};
1910
1911class BasicBlockSDNode : public SDNode {
1912  MachineBasicBlock *MBB;
1913protected:
1914  friend class SelectionDAG;
1915  /// Debug info is meaningful and potentially useful here, but we create
1916  /// blocks out of order when they're jumped to, which makes it a bit
1917  /// harder.  Let's see if we need it first.
1918  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1919    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1920             getSDVTList(MVT::Other)), MBB(mbb) {
1921  }
1922public:
1923
1924  MachineBasicBlock *getBasicBlock() const { return MBB; }
1925
1926  static bool classof(const BasicBlockSDNode *) { return true; }
1927  static bool classof(const SDNode *N) {
1928    return N->getOpcode() == ISD::BasicBlock;
1929  }
1930};
1931
1932/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1933/// BUILD_VECTORs.
1934class BuildVectorSDNode : public SDNode {
1935  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1936  explicit BuildVectorSDNode();        // Do not implement
1937public:
1938  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1939  /// smallest element size that splats the vector.  If MinSplatBits is
1940  /// nonzero, the element size must be at least that large.  Note that the
1941  /// splat element may be the entire vector (i.e., a one element vector).
1942  /// Returns the splat element value in SplatValue.  Any undefined bits in
1943  /// that value are zero, and the corresponding bits in the SplatUndef mask
1944  /// are set.  The SplatBitSize value is set to the splat element size in
1945  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1946  /// undefined.
1947  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1948                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1949                       unsigned MinSplatBits = 0);
1950
1951  static inline bool classof(const BuildVectorSDNode *) { return true; }
1952  static inline bool classof(const SDNode *N) {
1953    return N->getOpcode() == ISD::BUILD_VECTOR;
1954  }
1955};
1956
1957/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1958/// used when the SelectionDAG needs to make a simple reference to something
1959/// in the LLVM IR representation.
1960///
1961/// Note that this is not used for carrying alias information; that is done
1962/// with MemOperandSDNode, which includes a Value which is required to be a
1963/// pointer, and several other fields specific to memory references.
1964///
1965class SrcValueSDNode : public SDNode {
1966  const Value *V;
1967protected:
1968  friend class SelectionDAG;
1969  /// Create a SrcValue for a general value.
1970  explicit SrcValueSDNode(const Value *v)
1971    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
1972             getSDVTList(MVT::Other)), V(v) {}
1973
1974public:
1975  /// getValue - return the contained Value.
1976  const Value *getValue() const { return V; }
1977
1978  static bool classof(const SrcValueSDNode *) { return true; }
1979  static bool classof(const SDNode *N) {
1980    return N->getOpcode() == ISD::SRCVALUE;
1981  }
1982};
1983
1984
1985/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1986/// used to represent a reference to memory after ISD::LOAD
1987/// and ISD::STORE have been lowered.
1988///
1989class MemOperandSDNode : public SDNode {
1990protected:
1991  friend class SelectionDAG;
1992  /// Create a MachineMemOperand node
1993  explicit MemOperandSDNode(const MachineMemOperand &mo)
1994    : SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(),
1995             getSDVTList(MVT::Other)), MO(mo) {}
1996
1997public:
1998  /// MO - The contained MachineMemOperand.
