DataLayout.h revision 72a001d1f8e537624930c437808825a23e8b46bf
1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Pass.h"
26#include "llvm/Support/DataTypes.h"
27
28namespace llvm {
29
30class Value;
31class Type;
32class IntegerType;
33class StructType;
34class StructLayout;
35class GlobalVariable;
36class LLVMContext;
37template<typename T>
38class ArrayRef;
39
40/// Enum used to categorize the alignment types stored by LayoutAlignElem
41enum AlignTypeEnum {
42  INVALID_ALIGN = 0,                 ///< An invalid alignment
43  INTEGER_ALIGN = 'i',               ///< Integer type alignment
44  VECTOR_ALIGN = 'v',                ///< Vector type alignment
45  FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
46  AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
47  STACK_ALIGN = 's'                  ///< Stack objects alignment
48};
49
50/// Layout alignment element.
51///
52/// Stores the alignment data associated with a given alignment type (integer,
53/// vector, float) and type bit width.
54///
55/// @note The unusual order of elements in the structure attempts to reduce
56/// padding and make the structure slightly more cache friendly.
57struct LayoutAlignElem {
58  unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
59  unsigned TypeBitWidth : 24; ///< Type bit width
60  unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
61  unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
62
63  /// Initializer
64  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
65                             unsigned pref_align, uint32_t bit_width);
66  /// Equality predicate
67  bool operator==(const LayoutAlignElem &rhs) const;
68};
69
70/// Layout pointer alignment element.
71///
72/// Stores the alignment data associated with a given pointer and address space.
73///
74/// @note The unusual order of elements in the structure attempts to reduce
75/// padding and make the structure slightly more cache friendly.
76struct PointerAlignElem {
77  unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
78  unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
79  uint32_t            TypeBitWidth;   ///< Type bit width
80  uint32_t            AddressSpace;   ///< Address space for the pointer type
81
82  /// Initializer
83  static PointerAlignElem get(uint32_t addr_space, unsigned abi_align,
84                             unsigned pref_align, uint32_t bit_width);
85  /// Equality predicate
86  bool operator==(const PointerAlignElem &rhs) const;
87};
88
89
90/// DataLayout - This class holds a parsed version of the target data layout
91/// string in a module and provides methods for querying it.  The target data
92/// layout string is specified *by the target* - a frontend generating LLVM IR
93/// is required to generate the right target data for the target being codegen'd
94/// to.  If some measure of portability is desired, an empty string may be
95/// specified in the module.
96class DataLayout : public ImmutablePass {
97private:
98  bool          LittleEndian;          ///< Defaults to false
99  unsigned      StackNaturalAlign;     ///< Stack natural alignment
100
101  SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
102
103  /// Alignments - Where the primitive type alignment data is stored.
104  ///
105  /// @sa init().
106  /// @note Could support multiple size pointer alignments, e.g., 32-bit
107  /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
108  /// we don't.
109  SmallVector<LayoutAlignElem, 16> Alignments;
110  DenseMap<unsigned, PointerAlignElem> Pointers;
111
112  /// InvalidAlignmentElem - This member is a signal that a requested alignment
113  /// type and bit width were not found in the SmallVector.
114  static const LayoutAlignElem InvalidAlignmentElem;
115
116  /// InvalidPointerElem - This member is a signal that a requested pointer
117  /// type and bit width were not found in the DenseSet.
118  static const PointerAlignElem InvalidPointerElem;
119
120  // The StructType -> StructLayout map.
121  mutable void *LayoutMap;
122
123  //! Set/initialize target alignments
124  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
125                    unsigned pref_align, uint32_t bit_width);
126  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
127                            bool ABIAlign, Type *Ty) const;
128
129  //! Set/initialize pointer alignments
130  void setPointerAlignment(uint32_t addr_space, unsigned abi_align,
131      unsigned pref_align, uint32_t bit_width);
132
133  //! Internal helper method that returns requested alignment for type.
134  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
135
136  /// Valid alignment predicate.
137  ///
138  /// Predicate that tests a LayoutAlignElem reference returned by get() against
139  /// InvalidAlignmentElem.
140  bool validAlignment(const LayoutAlignElem &align) const {
141    return &align != &InvalidAlignmentElem;
142  }
143
144  /// Valid pointer predicate.
145  ///
146  /// Predicate that tests a PointerAlignElem reference returned by get() against
147  /// InvalidPointerElem.
148  bool validPointer(const PointerAlignElem &align) const {
149    return &align != &InvalidPointerElem;
150  }
151
152  /// Parses a target data specification string. Assert if the string is
153  /// malformed.
154  void parseSpecifier(StringRef LayoutDescription);
155
156public:
157  /// Default ctor.
