SelectionDAGNodes.h revision b8973bd8f50d7321635e1e07b81a880a0828d185
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    Constant, ConstantFP, STRING,
67    GlobalAddress, FrameIndex, ConstantPool,
68    BasicBlock, ExternalSymbol, VALUETYPE, CONDCODE, Register,
69
70    // ConstantVec works like Constant or ConstantFP, except that it is not a
71    // leaf node.  All operands are either Constant or ConstantFP nodes.
72    ConstantVec,
73
74    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
75    // simplification of the constant.
76    TargetConstant,
77    TargetConstantFP,
78    TargetConstantVec,
79
80    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
81    // anything else with this node, and this is valid in the target-specific
82    // dag, turning into a GlobalAddress operand.
83    TargetGlobalAddress,
84    TargetFrameIndex,
85    TargetConstantPool,
86    TargetExternalSymbol,
87
88    // CopyToReg - This node has three operands: a chain, a register number to
89    // set to this value, and a value.
90    CopyToReg,
91
92    // CopyFromReg - This node indicates that the input value is a virtual or
93    // physical register that is defined outside of the scope of this
94    // SelectionDAG.  The register is available from the RegSDNode object.
95    CopyFromReg,
96
97    // UNDEF - An undefined node
98    UNDEF,
99
100    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
101    // a Constant, which is required to be operand #1), element of the aggregate
102    // value specified as operand #0.  This is only for use before legalization,
103    // for values that will be broken into multiple registers.
104    EXTRACT_ELEMENT,
105
106    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
107    // two values of the same integer value type, this produces a value twice as
108    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
109    BUILD_PAIR,
110
111    // MERGE_VALUES - This node takes multiple discrete operands and returns
112    // them all as its individual results.  This nodes has exactly the same
113    // number of inputs and outputs, and is only valid before legalization.
114    // This node is useful for some pieces of the code generator that want to
115    // think about a single node with multiple results, not multiple nodes.
116    MERGE_VALUES,
117
118    // Simple integer binary arithmetic operators.
119    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
120
121    // Simple binary floating point operators.
122    FADD, FSUB, FMUL, FDIV, FREM,
123
124    // Simple abstract vector operators.  Unlike the integer and floating point
125    // binary operators, these nodes also take two additional operands:
126    // a constant element count, and a value type node indicating the type of
127    // the elements.  The order is op0, op1, count, type.  All vector opcodes,
128    // including VLOAD, must currently have count and type as their 3rd and 4th
129    // arguments.
130    VADD, VSUB, VMUL,
131
132    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
133    // an unsigned/signed value of type i[2*n], then return the top part.
134    MULHU, MULHS,
135
136    // Bitwise operators - logical and, logical or, logical xor, shift left,
137    // shift right algebraic (shift in sign bits), shift right logical (shift in
138    // zeroes), rotate left, rotate right, and byteswap.
139    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
140
141    // Counting operators
142    CTTZ, CTLZ, CTPOP,
143
144    // Select
145    SELECT,
146
147    // Select with condition operator - This selects between a true value and
148    // a false value (ops #2 and #3) based on the boolean result of comparing
149    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
150    // condition code in op #4, a CondCodeSDNode.
151    SELECT_CC,
152
153    // SetCC operator - This evaluates to a boolean (i1) true value if the
154    // condition is true.  The operands to this are the left and right operands
155    // to compare (ops #0, and #1) and the condition code to compare them with
156    // (op #2) as a CondCodeSDNode.
157    SETCC,
158
159    // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
160    // broken into a multiple pieces each, and return the resulting pieces of
161    // doing an atomic add/sub operation.  This is used to handle add/sub of
162    // expanded types.  The operation ordering is:
163    //       [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
164    ADD_PARTS, SUB_PARTS,
165
166    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
167    // integer shift operations, just like ADD/SUB_PARTS.  The operation
168    // ordering is:
169    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
170    SHL_PARTS, SRA_PARTS, SRL_PARTS,
171
172    // Conversion operators.  These are all single input single output
173    // operations.  For all of these, the result type must be strictly
174    // wider or narrower (depending on the operation) than the source
175    // type.
176
177    // SIGN_EXTEND - Used for integer types, replicating the sign bit
178    // into new bits.
179    SIGN_EXTEND,
180
181    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
182    ZERO_EXTEND,
183
184    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
185    ANY_EXTEND,
186
187    // TRUNCATE - Completely drop the high bits.
188    TRUNCATE,
189
190    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
191    // depends on the first letter) to floating point.
192    SINT_TO_FP,
193    UINT_TO_FP,
194
195    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
196    // sign extend a small value in a large integer register (e.g. sign
197    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
198    // with the 7th bit).  The size of the smaller type is indicated by the 1th
199    // operand, a ValueType node.
200    SIGN_EXTEND_INREG,
201
202    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
203    // integer.
204    FP_TO_SINT,
205    FP_TO_UINT,
206
207    // FP_ROUND - Perform a rounding operation from the current
208    // precision down to the specified precision (currently always 64->32).