1999  const MachineMemOperand MO;
2000
2001  static bool classof(const MemOperandSDNode *) { return true; }
2002  static bool classof(const SDNode *N) {
2003    return N->getOpcode() == ISD::MEMOPERAND;
2004  }
2005};
2006
2007
2008class RegisterSDNode : public SDNode {
2009  unsigned Reg;
2010protected:
2011  friend class SelectionDAG;
2012  RegisterSDNode(unsigned reg, MVT VT)
2013    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2014             getSDVTList(VT)), Reg(reg) {
2015  }
2016public:
2017
2018  unsigned getReg() const { return Reg; }
2019
2020  static bool classof(const RegisterSDNode *) { return true; }
2021  static bool classof(const SDNode *N) {
2022    return N->getOpcode() == ISD::Register;
2023  }
2024};
2025
2026class DbgStopPointSDNode : public SDNode {
2027  SDUse Chain;
2028  unsigned Line;
2029  unsigned Column;
2030  Value *CU;
2031protected:
2032  friend class SelectionDAG;
2033  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2034                     Value *cu)
2035    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
2036      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
2037    InitOperands(&Chain, ch);
2038  }
2039public:
2040  unsigned getLine() const { return Line; }
2041  unsigned getColumn() const { return Column; }
2042  Value *getCompileUnit() const { return CU; }
2043
2044  static bool classof(const DbgStopPointSDNode *) { return true; }
2045  static bool classof(const SDNode *N) {
2046    return N->getOpcode() == ISD::DBG_STOPPOINT;
2047  }
2048};
2049
2050class LabelSDNode : public SDNode {
2051  SDUse Chain;
2052  unsigned LabelID;
2053protected:
2054  friend class SelectionDAG;
2055LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2056    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2057    InitOperands(&Chain, ch);
2058  }
2059public:
2060  unsigned getLabelID() const { return LabelID; }
2061
2062  static bool classof(const LabelSDNode *) { return true; }
2063  static bool classof(const SDNode *N) {
2064    return N->getOpcode() == ISD::DBG_LABEL ||
2065           N->getOpcode() == ISD::EH_LABEL;
2066  }
2067};
2068
2069class ExternalSymbolSDNode : public SDNode {
2070  const char *Symbol;
2071protected:
2072  friend class SelectionDAG;
2073  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2074    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2075             DebugLoc::getUnknownLoc(),
2076             getSDVTList(VT)), Symbol(Sym) {
2077  }
2078public:
2079
2080  const char *getSymbol() const { return Symbol; }
2081
2082  static bool classof(const ExternalSymbolSDNode *) { return true; }
2083  static bool classof(const SDNode *N) {
2084    return N->getOpcode() == ISD::ExternalSymbol ||
2085           N->getOpcode() == ISD::TargetExternalSymbol;
2086  }
2087};
2088
2089class CondCodeSDNode : public SDNode {
2090  ISD::CondCode Condition;
2091protected:
2092  friend class SelectionDAG;
2093  explicit CondCodeSDNode(ISD::CondCode Cond)
2094    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2095             getSDVTList(MVT::Other)), Condition(Cond) {
2096  }
2097public:
2098
2099  ISD::CondCode get() const { return Condition; }
2100
2101  static bool classof(const CondCodeSDNode *) { return true; }
2102  static bool classof(const SDNode *N) {
2103    return N->getOpcode() == ISD::CONDCODE;
2104  }
2105};
2106
2107/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2108/// future and most targets don't support it.
2109class CvtRndSatSDNode : public SDNode {
2110  ISD::CvtCode CvtCode;
2111protected:
2112  friend class SelectionDAG;
2113  explicit CvtRndSatSDNode(MVT VT, DebugLoc dl, const SDValue *Ops,
2114                           unsigned NumOps, ISD::CvtCode Code)
2115    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2116      CvtCode(Code) {
2117    assert(NumOps == 5 && "wrong number of operations");
2118  }
2119public:
2120  ISD::CvtCode getCvtCode() const { return CvtCode; }
2121
2122  static bool classof(const CvtRndSatSDNode *) { return true; }
2123  static bool classof(const SDNode *N) {
2124    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2125  }
2126};
2127
2128namespace ISD {
2129  struct ArgFlagsTy {
2130  private:
2131    static const uint64_t NoFlagSet      = 0ULL;
2132    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2133    static const uint64_t ZExtOffs       = 0;
2134    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2135    static const uint64_t SExtOffs       = 1;
2136    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2137    static const uint64_t InRegOffs      = 2;
