1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/DataTypes.h"
29
30// this needs to be outside of the namespace, to avoid conflict with llvm-c decl
31typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
32
33namespace llvm {
34
35class Value;
36class Type;
37class IntegerType;
38class StructType;
39class StructLayout;
40class Triple;
41class GlobalVariable;
42class LLVMContext;
43template<typename T>
44class ArrayRef;
45
46/// Enum used to categorize the alignment types stored by LayoutAlignElem
47enum AlignTypeEnum {
48  INVALID_ALIGN = 0,                 ///< An invalid alignment
49  INTEGER_ALIGN = 'i',               ///< Integer type alignment
50  VECTOR_ALIGN = 'v',                ///< Vector type alignment
51  FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
52  AGGREGATE_ALIGN = 'a'              ///< Aggregate alignment
53};
54
55/// Layout alignment element.
56///
57/// Stores the alignment data associated with a given alignment type (integer,
58/// vector, float) and type bit width.
59///
60/// @note The unusual order of elements in the structure attempts to reduce
61/// padding and make the structure slightly more cache friendly.
62struct LayoutAlignElem {
63  unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
64  unsigned TypeBitWidth : 24; ///< Type bit width
65  unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
66  unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
67
68  /// Initializer
69  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
70                             unsigned pref_align, uint32_t bit_width);
71  /// Equality predicate
72  bool operator==(const LayoutAlignElem &rhs) const;
73};
74
75/// Layout pointer alignment element.
76///
77/// Stores the alignment data associated with a given pointer and address space.
78///
79/// @note The unusual order of elements in the structure attempts to reduce
80/// padding and make the structure slightly more cache friendly.
81struct PointerAlignElem {
82  unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
83  unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
84  uint32_t            TypeByteWidth;  ///< Type byte width
85  uint32_t            AddressSpace;   ///< Address space for the pointer type
86
87  /// Initializer
88  static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
89                             unsigned PrefAlign, uint32_t TypeByteWidth);
90  /// Equality predicate
91  bool operator==(const PointerAlignElem &rhs) const;
92};
93
94/// This class holds a parsed version of the target data layout string in a
95/// module and provides methods for querying it. The target data layout string
96/// is specified *by the target* - a frontend generating LLVM IR is required to
97/// generate the right target data for the target being codegen'd to.
98class DataLayout {
99private:
100  bool          LittleEndian;          ///< Defaults to false
101  unsigned      StackNaturalAlign;     ///< Stack natural alignment
102
103  enum ManglingModeT {
104    MM_None,
105    MM_ELF,
106    MM_MachO,
107    MM_WINCOFF,
108    MM_Mips
109  };
110  ManglingModeT ManglingMode;
111
112  SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
113
114  /// Alignments - Where the primitive type alignment data is stored.
115  ///
116  /// @sa reset().
117  /// @note Could support multiple size pointer alignments, e.g., 32-bit
118  /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
119  /// we don't.
120  SmallVector<LayoutAlignElem, 16> Alignments;
121  typedef SmallVector<PointerAlignElem, 8> PointersTy;
122  PointersTy Pointers;
123
124  PointersTy::const_iterator
125  findPointerLowerBound(uint32_t AddressSpace) const {
126    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
127  }
128
129  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
130
131  /// InvalidAlignmentElem - This member is a signal that a requested alignment
132  /// type and bit width were not found in the SmallVector.
133  static const LayoutAlignElem InvalidAlignmentElem;
134
135  /// InvalidPointerElem - This member is a signal that a requested pointer
136  /// type and bit width were not found in the DenseSet.
137  static const PointerAlignElem InvalidPointerElem;
138
139  // The StructType -> StructLayout map.
140  mutable void *LayoutMap;
141
142  //! Set/initialize target alignments
143  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
144                    unsigned pref_align, uint32_t bit_width);
145  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
146                            bool ABIAlign, Type *Ty) const;
147
148  //! Set/initialize pointer alignments
149  void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
150                           unsigned PrefAlign, uint32_t TypeByteWidth);
151
152  //! Internal helper method that returns requested alignment for type.
153  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
154
155  /// Valid alignment predicate.
156  ///
157  /// Predicate that tests a LayoutAlignElem reference returned by get() against
158  /// InvalidAlignmentElem.
159  bool validAlignment(const LayoutAlignElem &align) const {
160    return &align != &InvalidAlignmentElem;
161  }
162
163  /// Valid pointer predicate.
164  ///
165  /// Predicate that tests a PointerAlignElem reference returned by get() against
166  /// InvalidPointerElem.