209    FP_ROUND,
210
211    // FP_ROUND_INREG - This operator takes a floating point register, and
212    // rounds it to a floating point value.  It then promotes it and returns it
213    // in a register of the same size.  This operation effectively just discards
214    // excess precision.  The type to round down to is specified by the 1th
215    // operation, a VTSDNode (currently always 64->32->64).
216    FP_ROUND_INREG,
217
218    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
219    FP_EXTEND,
220
221    // BIT_CONVERT - Theis operator converts between integer and FP values, as
222    // if one was stored to memory as integer and the other was loaded from the
223    // same address (or equivalently for vector format conversions, etc).  The
224    // source and result are required to have the same bit size (e.g.
225    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
226    // conversions, but that is a noop, deleted by getNode().
227    BIT_CONVERT,
228
229    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
230    // absolute value, square root, sine and cosine operations.
231    FNEG, FABS, FSQRT, FSIN, FCOS,
232
233    // Other operators.  LOAD and STORE have token chains as their first
234    // operand, then the same operands as an LLVM load/store instruction, then a
235    // SRCVALUE node that provides alias analysis information.
236    LOAD, STORE,
237
238    // Abstract vector version of LOAD.  VLOAD has a token chain as the first
239    // operand, followed by a pointer operand, a constant element count, a value
240    // type node indicating the type of the elements, and a SRCVALUE node.
241    VLOAD,
242
243    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
244    // memory and extend them to a larger value (e.g. load a byte into a word
245    // register).  All three of these have four operands, a token chain, a
246    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
247    // indicating the type to load.
248    //
249    // SEXTLOAD loads the integer operand and sign extends it to a larger
250    //          integer result type.
251    // ZEXTLOAD loads the integer operand and zero extends it to a larger
252    //          integer result type.
253    // EXTLOAD  is used for two things: floating point extending loads, and
254    //          integer extending loads where it doesn't matter what the high
255    //          bits are set to.  The code generator is allowed to codegen this
256    //          into whichever operation is more efficient.
257    EXTLOAD, SEXTLOAD, ZEXTLOAD,
258
259    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
260    // value and stores it to memory in one operation.  This can be used for
261    // either integer or floating point operands.  The first four operands of
262    // this are the same as a standard store.  The fifth is the ValueType to
263    // store it as (which will be smaller than the source value).
264    TRUNCSTORE,
265
266    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
267    // to a specified boundary.  The first operand is the token chain, the
268    // second is the number of bytes to allocate, and the third is the alignment
269    // boundary.  The size is guaranteed to be a multiple of the stack
270    // alignment, and the alignment is guaranteed to be bigger than the stack
271    // alignment (if required) or 0 to get standard stack alignment.
272    DYNAMIC_STACKALLOC,
273
274    // Control flow instructions.  These all have token chains.
275
276    // BR - Unconditional branch.  The first operand is the chain
277    // operand, the second is the MBB to branch to.
278    BR,
279
280    // BRCOND - Conditional branch.  The first operand is the chain,
281    // the second is the condition, the third is the block to branch
282    // to if the condition is true.
283    BRCOND,
284
285    // BRCONDTWOWAY - Two-way conditional branch.  The first operand is the
286    // chain, the second is the condition, the third is the block to branch to
287    // if true, and the forth is the block to branch to if false.  Targets
288    // usually do not implement this, preferring to have legalize demote the
289    // operation to BRCOND/BR pairs when necessary.
290    BRCONDTWOWAY,
291
292    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
293    // that the condition is represented as condition code, and two nodes to
294    // compare, rather than as a combined SetCC node.  The operands in order are
295    // chain, cc, lhs, rhs, block to branch to if condition is true.
296    BR_CC,
297
298    // BRTWOWAY_CC - Two-way conditional branch.  The operands in order are
299    // chain, cc, lhs, rhs, block to branch to if condition is true, block to
300    // branch to if condition is false.  Targets usually do not implement this,
301    // preferring to have legalize demote the operation to BRCOND/BR pairs.
302    BRTWOWAY_CC,
303
304    // RET - Return from function.  The first operand is the chain,
305    // and any subsequent operands are the return values for the
306    // function.  This operation can have variable number of operands.
307    RET,
308
309    // INLINEASM - Represents an inline asm block.  This node always has two
310    // return values: a chain and a flag result.  The inputs are as follows:
311    //   Operand #0   : Input chain.
312    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
313    //   Operand #2n+2: A RegisterNode.
314    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
315    //   Operand #last: Optional, an incoming flag.
316    INLINEASM,
317
318    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
319    // value, the same type as the pointer type for the system, and an output
320    // chain.
321    STACKSAVE,
322
323    // STACKRESTORE has two operands, an input chain and a pointer to restore to
324    // it returns an output chain.
325    STACKRESTORE,
326
327    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
328    // correspond to the operands of the LLVM intrinsic functions.  The only
329    // result is a token chain.  The alignment argument is guaranteed to be a
330    // Constant node.
331    MEMSET,
332    MEMMOVE,
333    MEMCPY,
334
335    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
336    // a call sequence, and carry arbitrary information that target might want
337    // to know.  The first operand is a chain, the rest are specified by the
338    // target and not touched by the DAG optimizers.
