BasicBlock.h revision 40be1e85665d10f5444186f0e7106e368dd735b8
1//===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the BasicBlock class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_BASICBLOCK_H
15#define LLVM_IR_BASICBLOCK_H
16
17#include "llvm/ADT/Twine.h"
18#include "llvm/ADT/ilist.h"
19#include "llvm/IR/Instruction.h"
20#include "llvm/IR/SymbolTableListTraits.h"
21#include "llvm/Support/CBindingWrapping.h"
22#include "llvm/Support/DataTypes.h"
23
24namespace llvm {
25
26class LandingPadInst;
27class TerminatorInst;
28class LLVMContext;
29class BlockAddress;
30
31template<> struct ilist_traits<Instruction>
32  : public SymbolTableListTraits<Instruction, BasicBlock> {
33
34  /// \brief Return a node that marks the end of a list.
35  ///
36  /// The sentinel is relative to this instance, so we use a non-static
37  /// method.
38  Instruction *createSentinel() const {
39    // Since i(p)lists always publicly derive from their corresponding traits,
40    // placing a data member in this class will augment the i(p)list.  But since
41    // the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
42    // there is a legal viable downcast from it to NodeTy. We use this trick to
43    // superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
44    // sentinel. Dereferencing the sentinel is forbidden (save the
45    // ilist_node<NodeTy>), so no one will ever notice the superposition.
46    return static_cast<Instruction*>(&Sentinel);
47  }
48  static void destroySentinel(Instruction*) {}
49
50  Instruction *provideInitialHead() const { return createSentinel(); }
51  Instruction *ensureHead(Instruction*) const { return createSentinel(); }
52  static void noteHead(Instruction*, Instruction*) {}
53private:
54  mutable ilist_half_node<Instruction> Sentinel;
55};
56
57/// \brief LLVM Basic Block Representation
58///
59/// This represents a single basic block in LLVM. A basic block is simply a
60/// container of instructions that execute sequentially. Basic blocks are Values
61/// because they are referenced by instructions such as branches and switch
62/// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
63/// represents a label to which a branch can jump.
64///
65/// A well formed basic block is formed of a list of non-terminating
66/// instructions followed by a single TerminatorInst instruction.
67/// TerminatorInst's may not occur in the middle of basic blocks, and must
68/// terminate the blocks. The BasicBlock class allows malformed basic blocks to
69/// occur because it may be useful in the intermediate stage of constructing or
70/// modifying a program. However, the verifier will ensure that basic blocks
71/// are "well formed".
72class BasicBlock : public Value, // Basic blocks are data objects also
73                   public ilist_node<BasicBlock> {
74  friend class BlockAddress;
75public:
76  typedef iplist<Instruction> InstListType;
77private:
78  InstListType InstList;
79  Function *Parent;
80
81  void setParent(Function *parent);
82  friend class SymbolTableListTraits<BasicBlock, Function>;
83
84  BasicBlock(const BasicBlock &) LLVM_DELETED_FUNCTION;
85  void operator=(const BasicBlock &) LLVM_DELETED_FUNCTION;
86
87  /// \brief Constructor.
88  ///
89  /// If the function parameter is specified, the basic block is automatically
90  /// inserted at either the end of the function (if InsertBefore is null), or
91  /// before the specified basic block.
92  explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
93                      Function *Parent = 0, BasicBlock *InsertBefore = 0);
94public:
95  /// \brief Get the context in which this basic block lives.
96  LLVMContext &getContext() const;
97
98  /// Instruction iterators...
99  typedef InstListType::iterator iterator;
100  typedef InstListType::const_iterator const_iterator;
101  typedef InstListType::reverse_iterator reverse_iterator;
102  typedef InstListType::const_reverse_iterator const_reverse_iterator;
103
104  /// \brief Creates a new BasicBlock.
105  ///
106  /// If the Parent parameter is specified, the basic block is automatically
107  /// inserted at either the end of the function (if InsertBefore is 0), or
108  /// before the specified basic block.
109  static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
110                            Function *Parent = 0,BasicBlock *InsertBefore = 0) {
111    return new BasicBlock(Context, Name, Parent, InsertBefore);
112  }
113  ~BasicBlock();
114
115  /// \brief Return the enclosing method, or null if none.