167  bool validPointer(const PointerAlignElem &align) const {
168    return &align != &InvalidPointerElem;
169  }
170
171  /// Parses a target data specification string. Assert if the string is
172  /// malformed.
173  void parseSpecifier(StringRef LayoutDescription);
174
175  // Free all internal data structures.
176  void clear();
177
178public:
179  /// Constructs a DataLayout from a specification string. See reset().
180  explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
181    reset(LayoutDescription);
182  }
183
184  /// Initialize target data from properties stored in the module.
185  explicit DataLayout(const Module *M);
186
187  DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
188
189  DataLayout &operator=(const DataLayout &DL) {
190    clear();
191    LittleEndian = DL.isLittleEndian();
192    StackNaturalAlign = DL.StackNaturalAlign;
193    ManglingMode = DL.ManglingMode;
194    LegalIntWidths = DL.LegalIntWidths;
195    Alignments = DL.Alignments;
196    Pointers = DL.Pointers;
197    return *this;
198  }
199
200  bool operator==(const DataLayout &Other) const;
201  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
202
203  ~DataLayout();  // Not virtual, do not subclass this class
204
205  /// Parse a data layout string (with fallback to default values).
206  void reset(StringRef LayoutDescription);
207
208  /// Layout endianness...
209  bool isLittleEndian() const { return LittleEndian; }
210  bool isBigEndian() const { return !LittleEndian; }
211
212  /// getStringRepresentation - Return the string representation of the
213  /// DataLayout.  This representation is in the same format accepted by the
214  /// string constructor above.
215  std::string getStringRepresentation() const;
216
217  /// isLegalInteger - This function returns true if the specified type is
218  /// known to be a native integer type supported by the CPU.  For example,
219  /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
220  /// one.  This returns false if the integer width is not legal.
221  ///
222  /// The width is specified in bits.
223  ///
224  bool isLegalInteger(unsigned Width) const {
225    for (unsigned LegalIntWidth : LegalIntWidths)
226      if (LegalIntWidth == Width)
227        return true;
228    return false;
229  }
230
231  bool isIllegalInteger(unsigned Width) const {
232    return !isLegalInteger(Width);
233  }
234
235  /// Returns true if the given alignment exceeds the natural stack alignment.
236  bool exceedsNaturalStackAlignment(unsigned Align) const {
237    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
238  }
239
240  bool hasMicrosoftFastStdCallMangling() const {
241    return ManglingMode == MM_WINCOFF;
242  }
243
244  bool hasLinkerPrivateGlobalPrefix() const {
245    return ManglingMode == MM_MachO;
246  }
247
248  const char *getLinkerPrivateGlobalPrefix() const {
249    if (ManglingMode == MM_MachO)
250      return "l";
251    return getPrivateGlobalPrefix();
252  }
253
254  char getGlobalPrefix() const {
255    switch (ManglingMode) {
256    case MM_None:
257    case MM_ELF:
258    case MM_Mips:
259      return '\0';
260    case MM_MachO:
261    case MM_WINCOFF:
262      return '_';
263    }
264    llvm_unreachable("invalid mangling mode");
265  }
266
267  const char *getPrivateGlobalPrefix() const {
268    switch (ManglingMode) {
269    case MM_None:
270      return "";
271    case MM_ELF:
272      return ".L";
273    case MM_Mips:
274      return "$";
275    case MM_MachO:
276    case MM_WINCOFF:
277      return "L";
278    }
279    llvm_unreachable("invalid mangling mode");
280  }
281
282  static const char *getManglingComponent(const Triple &T);
283
284  /// fitsInLegalInteger - This function returns true if the specified type fits
285  /// in a native integer type supported by the CPU.  For example, if the CPU
286  /// only supports i32 as a native integer type, then i27 fits in a legal
287  /// integer type but i45 does not.
288  bool fitsInLegalInteger(unsigned Width) const {
289    for (unsigned LegalIntWidth : LegalIntWidths)
290      if (Width <= LegalIntWidth)
291        return true;
292    return false;
293  }
294
295  /// Layout pointer alignment
296  /// FIXME: The defaults need to be removed once all of
297  /// the backends/clients are updated.
298  unsigned getPointerABIAlignment(unsigned AS = 0) const;
299
300  /// Return target's alignment for stack-based pointers
301  /// FIXME: The defaults need to be removed once all of
302  /// the backends/clients are updated.