339    CALLSEQ_START,  // Beginning of a call sequence
340    CALLSEQ_END,    // End of a call sequence
341
342    // VAARG - VAARG has three operands: an input chain, a pointer, and a
343    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
344    VAARG,
345
346    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
347    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
348    // source.
349    VACOPY,
350
351    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
352    // pointer, and a SRCVALUE.
353    VAEND, VASTART,
354
355    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
356    // locations with their value.  This allows one use alias analysis
357    // information in the backend.
358    SRCVALUE,
359
360    // PCMARKER - This corresponds to the pcmarker intrinsic.
361    PCMARKER,
362
363    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
364    // The only operand is a chain and a value and a chain are produced.  The
365    // value is the contents of the architecture specific cycle counter like
366    // register (or other high accuracy low latency clock source)
367    READCYCLECOUNTER,
368
369    // READPORT, WRITEPORT, READIO, WRITEIO - These correspond to the LLVM
370    // intrinsics of the same name.  The first operand is a token chain, the
371    // other operands match the intrinsic.  These produce a token chain in
372    // addition to a value (if any).
373    READPORT, WRITEPORT, READIO, WRITEIO,
374
375    // HANDLENODE node - Used as a handle for various purposes.
376    HANDLENODE,
377
378    // LOCATION - This node is used to represent a source location for debug
379    // info.  It takes token chain as input, then a line number, then a column
380    // number, then a filename, then a working dir.  It produces a token chain
381    // as output.
382    LOCATION,
383
384    // DEBUG_LOC - This node is used to represent source line information
385    // embedded in the code.  It takes a token chain as input, then a line
386    // number, then a column then a file id (provided by MachineDebugInfo.) It
387    // produces a token chain as output.
388    DEBUG_LOC,
389
390    // DEBUG_LABEL - This node is used to mark a location in the code where a
391    // label should be generated for use by the debug information.  It takes a
392    // token chain as input and then a unique id (provided by MachineDebugInfo.)
393    // It produces a token chain as output.
394    DEBUG_LABEL,
395
396    // BUILTIN_OP_END - This must be the last enum value in this list.
397    BUILTIN_OP_END,
398  };
399
400  //===--------------------------------------------------------------------===//
401  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
402  /// below work out, when considering SETFALSE (something that never exists
403  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
404  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
405  /// to.  If the "N" column is 1, the result of the comparison is undefined if
406  /// the input is a NAN.
407  ///
408  /// All of these (except for the 'always folded ops') should be handled for
409  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
410  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
411  ///
412  /// Note that these are laid out in a specific order to allow bit-twiddling
413  /// to transform conditions.
414  enum CondCode {
415    // Opcode          N U L G E       Intuitive operation
416    SETFALSE,      //    0 0 0 0       Always false (always folded)
417    SETOEQ,        //    0 0 0 1       True if ordered and equal
418    SETOGT,        //    0 0 1 0       True if ordered and greater than
419    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
420    SETOLT,        //    0 1 0 0       True if ordered and less than
421    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
422    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
423    SETO,          //    0 1 1 1       True if ordered (no nans)
424    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
425    SETUEQ,        //    1 0 0 1       True if unordered or equal
426    SETUGT,        //    1 0 1 0       True if unordered or greater than
427    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
428    SETULT,        //    1 1 0 0       True if unordered or less than
429    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
430    SETUNE,        //    1 1 1 0       True if unordered or not equal
431    SETTRUE,       //    1 1 1 1       Always true (always folded)
432    // Don't care operations: undefined if the input is a nan.
433    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
434    SETEQ,         //  1 X 0 0 1       True if equal
435    SETGT,         //  1 X 0 1 0       True if greater than
436    SETGE,         //  1 X 0 1 1       True if greater than or equal
437    SETLT,         //  1 X 1 0 0       True if less than
438    SETLE,         //  1 X 1 0 1       True if less than or equal
439    SETNE,         //  1 X 1 1 0       True if not equal
440    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
441
442    SETCC_INVALID,      // Marker value.
443  };
444
445  /// isSignedIntSetCC - Return true if this is a setcc instruction that
446  /// performs a signed comparison when used with integer operands.
447  inline bool isSignedIntSetCC(CondCode Code) {
448    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
449  }
450
451  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
452  /// performs an unsigned comparison when used with integer operands.
453  inline bool isUnsignedIntSetCC(CondCode Code) {
454    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
455  }
456
457  /// isTrueWhenEqual - Return true if the specified condition returns true if
458  /// the two operands to the condition are equal.  Note that if one of the two
459  /// operands is a NaN, this value is meaningless.
460  inline bool isTrueWhenEqual(CondCode Cond) {
461    return ((int)Cond & 1) != 0;
462  }
463
464  /// getUnorderedFlavor - This function returns 0 if the condition is always
465  /// false if an operand is a NaN, 1 if the condition is always true if the
466  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
467  /// NaN.