116  const Function *getParent() const { return Parent; }
117        Function *getParent()       { return Parent; }
118
119  /// \brief Returns the terminator instruction if the block is well formed or
120  /// null if the block is not well formed.
121  TerminatorInst *getTerminator();
122  const TerminatorInst *getTerminator() const;
123
124  /// \brief Returns a pointer to the first instruction in this block that is
125  /// not a PHINode instruction.
126  ///
127  /// When adding instructions to the beginning of the basic block, they should
128  /// be added before the returned value, not before the first instruction,
129  /// which might be PHI. Returns 0 is there's no non-PHI instruction.
130  Instruction* getFirstNonPHI();
131  const Instruction* getFirstNonPHI() const {
132    return const_cast<BasicBlock*>(this)->getFirstNonPHI();
133  }
134
135  /// \brief Returns a pointer to the first instruction in this block that is not
136  /// a PHINode or a debug intrinsic.
137  Instruction* getFirstNonPHIOrDbg();
138  const Instruction* getFirstNonPHIOrDbg() const {
139    return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg();
140  }
141
142  /// \brief Returns a pointer to the first instruction in this block that is not
143  /// a PHINode, a debug intrinsic, or a lifetime intrinsic.
144  Instruction* getFirstNonPHIOrDbgOrLifetime();
145  const Instruction* getFirstNonPHIOrDbgOrLifetime() const {
146    return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();
147  }
148
149  /// \brief Returns an iterator to the first instruction in this block that is
150  /// suitable for inserting a non-PHI instruction.
151  ///
152  /// In particular, it skips all PHIs and LandingPad instructions.
153  iterator getFirstInsertionPt();
154  const_iterator getFirstInsertionPt() const {
155    return const_cast<BasicBlock*>(this)->getFirstInsertionPt();
156  }
157
158  /// \brief Unlink 'this' from the containing function, but do not delete it.
159  void removeFromParent();
160
161  /// \brief Unlink 'this' from the containing function and delete it.
162  void eraseFromParent();
163
164  /// \brief Unlink this basic block from its current function and insert it
165  /// into the function that \p MovePos lives in, right before \p MovePos.
166  void moveBefore(BasicBlock *MovePos);
167
168  /// \brief Unlink this basic block from its current function and insert it
169  /// right after \p MovePos in the function \p MovePos lives in.
170  void moveAfter(BasicBlock *MovePos);
171
172
173  /// \brief Return this block if it has a single predecessor block. Otherwise
174  /// return a null pointer.
175  BasicBlock *getSinglePredecessor();
176  const BasicBlock *getSinglePredecessor() const {
177    return const_cast<BasicBlock*>(this)->getSinglePredecessor();
178  }
179
180  /// \brief Return this block if it has a unique predecessor block. Otherwise return a null pointer.
181  ///
182  /// Note that unique predecessor doesn't mean single edge, there can be
183  /// multiple edges from the unique predecessor to this block (for example a
184  /// switch statement with multiple cases having the same destination).
185  BasicBlock *getUniquePredecessor();
186  const BasicBlock *getUniquePredecessor() const {
187    return const_cast<BasicBlock*>(this)->getUniquePredecessor();
188  }
189
190  //===--------------------------------------------------------------------===//
191  /// Instruction iterator methods
192  ///
193  inline iterator                begin()       { return InstList.begin(); }
194  inline const_iterator          begin() const { return InstList.begin(); }
195  inline iterator                end  ()       { return InstList.end();   }
196  inline const_iterator          end  () const { return InstList.end();   }
197
198  inline reverse_iterator        rbegin()       { return InstList.rbegin(); }
199  inline const_reverse_iterator  rbegin() const { return InstList.rbegin(); }
200  inline reverse_iterator        rend  ()       { return InstList.rend();   }
201  inline const_reverse_iterator  rend  () const { return InstList.rend();   }
202
203  inline size_t                   size() const { return InstList.size();  }
204  inline bool                    empty() const { return InstList.empty(); }
205  inline const Instruction      &front() const { return InstList.front(); }
206  inline       Instruction      &front()       { return InstList.front(); }
207  inline const Instruction       &back() const { return InstList.back();  }
208  inline       Instruction       &back()       { return InstList.back();  }
209
210  /// \brief Return the underlying instruction list container.