2138    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2139    static const uint64_t SRetOffs       = 3;
2140    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2141    static const uint64_t ByValOffs      = 4;
2142    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2143    static const uint64_t NestOffs       = 5;
2144    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2145    static const uint64_t ByValAlignOffs = 6;
2146    static const uint64_t Split          = 1ULL << 10;
2147    static const uint64_t SplitOffs      = 10;
2148    static const uint64_t OrigAlign      = 0x1FULL<<27;
2149    static const uint64_t OrigAlignOffs  = 27;
2150    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2151    static const uint64_t ByValSizeOffs  = 32;
2152
2153    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2154
2155    uint64_t Flags;
2156  public:
2157    ArgFlagsTy() : Flags(0) { }
2158
2159    bool isZExt()   const { return Flags & ZExt; }
2160    void setZExt()  { Flags |= One << ZExtOffs; }
2161
2162    bool isSExt()   const { return Flags & SExt; }
2163    void setSExt()  { Flags |= One << SExtOffs; }
2164
2165    bool isInReg()  const { return Flags & InReg; }
2166    void setInReg() { Flags |= One << InRegOffs; }
2167
2168    bool isSRet()   const { return Flags & SRet; }
2169    void setSRet()  { Flags |= One << SRetOffs; }
2170
2171    bool isByVal()  const { return Flags & ByVal; }
2172    void setByVal() { Flags |= One << ByValOffs; }
2173
2174    bool isNest()   const { return Flags & Nest; }
2175    void setNest()  { Flags |= One << NestOffs; }
2176
2177    unsigned getByValAlign() const {
2178      return (unsigned)
2179        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2180    }
2181    void setByValAlign(unsigned A) {
2182      Flags = (Flags & ~ByValAlign) |
2183        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2184    }
2185
2186    bool isSplit()   const { return Flags & Split; }
2187    void setSplit()  { Flags |= One << SplitOffs; }
2188
2189    unsigned getOrigAlign() const {
2190      return (unsigned)
2191        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2192    }
2193    void setOrigAlign(unsigned A) {
2194      Flags = (Flags & ~OrigAlign) |
2195        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2196    }
2197
2198    unsigned getByValSize() const {
2199      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2200    }
2201    void setByValSize(unsigned S) {
2202      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2203    }
2204
2205    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2206    std::string getArgFlagsString();
2207
2208    /// getRawBits - Represent the flags as a bunch of bits.
2209    uint64_t getRawBits() const { return Flags; }
2210  };
2211}
2212
2213/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2214class ARG_FLAGSSDNode : public SDNode {
2215  ISD::ArgFlagsTy TheFlags;
2216protected:
2217  friend class SelectionDAG;
2218  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2219    : SDNode(ISD::ARG_FLAGS, DebugLoc::getUnknownLoc(),
2220             getSDVTList(MVT::Other)), TheFlags(Flags) {
2221  }
2222public:
2223  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2224
2225  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2226  static bool classof(const SDNode *N) {
2227    return N->getOpcode() == ISD::ARG_FLAGS;
2228  }
2229};
2230
2231/// CallSDNode - Node for calls -- ISD::CALL.
2232class CallSDNode : public SDNode {
2233  unsigned CallingConv;
2234  bool IsVarArg;
2235  bool IsTailCall;
2236  // We might eventually want a full-blown Attributes for the result; that
2237  // will expand the size of the representation.  At the moment we only
2238  // need Inreg.
2239  bool Inreg;
2240protected:
2241  friend class SelectionDAG;
2242  CallSDNode(unsigned cc, DebugLoc dl, bool isvararg, bool istailcall,
2243             bool isinreg, SDVTList VTs, const SDValue *Operands,
2244             unsigned numOperands)
2245    : SDNode(ISD::CALL, dl, VTs, Operands, numOperands),
2246      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2247      Inreg(isinreg) {}
2248public:
2249  unsigned getCallingConv() const { return CallingConv; }
2250  unsigned isVarArg() const { return IsVarArg; }
2251  unsigned isTailCall() const { return IsTailCall; }
2252  unsigned isInreg() const { return Inreg; }
2253
2254  /// Set this call to not be marked as a tail call. Normally setter
2255  /// methods in SDNodes are unsafe because it breaks the CSE map,
2256  /// but we don't include the tail call flag for calls so it's ok
2257  /// in this case.