158  ///
159  /// @note This has to exist, because this is a pass, but it should never be
160  /// used.
161  DataLayout();
162
163  /// Constructs a DataLayout from a specification string. See init().
164  explicit DataLayout(StringRef LayoutDescription)
165    : ImmutablePass(ID) {
166    init(LayoutDescription);
167  }
168
169  /// Initialize target data from properties stored in the module.
170  explicit DataLayout(const Module *M);
171
172  DataLayout(const DataLayout &TD) :
173    ImmutablePass(ID),
174    LittleEndian(TD.isLittleEndian()),
175    StackNaturalAlign(TD.StackNaturalAlign),
176    LegalIntWidths(TD.LegalIntWidths),
177    Alignments(TD.Alignments),
178    Pointers(TD.Pointers),
179    LayoutMap(0)
180  { }
181
182  ~DataLayout();  // Not virtual, do not subclass this class
183
184  /// Parse a data layout string (with fallback to default values). Ensure that
185  /// the data layout pass is registered.
186  void init(StringRef LayoutDescription);
187
188  /// Layout endianness...
189  bool isLittleEndian() const { return LittleEndian; }
190  bool isBigEndian() const { return !LittleEndian; }
191
192  /// getStringRepresentation - Return the string representation of the
193  /// DataLayout.  This representation is in the same format accepted by the
194  /// string constructor above.
195  std::string getStringRepresentation() const;
196
197  /// isLegalInteger - This function returns true if the specified type is
198  /// known to be a native integer type supported by the CPU.  For example,
199  /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
200  /// one.  This returns false if the integer width is not legal.
201  ///
202  /// The width is specified in bits.
203  ///
204  bool isLegalInteger(unsigned Width) const {
205    for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
206      if (LegalIntWidths[i] == Width)
207        return true;
208    return false;
209  }
210
211  bool isIllegalInteger(unsigned Width) const {
212    return !isLegalInteger(Width);
213  }
214
215  /// Returns true if the given alignment exceeds the natural stack alignment.
216  bool exceedsNaturalStackAlignment(unsigned Align) const {
217    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
218  }
219
220  /// fitsInLegalInteger - This function returns true if the specified type fits
221  /// in a native integer type supported by the CPU.  For example, if the CPU
222  /// only supports i32 as a native integer type, then i27 fits in a legal
223  // integer type but i45 does not.
224  bool fitsInLegalInteger(unsigned Width) const {
225    for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
226      if (Width <= LegalIntWidths[i])
227        return true;
228    return false;
229  }
230
231  /// Layout pointer alignment
232  /// FIXME: The defaults need to be removed once all of
233  /// the backends/clients are updated.
234  unsigned getPointerABIAlignment(unsigned AS = 0)  const {
235    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
236    if (val == Pointers.end()) {
237      val = Pointers.find(0);
238    }
239    return val->second.ABIAlign;
240  }
241  /// Return target's alignment for stack-based pointers
242  /// FIXME: The defaults need to be removed once all of
243  /// the backends/clients are updated.
244  unsigned getPointerPrefAlignment(unsigned AS = 0) const {
245    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
246    if (val == Pointers.end()) {
247      val = Pointers.find(0);
248    }
249    return val->second.PrefAlign;
250  }
251  /// Layout pointer size
252  /// FIXME: The defaults need to be removed once all of
253  /// the backends/clients are updated.
254  unsigned getPointerSize(unsigned AS = 0)          const {
255    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
256    if (val == Pointers.end()) {
257      val = Pointers.find(0);
258    }
259    return val->second.TypeBitWidth;
260  }
261  /// Layout pointer size, in bits
262  /// FIXME: The defaults need to be removed once all of
263  /// the backends/clients are updated.
264  unsigned getPointerSizeInBits(unsigned AS = 0)    const {
265    return getPointerSize(AS) * 8;
266  }
267  /// Size examples:
268  ///
269  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
270  /// ----        ----------  ---------------  ---------------
271  ///  i1            1           8                8
272  ///  i8            8           8                8
273  ///  i19          19          24               32
274  ///  i32          32          32               32
275  ///  i100        100         104              128
276  ///  i128        128         128              128
277  ///  Float        32          32               32
278  ///  Double       64          64               64
279  ///  X86_FP80     80          80               96
280  ///
281  /// [*] The alloc size depends on the alignment, and thus on the target.
282  ///     These values are for x86-32 linux.
283
284  /// getTypeSizeInBits - Return the number of bits necessary to hold the
285  /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
286  /// The type passed must have a size (Type::isSized() must return true).