211  ///
212  /// Currently you need to access the underlying instruction list container
213  /// directly if you want to modify it.
214  const InstListType &getInstList() const { return InstList; }
215        InstListType &getInstList()       { return InstList; }
216
217  /// \brief Returns a pointer to a member of the instruction list.
218  static iplist<Instruction> BasicBlock::*getSublistAccess(Instruction*) {
219    return &BasicBlock::InstList;
220  }
221
222  /// \brief Returns a pointer to the symbol table if one exists.
223  ValueSymbolTable *getValueSymbolTable();
224
225  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
226  static inline bool classof(const Value *V) {
227    return V->getValueID() == Value::BasicBlockVal;
228  }
229
230  /// \brief Cause all subinstructions to "let go" of all the references that
231  /// said subinstructions are maintaining.
232  ///
233  /// This allows one to 'delete' a whole class at a time, even though there may
234  /// be circular references... first all references are dropped, and all use
235  /// counts go to zero.  Then everything is delete'd for real.  Note that no
236  /// operations are valid on an object that has "dropped all references",
237  /// except operator delete.
238  void dropAllReferences();
239
240  /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer
241  /// able to reach it.
242  ///
243  /// This is actually not used to update the Predecessor list, but is actually
244  /// used to update the PHI nodes that reside in the block.  Note that this
245  /// should be called while the predecessor still refers to this block.
246  void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false);
247
248  /// \brief Split the basic block into two basic blocks at the specified
249  /// instruction.
250  ///
251  /// Note that all instructions BEFORE the specified iterator stay as part of
252  /// the original basic block, an unconditional branch is added to the original
253  /// BB, and the rest of the instructions in the BB are moved to the new BB,
254  /// including the old terminator.  The newly formed BasicBlock is returned.
255  /// This function invalidates the specified iterator.
256  ///
257  /// Note that this only works on well formed basic blocks (must have a
258  /// terminator), and 'I' must not be the end of instruction list (which would
259  /// cause a degenerate basic block to be formed, having a terminator inside of
260  /// the basic block).
261  ///
262  /// Also note that this doesn't preserve any passes. To split blocks while
263  /// keeping loop information consistent, use the SplitBlock utility function.
264  BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "");
265
266  /// \brief Returns true if there are any uses of this basic block other than
267  /// direct branches, switches, etc. to it.
268  bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; }
269
270  /// \brief Update all phi nodes in this basic block's successors to refer to
271  /// basic block \p New instead of to it.
272  void replaceSuccessorsPhiUsesWith(BasicBlock *New);
273
274  /// \brief Return true if this basic block is a landing pad.
275  ///
276  /// Being a ``landing pad'' means that the basic block is the destination of
277  /// the 'unwind' edge of an invoke instruction.
278  bool isLandingPad() const;
279
280  /// \brief Return the landingpad instruction associated with the landing pad.
281  LandingPadInst *getLandingPadInst();
282  const LandingPadInst *getLandingPadInst() const;
283
284private:
285  /// \brief Increment the internal refcount of the number of BlockAddresses
286  /// referencing this BasicBlock by \p Amt.
287  ///
288  /// This is almost always 0, sometimes one possibly, but almost never 2, and
289  /// inconceivably 3 or more.
290  void AdjustBlockAddressRefCount(int Amt) {
291    setValueSubclassData(getSubclassDataFromValue()+Amt);
292    assert((int)(signed char)getSubclassDataFromValue() >= 0 &&
293           "Refcount wrap-around");
294  }
295  /// \brief Shadow Value::setValueSubclassData with a private forwarding method
296  /// so that any future subclasses cannot accidentally use it.
297  void setValueSubclassData(unsigned short D) {
298    Value::setValueSubclassData(D);
299  }
300};
301
302// Create wrappers for C Binding types (see CBindingWrapping.h).
303DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef)
304
305} // End llvm namespace
306
307#endif
308