468  inline unsigned getUnorderedFlavor(CondCode Cond) {
469    return ((int)Cond >> 3) & 3;
470  }
471
472  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
473  /// 'op' is a valid SetCC operation.
474  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
475
476  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
477  /// when given the operation for (X op Y).
478  CondCode getSetCCSwappedOperands(CondCode Operation);
479
480  /// getSetCCOrOperation - Return the result of a logical OR between different
481  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
482  /// function returns SETCC_INVALID if it is not possible to represent the
483  /// resultant comparison.
484  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
485
486  /// getSetCCAndOperation - Return the result of a logical AND between
487  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
488  /// function returns SETCC_INVALID if it is not possible to represent the
489  /// resultant comparison.
490  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
491}  // end llvm::ISD namespace
492
493
494//===----------------------------------------------------------------------===//
495/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
496/// values as the result of a computation.  Many nodes return multiple values,
497/// from loads (which define a token and a return value) to ADDC (which returns
498/// a result and a carry value), to calls (which may return an arbitrary number
499/// of values).
500///
501/// As such, each use of a SelectionDAG computation must indicate the node that
502/// computes it as well as which return value to use from that node.  This pair
503/// of information is represented with the SDOperand value type.
504///
505class SDOperand {
506public:
507  SDNode *Val;        // The node defining the value we are using.
508  unsigned ResNo;     // Which return value of the node we are using.
509
510  SDOperand() : Val(0) {}
511  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
512
513  bool operator==(const SDOperand &O) const {
514    return Val == O.Val && ResNo == O.ResNo;
515  }
516  bool operator!=(const SDOperand &O) const {
517    return !operator==(O);
518  }
519  bool operator<(const SDOperand &O) const {
520    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
521  }
522
523  SDOperand getValue(unsigned R) const {
524    return SDOperand(Val, R);
525  }
526
527  /// getValueType - Return the ValueType of the referenced return value.
528  ///
529  inline MVT::ValueType getValueType() const;
530
531  // Forwarding methods - These forward to the corresponding methods in SDNode.
532  inline unsigned getOpcode() const;
533  inline unsigned getNodeDepth() const;
534  inline unsigned getNumOperands() const;
535  inline const SDOperand &getOperand(unsigned i) const;
536  inline bool isTargetOpcode() const;
537  inline unsigned getTargetOpcode() const;
538
539  /// hasOneUse - Return true if there is exactly one operation using this
540  /// result value of the defining operator.
541  inline bool hasOneUse() const;
542};
543
544
545/// simplify_type specializations - Allow casting operators to work directly on
546/// SDOperands as if they were SDNode*'s.
547template<> struct simplify_type<SDOperand> {
548  typedef SDNode* SimpleType;
549  static SimpleType getSimplifiedValue(const SDOperand &Val) {
550    return static_cast<SimpleType>(Val.Val);
551  }
552};
553template<> struct simplify_type<const SDOperand> {
554  typedef SDNode* SimpleType;
555  static SimpleType getSimplifiedValue(const SDOperand &Val) {
556    return static_cast<SimpleType>(Val.Val);
557  }
558};
559
560
561/// SDNode - Represents one node in the SelectionDAG.
562///
563class SDNode {
564  /// NodeType - The operation that this node performs.
565  ///
566  unsigned short NodeType;
567
568  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
569  /// means that leaves have a depth of 1, things that use only leaves have a
570  /// depth of 2, etc.
571  unsigned short NodeDepth;
572
573  /// OperandList - The values that are used by this operation.
574  ///
575  SDOperand *OperandList;
576
577  /// ValueList - The types of the values this node defines.  SDNode's may
578  /// define multiple values simultaneously.
579  MVT::ValueType *ValueList;
580
581  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
582  unsigned short NumOperands, NumValues;
583
584  /// Prev/Next pointers - These pointers form the linked list of of the
585  /// AllNodes list in the current DAG.
586  SDNode *Prev, *Next;
587  friend struct ilist_traits<SDNode>;
588
589  /// Uses - These are all of the SDNode's that use a value produced by this
590  /// node.
591  std::vector<SDNode*> Uses;
592public:
593  virtual ~SDNode() {
594    assert(NumOperands == 0 && "Operand list not cleared before deletion");
595  }
596
597  //===--------------------------------------------------------------------===//
598  //  Accessors
599  //
600  unsigned getOpcode()  const { return NodeType; }
601  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
602  unsigned getTargetOpcode() const {
603    assert(isTargetOpcode() && "Not a target opcode!");
604    return NodeType - ISD::BUILTIN_OP_END;
605  }
606
607  size_t use_size() const { return Uses.size(); }
608  bool use_empty() const { return Uses.empty(); }
609  bool hasOneUse() const { return Uses.size() == 1; }
610
611  /// getNodeDepth - Return the distance from this node to the leaves in the
612  /// graph.  The leaves have a depth of 1.
613  unsigned getNodeDepth() const { return NodeDepth; }
614
615  typedef std::vector<SDNode*>::const_iterator use_iterator;
616  use_iterator use_begin() const { return Uses.begin(); }
617  use_iterator use_end() const { return Uses.end(); }
618
619  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
620  /// indicated value.  This method ignores uses of other values defined by this
621  /// operation.