287  uint64_t getTypeSizeInBits(Type *Ty) const;
288
289  /// getTypeStoreSize - Return the maximum number of bytes that may be
290  /// overwritten by storing the specified type.  For example, returns 5
291  /// for i36 and 10 for x86_fp80.
292  uint64_t getTypeStoreSize(Type *Ty) const {
293    return (getTypeSizeInBits(Ty)+7)/8;
294  }
295
296  /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
297  /// overwritten by storing the specified type; always a multiple of 8.  For
298  /// example, returns 40 for i36 and 80 for x86_fp80.
299  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
300    return 8*getTypeStoreSize(Ty);
301  }
302
303  /// getTypeAllocSize - Return the offset in bytes between successive objects
304  /// of the specified type, including alignment padding.  This is the amount
305  /// that alloca reserves for this type.  For example, returns 12 or 16 for
306  /// x86_fp80, depending on alignment.
307  uint64_t getTypeAllocSize(Type *Ty) const {
308    // Round up to the next alignment boundary.
309    return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
310  }
311
312  /// getTypeAllocSizeInBits - Return the offset in bits between successive
313  /// objects of the specified type, including alignment padding; always a
314  /// multiple of 8.  This is the amount that alloca reserves for this type.
315  /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
316  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
317    return 8*getTypeAllocSize(Ty);
318  }
319
320  /// getABITypeAlignment - Return the minimum ABI-required alignment for the
321  /// specified type.
322  unsigned getABITypeAlignment(Type *Ty) const;
323
324  /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
325  /// an integer type of the specified bitwidth.
326  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
327
328  /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
329  /// for the specified type when it is part of a call frame.
330  unsigned getCallFrameTypeAlignment(Type *Ty) const;
331
332  /// getPrefTypeAlignment - Return the preferred stack/global alignment for
333  /// the specified type.  This is always at least as good as the ABI alignment.
334  unsigned getPrefTypeAlignment(Type *Ty) const;
335
336  /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
337  /// specified type, returned as log2 of the value (a shift amount).
338  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
339
340  /// getIntPtrType - Return an integer type with size at least as big as that
341  /// of a pointer in the given address space.
342  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
343
344  /// getIntPtrType - Return an integer (vector of integer) type with size at
345  /// least as big as that of a pointer of the given pointer (vector of pointer)
346  /// type.
347  Type *getIntPtrType(Type *) const;
348
349  /// getIndexedOffset - return the offset from the beginning of the type for
350  /// the specified indices.  This is used to implement getelementptr.
351  uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
352
353  /// getStructLayout - Return a StructLayout object, indicating the alignment
354  /// of the struct, its size, and the offsets of its fields.  Note that this
355  /// information is lazily cached.
356  const StructLayout *getStructLayout(StructType *Ty) const;
357
358  /// getPreferredAlignment - Return the preferred alignment of the specified
359  /// global.  This includes an explicitly requested alignment (if the global
360  /// has one).
361  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
362
363  /// getPreferredAlignmentLog - Return the preferred alignment of the
364  /// specified global, returned in log form.  This includes an explicitly
365  /// requested alignment (if the global has one).
366  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
367
368  /// RoundUpAlignment - Round the specified value up to the next alignment
369  /// boundary specified by Alignment.  For example, 7 rounded up to an
370  /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
371  /// is 8 because it is already aligned.
372  template <typename UIntTy>
373  static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
374    assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
375    return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
376  }
377
378  static char ID; // Pass identification, replacement for typeid
379};
380
381/// StructLayout - used to lazily calculate structure layout information for a
382/// target machine, based on the DataLayout structure.
383///
384class StructLayout {
385  uint64_t StructSize;
386  unsigned StructAlignment;
387  unsigned NumElements;
388  uint64_t MemberOffsets[1];  // variable sized array!
389public:
390
391  uint64_t getSizeInBytes() const {
392    return StructSize;
393  }
394
395  uint64_t getSizeInBits() const {
396    return 8*StructSize;
397  }
398
399  unsigned getAlignment() const {
400    return StructAlignment;
401  }
402
403  /// getElementContainingOffset - Given a valid byte offset into the structure,
404  /// return the structure index that contains it.
405  ///
406  unsigned getElementContainingOffset(uint64_t Offset) const;
407
408  uint64_t getElementOffset(unsigned Idx) const {
409    assert(Idx < NumElements && "Invalid element idx!");
410    return MemberOffsets[Idx];
411  }
412
413  uint64_t getElementOffsetInBits(unsigned Idx) const {
414    return getElementOffset(Idx)*8;
415  }
416
417private:
418  friend class DataLayout;   // Only DataLayout can create this class
419  StructLayout(StructType *ST, const DataLayout &TD);
420};
421
422} // End llvm namespace
423
424#endif
425