2258  void setNotTailCall() { IsTailCall = false; }
2259
2260  SDValue getChain() const { return getOperand(0); }
2261  SDValue getCallee() const { return getOperand(1); }
2262
2263  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2264  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2265  SDValue getArgFlagsVal(unsigned i) const {
2266    return getOperand(3+2*i);
2267  }
2268  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2269    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2270  }
2271
2272  unsigned getNumRetVals() const { return getNumValues() - 1; }
2273  MVT getRetValType(unsigned i) const { return getValueType(i); }
2274
2275  static bool classof(const CallSDNode *) { return true; }
2276  static bool classof(const SDNode *N) {
2277    return N->getOpcode() == ISD::CALL;
2278  }
2279};
2280
2281/// VTSDNode - This class is used to represent MVT's, which are used
2282/// to parameterize some operations.
2283class VTSDNode : public SDNode {
2284  MVT ValueType;
2285protected:
2286  friend class SelectionDAG;
2287  explicit VTSDNode(MVT VT)
2288    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2289             getSDVTList(MVT::Other)), ValueType(VT) {
2290  }
2291public:
2292
2293  MVT getVT() const { return ValueType; }
2294
2295  static bool classof(const VTSDNode *) { return true; }
2296  static bool classof(const SDNode *N) {
2297    return N->getOpcode() == ISD::VALUETYPE;
2298  }
2299};
2300
2301/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2302///
2303class LSBaseSDNode : public MemSDNode {
2304protected:
2305  //! Operand array for load and store
2306  /*!
2307    \note Moving this array to the base class captures more
2308    common functionality shared between LoadSDNode and
2309    StoreSDNode
2310   */
2311  SDUse Ops[4];
2312public:
2313  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2314               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2315               MVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
2316    : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
2317    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2318    SubclassData |= AM << 2;
2319    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2320    InitOperands(Ops, Operands, numOperands);
2321    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2322           "Only indexed loads and stores have a non-undef offset operand");
2323  }
2324
2325  const SDValue &getOffset() const {
2326    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2327  }
2328
2329  /// getAddressingMode - Return the addressing mode for this load or store:
2330  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2331  ISD::MemIndexedMode getAddressingMode() const {
2332    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2333  }
2334
2335  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2336  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2337
2338  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2339  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2340
2341  static bool classof(const LSBaseSDNode *) { return true; }
2342  static bool classof(const SDNode *N) {
2343    return N->getOpcode() == ISD::LOAD ||
2344           N->getOpcode() == ISD::STORE;
2345  }
2346};
2347
2348/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2349///
2350class LoadSDNode : public LSBaseSDNode {
2351protected:
2352  friend class SelectionDAG;
2353  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2354             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2355             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2356    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2357                   VTs, AM, LVT, SV, O, Align, Vol) {
2358    SubclassData |= (unsigned short)ETy;
2359    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2360  }
2361public:
2362
2363  /// getExtensionType - Return whether this is a plain node,
2364  /// or one of the varieties of value-extending loads.
2365  ISD::LoadExtType getExtensionType() const {
2366    return ISD::LoadExtType(SubclassData & 3);
2367  }
2368
2369  const SDValue &getBasePtr() const { return getOperand(1); }
2370  const SDValue &getOffset() const { return getOperand(2); }
2371
2372  static bool classof(const LoadSDNode *) { return true; }
2373  static bool classof(const SDNode *N) {
2374    return N->getOpcode() == ISD::LOAD;
2375  }
2376};
2377
2378/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2379///
2380class StoreSDNode : public LSBaseSDNode {
2381protected:
2382  friend class SelectionDAG;
2383  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2384              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2385              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2386    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2387                   VTs, AM, SVT, SV, O, Align, Vol) {
2388    SubclassData |= (unsigned short)isTrunc;
2389    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2390  }
2391public:
2392
2393  /// isTruncatingStore - Return true if the op does a truncation before store.
2394  /// For integers this is the same as doing a TRUNCATE and storing the result.