303  unsigned getPointerPrefAlignment(unsigned AS = 0) const;
304
305  /// Layout pointer size
306  /// FIXME: The defaults need to be removed once all of
307  /// the backends/clients are updated.
308  unsigned getPointerSize(unsigned AS = 0) const;
309
310  /// Layout pointer size, in bits
311  /// FIXME: The defaults need to be removed once all of
312  /// the backends/clients are updated.
313  unsigned getPointerSizeInBits(unsigned AS = 0) const {
314    return getPointerSize(AS) * 8;
315  }
316
317  /// Layout pointer size, in bits, based on the type.  If this function is
318  /// called with a pointer type, then the type size of the pointer is returned.
319  /// If this function is called with a vector of pointers, then the type size
320  /// of the pointer is returned.  This should only be called with a pointer or
321  /// vector of pointers.
322  unsigned getPointerTypeSizeInBits(Type *) const;
323
324  unsigned getPointerTypeSize(Type *Ty) const {
325    return getPointerTypeSizeInBits(Ty) / 8;
326  }
327
328  /// Size examples:
329  ///
330  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
331  /// ----        ----------  ---------------  ---------------
332  ///  i1            1           8                8
333  ///  i8            8           8                8
334  ///  i19          19          24               32
335  ///  i32          32          32               32
336  ///  i100        100         104              128
337  ///  i128        128         128              128
338  ///  Float        32          32               32
339  ///  Double       64          64               64
340  ///  X86_FP80     80          80               96
341  ///
342  /// [*] The alloc size depends on the alignment, and thus on the target.
343  ///     These values are for x86-32 linux.
344
345  /// getTypeSizeInBits - Return the number of bits necessary to hold the
346  /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
347  /// The type passed must have a size (Type::isSized() must return true).
348  uint64_t getTypeSizeInBits(Type *Ty) const;
349
350  /// getTypeStoreSize - Return the maximum number of bytes that may be
351  /// overwritten by storing the specified type.  For example, returns 5
352  /// for i36 and 10 for x86_fp80.
353  uint64_t getTypeStoreSize(Type *Ty) const {
354    return (getTypeSizeInBits(Ty)+7)/8;
355  }
356
357  /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
358  /// overwritten by storing the specified type; always a multiple of 8.  For
359  /// example, returns 40 for i36 and 80 for x86_fp80.
360  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
361    return 8*getTypeStoreSize(Ty);
362  }
363
364  /// getTypeAllocSize - Return the offset in bytes between successive objects
365  /// of the specified type, including alignment padding.  This is the amount
366  /// that alloca reserves for this type.  For example, returns 12 or 16 for
367  /// x86_fp80, depending on alignment.
368  uint64_t getTypeAllocSize(Type *Ty) const {
369    // Round up to the next alignment boundary.
370    return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
371  }
372
373  /// getTypeAllocSizeInBits - Return the offset in bits between successive
374  /// objects of the specified type, including alignment padding; always a
375  /// multiple of 8.  This is the amount that alloca reserves for this type.
376  /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
377  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
378    return 8*getTypeAllocSize(Ty);
379  }
380
381  /// getABITypeAlignment - Return the minimum ABI-required alignment for the
382  /// specified type.
383  unsigned getABITypeAlignment(Type *Ty) const;
384
385  /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
386  /// an integer type of the specified bitwidth.
387  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
388
389  /// getPrefTypeAlignment - Return the preferred stack/global alignment for
390  /// the specified type.  This is always at least as good as the ABI alignment.
391  unsigned getPrefTypeAlignment(Type *Ty) const;
392
393  /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
394  /// specified type, returned as log2 of the value (a shift amount).
395  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
396
397  /// getIntPtrType - Return an integer type with size at least as big as that
398  /// of a pointer in the given address space.
399  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
400
401  /// getIntPtrType - Return an integer (vector of integer) type with size at
402  /// least as big as that of a pointer of the given pointer (vector of pointer)
403  /// type.
404  Type *getIntPtrType(Type *) const;
405
406  /// getSmallestLegalIntType - Return the smallest integer type with size at
407  /// least as big as Width bits.
408  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
409
410  /// getLargestLegalIntType - Return the largest legal integer type, or null if
411  /// none are set.
412  Type *getLargestLegalIntType(LLVMContext &C) const {
413    unsigned LargestSize = getLargestLegalIntTypeSize();
414    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
415  }
416
417  /// getLargestLegalIntTypeSize - Return the size of largest legal integer
418  /// type size, or 0 if none are set.
419  unsigned getLargestLegalIntTypeSize() const;
420
421  /// getIndexedOffset - return the offset from the beginning of the type for
422  /// the specified indices.  This is used to implement getelementptr.