622  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
623
624  /// getNumOperands - Return the number of values used by this operation.
625  ///
626  unsigned getNumOperands() const { return NumOperands; }
627
628  const SDOperand &getOperand(unsigned Num) const {
629    assert(Num < NumOperands && "Invalid child # of SDNode!");
630    return OperandList[Num];
631  }
632  typedef const SDOperand* op_iterator;
633  op_iterator op_begin() const { return OperandList; }
634  op_iterator op_end() const { return OperandList+NumOperands; }
635
636
637  /// getNumValues - Return the number of values defined/returned by this
638  /// operator.
639  ///
640  unsigned getNumValues() const { return NumValues; }
641
642  /// getValueType - Return the type of a specified result.
643  ///
644  MVT::ValueType getValueType(unsigned ResNo) const {
645    assert(ResNo < NumValues && "Illegal result number!");
646    return ValueList[ResNo];
647  }
648
649  typedef const MVT::ValueType* value_iterator;
650  value_iterator value_begin() const { return ValueList; }
651  value_iterator value_end() const { return ValueList+NumValues; }
652
653  /// getOperationName - Return the opcode of this operation for printing.
654  ///
655  const char* getOperationName(const SelectionDAG *G = 0) const;
656  void dump() const;
657  void dump(const SelectionDAG *G) const;
658
659  static bool classof(const SDNode *) { return true; }
660
661protected:
662  friend class SelectionDAG;
663
664  /// getValueTypeList - Return a pointer to the specified value type.
665  ///
666  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
667
668  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
669    OperandList = 0; NumOperands = 0;
670    ValueList = getValueTypeList(VT);
671    NumValues = 1;
672    Prev = 0; Next = 0;
673  }
674  SDNode(unsigned NT, SDOperand Op)
675    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
676    OperandList = new SDOperand[1];
677    OperandList[0] = Op;
678    NumOperands = 1;
679    Op.Val->Uses.push_back(this);
680    ValueList = 0;
681    NumValues = 0;
682    Prev = 0; Next = 0;
683  }
684  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
685    : NodeType(NT) {
686    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
687      NodeDepth = N1.Val->getNodeDepth()+1;
688    else
689      NodeDepth = N2.Val->getNodeDepth()+1;
690    OperandList = new SDOperand[2];
691    OperandList[0] = N1;
692    OperandList[1] = N2;
693    NumOperands = 2;
694    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
695    ValueList = 0;
696    NumValues = 0;
697    Prev = 0; Next = 0;
698  }
699  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
700    : NodeType(NT) {
701    unsigned ND = N1.Val->getNodeDepth();
702    if (ND < N2.Val->getNodeDepth())
703      ND = N2.Val->getNodeDepth();
704    if (ND < N3.Val->getNodeDepth())
705      ND = N3.Val->getNodeDepth();
706    NodeDepth = ND+1;
707
708    OperandList = new SDOperand[3];
709    OperandList[0] = N1;
710    OperandList[1] = N2;
711    OperandList[2] = N3;
712    NumOperands = 3;
713
714    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
715    N3.Val->Uses.push_back(this);
716    ValueList = 0;
717    NumValues = 0;
718    Prev = 0; Next = 0;
719  }
720  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
721    : NodeType(NT) {
722    unsigned ND = N1.Val->getNodeDepth();
723    if (ND < N2.Val->getNodeDepth())
724      ND = N2.Val->getNodeDepth();
725    if (ND < N3.Val->getNodeDepth())
726      ND = N3.Val->getNodeDepth();
727    if (ND < N4.Val->getNodeDepth())
728      ND = N4.Val->getNodeDepth();
729    NodeDepth = ND+1;
730
731    OperandList = new SDOperand[4];
732    OperandList[0] = N1;
733    OperandList[1] = N2;
734    OperandList[2] = N3;
735    OperandList[3] = N4;
736    NumOperands = 4;
737
738    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
739    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
740    ValueList = 0;
741    NumValues = 0;
742    Prev = 0; Next = 0;
743  }
744  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
745    NumOperands = Nodes.size();
746    OperandList = new SDOperand[NumOperands];
747
748    unsigned ND = 0;
749    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
750      OperandList[i] = Nodes[i];
751      SDNode *N = OperandList[i].Val;
752      N->Uses.push_back(this);
753      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
754    }
755    NodeDepth = ND+1;
756    ValueList = 0;
757    NumValues = 0;
758    Prev = 0; Next = 0;
759  }
760
761  /// MorphNodeTo - This clears the return value and operands list, and sets the
762  /// opcode of the node to the specified value.  This should only be used by
763  /// the SelectionDAG class.
764  void MorphNodeTo(unsigned Opc) {
765    NodeType = Opc;
766    ValueList = 0;
767    NumValues = 0;
768
769    // Clear the operands list, updating used nodes to remove this from their
770    // use list.