2395  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2396  bool isTruncatingStore() const { return SubclassData & 1; }
2397
2398  const SDValue &getValue() const { return getOperand(1); }
2399  const SDValue &getBasePtr() const { return getOperand(2); }
2400  const SDValue &getOffset() const { return getOperand(3); }
2401
2402  static bool classof(const StoreSDNode *) { return true; }
2403  static bool classof(const SDNode *N) {
2404    return N->getOpcode() == ISD::STORE;
2405  }
2406};
2407
2408
2409class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2410  SDNode *Node;
2411  unsigned Operand;
2412
2413  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2414public:
2415  bool operator==(const SDNodeIterator& x) const {
2416    return Operand == x.Operand;
2417  }
2418  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2419
2420  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2421    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2422    Operand = I.Operand;
2423    return *this;
2424  }
2425
2426  pointer operator*() const {
2427    return Node->getOperand(Operand).getNode();
2428  }
2429  pointer operator->() const { return operator*(); }
2430
2431  SDNodeIterator& operator++() {                // Preincrement
2432    ++Operand;
2433    return *this;
2434  }
2435  SDNodeIterator operator++(int) { // Postincrement
2436    SDNodeIterator tmp = *this; ++*this; return tmp;
2437  }
2438
2439  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2440  static SDNodeIterator end  (SDNode *N) {
2441    return SDNodeIterator(N, N->getNumOperands());
2442  }
2443
2444  unsigned getOperand() const { return Operand; }
2445  const SDNode *getNode() const { return Node; }
2446};
2447
2448template <> struct GraphTraits<SDNode*> {
2449  typedef SDNode NodeType;
2450  typedef SDNodeIterator ChildIteratorType;
2451  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2452  static inline ChildIteratorType child_begin(NodeType *N) {
2453    return SDNodeIterator::begin(N);
2454  }
2455  static inline ChildIteratorType child_end(NodeType *N) {
2456    return SDNodeIterator::end(N);
2457  }
2458};
2459
2460/// LargestSDNode - The largest SDNode class.
2461///
2462typedef LoadSDNode LargestSDNode;
2463
2464/// MostAlignedSDNode - The SDNode class with the greatest alignment
2465/// requirement.
2466///
2467typedef ARG_FLAGSSDNode MostAlignedSDNode;
2468
2469namespace ISD {
2470  /// isNormalLoad - Returns true if the specified node is a non-extending
2471  /// and unindexed load.
2472  inline bool isNormalLoad(const SDNode *N) {
2473    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2474    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2475      Ld->getAddressingMode() == ISD::UNINDEXED;
2476  }
2477
2478  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2479  /// load.
2480  inline bool isNON_EXTLoad(const SDNode *N) {
2481    return isa<LoadSDNode>(N) &&
2482      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2483  }
2484
2485  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2486  ///
2487  inline bool isEXTLoad(const SDNode *N) {
2488    return isa<LoadSDNode>(N) &&
2489      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2490  }
2491
2492  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2493  ///
2494  inline bool isSEXTLoad(const SDNode *N) {
2495    return isa<LoadSDNode>(N) &&
2496      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2497  }
2498
2499  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2500  ///
2501  inline bool isZEXTLoad(const SDNode *N) {
2502    return isa<LoadSDNode>(N) &&
2503      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2504  }
2505
2506  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2507  ///
2508  inline bool isUNINDEXEDLoad(const SDNode *N) {
2509    return isa<LoadSDNode>(N) &&
2510      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2511  }
2512
2513  /// isNormalStore - Returns true if the specified node is a non-truncating
2514  /// and unindexed store.
2515  inline bool isNormalStore(const SDNode *N) {
2516    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2517    return St && !St->isTruncatingStore() &&
2518      St->getAddressingMode() == ISD::UNINDEXED;
2519  }
2520
2521  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2522  /// store.
2523  inline bool isNON_TRUNCStore(const SDNode *N) {
2524    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2525  }
2526
2527  /// isTRUNCStore - Returns true if the specified node is a truncating
2528  /// store.
2529  inline bool isTRUNCStore(const SDNode *N) {
2530    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2531  }
2532
2533  /// isUNINDEXEDStore - Returns true if the specified node is an
2534  /// unindexed store.
2535  inline bool isUNINDEXEDStore(const SDNode *N) {
2536    return isa<StoreSDNode>(N) &&
2537      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2538  }
2539}
2540
2541
2542} // end llvm namespace
2543
2544#endif
2545