423  uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
424
425  /// getStructLayout - Return a StructLayout object, indicating the alignment
426  /// of the struct, its size, and the offsets of its fields.  Note that this
427  /// information is lazily cached.
428  const StructLayout *getStructLayout(StructType *Ty) const;
429
430  /// getPreferredAlignment - Return the preferred alignment of the specified
431  /// global.  This includes an explicitly requested alignment (if the global
432  /// has one).
433  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
434
435  /// getPreferredAlignmentLog - Return the preferred alignment of the
436  /// specified global, returned in log form.  This includes an explicitly
437  /// requested alignment (if the global has one).
438  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
439
440  /// RoundUpAlignment - Round the specified value up to the next alignment
441  /// boundary specified by Alignment.  For example, 7 rounded up to an
442  /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
443  /// is 8 because it is already aligned.
444  template <typename UIntTy>
445  static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
446    assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
447    return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
448  }
449};
450
451inline DataLayout *unwrap(LLVMTargetDataRef P) {
452   return reinterpret_cast<DataLayout*>(P);
453}
454
455inline LLVMTargetDataRef wrap(const DataLayout *P) {
456   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P));
457}
458
459class DataLayoutPass : public ImmutablePass {
460  DataLayout DL;
461
462public:
463  /// This has to exist, because this is a pass, but it should never be used.
464  DataLayoutPass();
465  ~DataLayoutPass();
466
467  const DataLayout &getDataLayout() const { return DL; }
468
469  // For use with the C API. C++ code should always use the constructor that
470  // takes a module.
471  explicit DataLayoutPass(const DataLayout &DL);
472
473  explicit DataLayoutPass(const Module *M);
474
475  static char ID; // Pass identification, replacement for typeid
476};
477
478/// StructLayout - used to lazily calculate structure layout information for a
479/// target machine, based on the DataLayout structure.
480///
481class StructLayout {
482  uint64_t StructSize;
483  unsigned StructAlignment;
484  unsigned NumElements;
485  uint64_t MemberOffsets[1];  // variable sized array!
486public:
487
488  uint64_t getSizeInBytes() const {
489    return StructSize;
490  }
491
492  uint64_t getSizeInBits() const {
493    return 8*StructSize;
494  }
495
496  unsigned getAlignment() const {
497    return StructAlignment;
498  }
499
500  /// getElementContainingOffset - Given a valid byte offset into the structure,
501  /// return the structure index that contains it.
502  ///
503  unsigned getElementContainingOffset(uint64_t Offset) const;
504
505  uint64_t getElementOffset(unsigned Idx) const {
506    assert(Idx < NumElements && "Invalid element idx!");
507    return MemberOffsets[Idx];
508  }
509
510  uint64_t getElementOffsetInBits(unsigned Idx) const {
511    return getElementOffset(Idx)*8;
512  }
513
514private:
515  friend class DataLayout;   // Only DataLayout can create this class
516  StructLayout(StructType *ST, const DataLayout &DL);
517};
518
519
520// The implementation of this method is provided inline as it is particularly
521// well suited to constant folding when called on a specific Type subclass.
522inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
523  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
524  switch (Ty->getTypeID()) {
525  case Type::LabelTyID:
526    return getPointerSizeInBits(0);
527  case Type::PointerTyID:
528    return getPointerSizeInBits(Ty->getPointerAddressSpace());
529  case Type::ArrayTyID: {
530    ArrayType *ATy = cast<ArrayType>(Ty);
531    return ATy->getNumElements() *
532           getTypeAllocSizeInBits(ATy->getElementType());
533  }
534  case Type::StructTyID:
535    // Get the layout annotation... which is lazily created on demand.
536    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
537  case Type::IntegerTyID:
538    return Ty->getIntegerBitWidth();
539  case Type::HalfTyID:
540    return 16;
541  case Type::FloatTyID:
542    return 32;
543  case Type::DoubleTyID:
544  case Type::X86_MMXTyID:
545    return 64;
546  case Type::PPC_FP128TyID:
547  case Type::FP128TyID:
548    return 128;
549    // In memory objects this is always aligned to a higher boundary, but
550  // only 80 bits contain information.
551  case Type::X86_FP80TyID:
552    return 80;
553  case Type::VectorTyID: {
554    VectorType *VTy = cast<VectorType>(Ty);
555    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
556  }
557  default:
558    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
559  }
560}
561
562} // End llvm namespace
563
564#endif
565