771    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
772      I->Val->removeUser(this);
773    delete [] OperandList;
774    OperandList = 0;
775    NumOperands = 0;
776  }
777
778  void setValueTypes(MVT::ValueType VT) {
779    assert(NumValues == 0 && "Should not have values yet!");
780    ValueList = getValueTypeList(VT);
781    NumValues = 1;
782  }
783  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
784    assert(NumValues == 0 && "Should not have values yet!");
785    ValueList = List;
786    NumValues = NumVal;
787  }
788
789  void setOperands(SDOperand Op0) {
790    assert(NumOperands == 0 && "Should not have operands yet!");
791    OperandList = new SDOperand[1];
792    OperandList[0] = Op0;
793    NumOperands = 1;
794    Op0.Val->Uses.push_back(this);
795  }
796  void setOperands(SDOperand Op0, SDOperand Op1) {
797    assert(NumOperands == 0 && "Should not have operands yet!");
798    OperandList = new SDOperand[2];
799    OperandList[0] = Op0;
800    OperandList[1] = Op1;
801    NumOperands = 2;
802    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
803  }
804  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
805    assert(NumOperands == 0 && "Should not have operands yet!");
806    OperandList = new SDOperand[3];
807    OperandList[0] = Op0;
808    OperandList[1] = Op1;
809    OperandList[2] = Op2;
810    NumOperands = 3;
811    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
812    Op2.Val->Uses.push_back(this);
813  }
814  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
815    assert(NumOperands == 0 && "Should not have operands yet!");
816    OperandList = new SDOperand[4];
817    OperandList[0] = Op0;
818    OperandList[1] = Op1;
819    OperandList[2] = Op2;
820    OperandList[3] = Op3;
821    NumOperands = 4;
822    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
823    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
824  }
825  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
826                   SDOperand Op4) {
827    assert(NumOperands == 0 && "Should not have operands yet!");
828    OperandList = new SDOperand[5];
829    OperandList[0] = Op0;
830    OperandList[1] = Op1;
831    OperandList[2] = Op2;
832    OperandList[3] = Op3;
833    OperandList[4] = Op4;
834    NumOperands = 5;
835    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
836    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
837    Op4.Val->Uses.push_back(this);
838  }
839  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
840                   SDOperand Op4, SDOperand Op5) {
841    assert(NumOperands == 0 && "Should not have operands yet!");
842    OperandList = new SDOperand[6];
843    OperandList[0] = Op0;
844    OperandList[1] = Op1;
845    OperandList[2] = Op2;
846    OperandList[3] = Op3;
847    OperandList[4] = Op4;
848    OperandList[5] = Op5;
849    NumOperands = 6;
850    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
851    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
852    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
853  }
854  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
855                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
856    assert(NumOperands == 0 && "Should not have operands yet!");
857    OperandList = new SDOperand[7];
858    OperandList[0] = Op0;
859    OperandList[1] = Op1;
860    OperandList[2] = Op2;
861    OperandList[3] = Op3;
862    OperandList[4] = Op4;
863    OperandList[5] = Op5;
864    OperandList[6] = Op6;
865    NumOperands = 7;
866    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
867    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
868    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
869    Op6.Val->Uses.push_back(this);
870  }
871  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
872                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
873    assert(NumOperands == 0 && "Should not have operands yet!");
874    OperandList = new SDOperand[8];
875    OperandList[0] = Op0;
876    OperandList[1] = Op1;
877    OperandList[2] = Op2;
878    OperandList[3] = Op3;
879    OperandList[4] = Op4;
880    OperandList[5] = Op5;
881    OperandList[6] = Op6;
882    OperandList[7] = Op7;
883    NumOperands = 8;
884    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
885    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
886    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
887    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
888  }
889
890  void addUser(SDNode *User) {
891    Uses.push_back(User);
892  }
893  void removeUser(SDNode *User) {
894    // Remove this user from the operand's use list.
895    for (unsigned i = Uses.size(); ; --i) {
896      assert(i != 0 && "Didn't find user!");
897      if (Uses[i-1] == User) {
898        Uses[i-1] = Uses.back();
899        Uses.pop_back();
900        return;
901      }
902    }
903  }
904};
905
906
907// Define inline functions from the SDOperand class.
908
909inline unsigned SDOperand::getOpcode() const {
910  return Val->getOpcode();
911}
912inline unsigned SDOperand::getNodeDepth() const {
913  return Val->getNodeDepth();
914}
915inline MVT::ValueType SDOperand::getValueType() const {
916  return Val->getValueType(ResNo);
917}
918inline unsigned SDOperand::getNumOperands() const {
919  return Val->getNumOperands();
920}
921inline const SDOperand &SDOperand::getOperand(unsigned i) const {
922  return Val->getOperand(i);
923}
924inline bool SDOperand::isTargetOpcode() const {
925  return Val->isTargetOpcode();
926}
927inline unsigned SDOperand::getTargetOpcode() const {
928  return Val->getTargetOpcode();
929}
930inline bool SDOperand::hasOneUse() const {
931  return Val->hasNUsesOfValue(1, ResNo);
932}
933
934/// HandleSDNode - This class is used to form a handle around another node that
935/// is persistant and is updated across invocations of replaceAllUsesWith on its
936/// operand.  This node should be directly created by end-users and not added to
937/// the AllNodes list.
938class HandleSDNode : public SDNode {
939public:
940  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
941  ~HandleSDNode() {
942    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
943  }
944
945  SDOperand getValue() const { return getOperand(0); }
946};
947
948class StringSDNode : public SDNode {
949  std::string Value;
950protected:
951  friend class SelectionDAG;
952  StringSDNode(const std::string &val)
953    : SDNode(ISD::STRING, MVT::Other), Value(val) {
954  }
955public:
956  const std::string &getValue() const { return Value; }
957  static bool classof(const StringSDNode *) { return true; }
958  static bool classof(const SDNode *N) {
959    return N->getOpcode() == ISD::STRING;
960  }
961};
962
963class ConstantSDNode : public SDNode {
964  uint64_t Value;
965protected:
966  friend class SelectionDAG;
967  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
968    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
969  }
970public:
971
972  uint64_t getValue() const { return Value; }
973
974  int64_t getSignExtended() const {
975    unsigned Bits = MVT::getSizeInBits(getValueType(0));
976    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
977  }
978
979  bool isNullValue() const { return Value == 0; }
980  bool isAllOnesValue() const {
981    int NumBits = MVT::getSizeInBits(getValueType(0));
982    if (NumBits == 64) return Value+1 == 0;
983    return Value == (1ULL << NumBits)-1;
984  }
985
986  static bool classof(const ConstantSDNode *) { return true; }
987  static bool classof(const SDNode *N) {
988    return N->getOpcode() == ISD::Constant ||
989           N->getOpcode() == ISD::TargetConstant;
990  }
991};
992
993class ConstantFPSDNode : public SDNode {
994  double Value;
995protected:
996  friend class SelectionDAG;
997  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
998    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
999      Value(val) {
1000  }
1001public:
1002
1003  double getValue() const { return Value; }
1004
1005  /// isExactlyValue - We don't rely on operator== working on double values, as
1006  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1007  /// As such, this method can be used to do an exact bit-for-bit comparison of
1008  /// two floating point values.
1009  bool isExactlyValue(double V) const;
1010
1011  static bool classof(const ConstantFPSDNode *) { return true; }
1012  static bool classof(const SDNode *N) {
1013    return N->getOpcode() == ISD::ConstantFP ||
1014           N->getOpcode() == ISD::TargetConstantFP;
1015  }
1016};
1017
1018class GlobalAddressSDNode : public SDNode {
1019  GlobalValue *TheGlobal;
1020  int offset;
1021protected:
1022  friend class SelectionDAG;
1023  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1024                      int o=0)
1025    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT) {
1026    TheGlobal = const_cast<GlobalValue*>(GA);
1027    offset = o;
1028  }
1029public:
1030
1031  GlobalValue *getGlobal() const { return TheGlobal; }
1032  int getOffset() const { return offset; }
1033
1034  static bool classof(const GlobalAddressSDNode *) { return true; }
1035  static bool classof(const SDNode *N) {
1036    return N->getOpcode() == ISD::GlobalAddress ||
1037           N->getOpcode() == ISD::TargetGlobalAddress;
1038  }
1039};
1040
1041
1042class FrameIndexSDNode : public SDNode {
1043  int FI;
1044protected:
1045  friend class SelectionDAG;
1046  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1047    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1048public:
1049
1050  int getIndex() const { return FI; }
1051
1052  static bool classof(const FrameIndexSDNode *) { return true; }
1053  static bool classof(const SDNode *N) {
1054    return N->getOpcode() == ISD::FrameIndex ||
1055           N->getOpcode() == ISD::TargetFrameIndex;
1056  }
1057};
1058
1059class ConstantPoolSDNode : public SDNode {
1060  Constant *C;
1061  unsigned Alignment;
1062protected:
1063  friend class SelectionDAG;
1064  ConstantPoolSDNode(Constant *c, MVT::ValueType VT, bool isTarget)
1065    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1066    C(c), Alignment(0) {}
1067  ConstantPoolSDNode(Constant *c, MVT::ValueType VT, unsigned Align,
1068                     bool isTarget)
1069    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1070    C(c), Alignment(Align) {}
1071public:
1072
1073  Constant *get() const { return C; }
1074  unsigned getAlignment() const { return Alignment; }
1075
1076  static bool classof(const ConstantPoolSDNode *) { return true; }
1077  static bool classof(const SDNode *N) {
1078    return N->getOpcode() == ISD::ConstantPool ||
1079           N->getOpcode() == ISD::TargetConstantPool;
1080  }
1081};
1082
1083class BasicBlockSDNode : public SDNode {
1084  MachineBasicBlock *MBB;
1085protected:
1086  friend class SelectionDAG;
1087  BasicBlockSDNode(MachineBasicBlock *mbb)
1088    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1089public:
1090
1091  MachineBasicBlock *getBasicBlock() const { return MBB; }
1092
1093  static bool classof(const BasicBlockSDNode *) { return true; }
1094  static bool classof(const SDNode *N) {
1095    return N->getOpcode() == ISD::BasicBlock;
1096  }
1097};
1098
1099class SrcValueSDNode : public SDNode {
1100  const Value *V;
1101  int offset;
1102protected:
1103  friend class SelectionDAG;
1104  SrcValueSDNode(const Value* v, int o)
1105    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1106
1107public:
1108  const Value *getValue() const { return V; }
1109  int getOffset() const { return offset; }
1110
1111  static bool classof(const SrcValueSDNode *) { return true; }
1112  static bool classof(const SDNode *N) {
1113    return N->getOpcode() == ISD::SRCVALUE;
1114  }
1115};
1116
1117
1118class RegisterSDNode : public SDNode {
1119  unsigned Reg;
1120protected:
1121  friend class SelectionDAG;
1122  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1123    : SDNode(ISD::Register, VT), Reg(reg) {}
1124public:
1125
1126  unsigned getReg() const { return Reg; }
1127
1128  static bool classof(const RegisterSDNode *) { return true; }
1129  static bool classof(const SDNode *N) {
1130    return N->getOpcode() == ISD::Register;
1131  }
1132};
1133
1134class ExternalSymbolSDNode : public SDNode {
1135  const char *Symbol;
1136protected:
1137  friend class SelectionDAG;
1138  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1139    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1140      Symbol(Sym) {
1141    }
1142public:
1143
1144  const char *getSymbol() const { return Symbol; }
1145
1146  static bool classof(const ExternalSymbolSDNode *) { return true; }
1147  static bool classof(const SDNode *N) {
1148    return N->getOpcode() == ISD::ExternalSymbol ||
1149           N->getOpcode() == ISD::TargetExternalSymbol;
1150  }
1151};
1152
1153class CondCodeSDNode : public SDNode {
1154  ISD::CondCode Condition;
1155protected:
1156  friend class SelectionDAG;
1157  CondCodeSDNode(ISD::CondCode Cond)
1158    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1159  }
1160public:
1161
1162  ISD::CondCode get() const { return Condition; }
1163
1164  static bool classof(const CondCodeSDNode *) { return true; }
1165  static bool classof(const SDNode *N) {
1166    return N->getOpcode() == ISD::CONDCODE;
1167  }
1168};
1169
1170/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1171/// to parameterize some operations.
1172class VTSDNode : public SDNode {
1173  MVT::ValueType ValueType;
1174protected:
1175  friend class SelectionDAG;
1176  VTSDNode(MVT::ValueType VT)
1177    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1178public:
1179
1180  MVT::ValueType getVT() const { return ValueType; }
1181
1182  static bool classof(const VTSDNode *) { return true; }
1183  static bool classof(const SDNode *N) {
1184    return N->getOpcode() == ISD::VALUETYPE;
1185  }
1186};
1187
1188
1189class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1190  SDNode *Node;
1191  unsigned Operand;
1192
1193  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1194public:
1195  bool operator==(const SDNodeIterator& x) const {
1196    return Operand == x.Operand;
1197  }
1198  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1199
1200  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1201    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1202    Operand = I.Operand;
1203    return *this;
1204  }
1205
1206  pointer operator*() const {
1207    return Node->getOperand(Operand).Val;
1208  }
1209  pointer operator->() const { return operator*(); }
1210
1211  SDNodeIterator& operator++() {                // Preincrement
1212    ++Operand;
1213    return *this;
1214  }
1215  SDNodeIterator operator++(int) { // Postincrement
1216    SDNodeIterator tmp = *this; ++*this; return tmp;
1217  }
1218
1219  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1220  static SDNodeIterator end  (SDNode *N) {
1221    return SDNodeIterator(N, N->getNumOperands());
1222  }
1223
1224  unsigned getOperand() const { return Operand; }
1225  const SDNode *getNode() const { return Node; }
1226};
1227
1228template <> struct GraphTraits<SDNode*> {
1229  typedef SDNode NodeType;
1230  typedef SDNodeIterator ChildIteratorType;
1231  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1232  static inline ChildIteratorType child_begin(NodeType *N) {
1233    return SDNodeIterator::begin(N);
1234  }
1235  static inline ChildIteratorType child_end(NodeType *N) {
1236    return SDNodeIterator::end(N);
1237  }
1238};
1239
1240template<>
1241struct ilist_traits<SDNode> {
1242  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1243  static SDNode *getNext(const SDNode *N) { return N->Next; }
1244
1245  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1246  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1247
1248  static SDNode *createSentinel() {
1249    return new SDNode(ISD::EntryToken, MVT::Other);
1250  }
1251  static void destroySentinel(SDNode *N) { delete N; }
1252  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1253
1254
1255  void addNodeToList(SDNode *NTy) {}
1256  void removeNodeFromList(SDNode *NTy) {}
1257  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1258                             const ilist_iterator<SDNode> &X,
1259                             const ilist_iterator<SDNode> &Y) {}
1260};
1261
1262} // end llvm namespace
1263
1264#endif
1265