1//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the Value class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_VALUE_H
15#define LLVM_IR_VALUE_H
16
17#include "llvm-c/Core.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/IR/Use.h"
20#include "llvm/Support/CBindingWrapping.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23
24namespace llvm {
25
26class APInt;
27class Argument;
28class AssemblyAnnotationWriter;
29class BasicBlock;
30class Constant;
31class DataLayout;
32class Function;
33class GlobalAlias;
34class GlobalObject;
35class GlobalValue;
36class GlobalVariable;
37class InlineAsm;
38class Instruction;
39class LLVMContext;
40class MDNode;
41class Module;
42class StringRef;
43class Twine;
44class Type;
45class ValueHandleBase;
46class ValueSymbolTable;
47class raw_ostream;
48
49template<typename ValueTy> class StringMapEntry;
50typedef StringMapEntry<Value*> ValueName;
51
52//===----------------------------------------------------------------------===//
53//                                 Value Class
54//===----------------------------------------------------------------------===//
55
56/// This is a very important LLVM class. It is the base class of all values
57/// computed by a program that may be used as operands to other values. Value is
58/// the super class of other important classes such as Instruction and Function.
59/// All Values have a Type. Type is not a subclass of Value. Some values can
60/// have a name and they belong to some Module.  Setting the name on the Value
61/// automatically updates the module's symbol table.
62///
63/// Every value has a "use list" that keeps track of which other Values are
64/// using this Value.  A Value can also have an arbitrary number of ValueHandle
65/// objects that watch it and listen to RAUW and Destroy events.  See
66/// llvm/IR/ValueHandle.h for details.
67///
68/// @brief LLVM Value Representation
69class Value {
70  Type *VTy;
71  Use *UseList;
72
73  friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
74  friend class ValueHandleBase;
75  ValueName *Name;
76
77  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
78  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
79protected:
80  /// SubclassOptionalData - This member is similar to SubclassData, however it
81  /// is for holding information which may be used to aid optimization, but
82  /// which may be cleared to zero without affecting conservative
83  /// interpretation.
84  unsigned char SubclassOptionalData : 7;
85
86private:
87  /// SubclassData - This member is defined by this class, but is not used for
88  /// anything.  Subclasses can use it to hold whatever state they find useful.
89  /// This field is initialized to zero by the ctor.
90  unsigned short SubclassData;
91
92  template <typename UseT> // UseT == 'Use' or 'const Use'
93  class use_iterator_impl
94      : public std::iterator<std::forward_iterator_tag, UseT *, ptrdiff_t> {
95    typedef std::iterator<std::forward_iterator_tag, UseT *, ptrdiff_t> super;
96
97    UseT *U;
98    explicit use_iterator_impl(UseT *u) : U(u) {}
99    friend class Value;
100
101  public:
102    typedef typename super::reference reference;
103    typedef typename super::pointer pointer;
104
105    use_iterator_impl() : U() {}
106
107    bool operator==(const use_iterator_impl &x) const { return U == x.U; }
108    bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
109
110    use_iterator_impl &operator++() { // Preincrement
111      assert(U && "Cannot increment end iterator!");
112      U = U->getNext();
113      return *this;
114    }
115    use_iterator_impl operator++(int) { // Postincrement
116      auto tmp = *this;
117      ++*this;
118      return tmp;
119    }
120
121    UseT &operator*() const {
122      assert(U && "Cannot dereference end iterator!");
123      return *U;
124    }
125
126    UseT *operator->() const { return &operator*(); }
127
128    operator use_iterator_impl<const UseT>() const {
129      return use_iterator_impl<const UseT>(U);
130    }
131  };
132
133  template <typename UserTy> // UserTy == 'User' or 'const User'
134  class user_iterator_impl
135      : public std::iterator<std::forward_iterator_tag, UserTy *, ptrdiff_t> {
136    typedef std::iterator<std::forward_iterator_tag, UserTy *, ptrdiff_t> super;
137
138    use_iterator_impl<Use> UI;
139    explicit user_iterator_impl(Use *U) : UI(U) {}
140    friend class Value;
141
142  public:
143    typedef typename super::reference reference;
144    typedef typename super::pointer pointer;
145
146    user_iterator_impl() {}
147
148    bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
149    bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
150
151    /// \brief Returns true if this iterator is equal to user_end() on the value.
152    bool atEnd() const { return *this == user_iterator_impl(); }
153
154    user_iterator_impl &operator++() { // Preincrement
155      ++UI;
156      return *this;
157    }
158    user_iterator_impl operator++(int) { // Postincrement
159      auto tmp = *this;
160      ++*this;
161      return tmp;
162    }
163
164    // Retrieve a pointer to the current User.
165    UserTy *operator*() const {
166      return UI->getUser();
167    }
168
169    UserTy *operator->() const { return operator*(); }
170
171    operator user_iterator_impl<const UserTy>() const {
172      return user_iterator_impl<const UserTy>(*UI);
173    }
174
175    Use &getUse() const { return *UI; }
176
177    /// \brief Return the operand # of this use in its User.
178    /// FIXME: Replace all callers with a direct call to Use::getOperandNo.
179    unsigned getOperandNo() const { return UI->getOperandNo(); }
180  };
181
182  void operator=(const Value &) LLVM_DELETED_FUNCTION;
183  Value(const Value &) LLVM_DELETED_FUNCTION;
184
185protected:
186  Value(Type *Ty, unsigned scid);
187public:
188  virtual ~Value();
189
190  /// dump - Support for debugging, callable in GDB: V->dump()
191  //
192  void dump() const;
193
194  /// print - Implement operator<< on Value.
195  ///
196  void print(raw_ostream &O) const;
197
198  /// \brief Print the name of this Value out to the specified raw_ostream.
199  /// This is useful when you just want to print 'int %reg126', not the
200  /// instruction that generated it. If you specify a Module for context, then
201  /// even constanst get pretty-printed; for example, the type of a null
202  /// pointer is printed symbolically.
203  void printAsOperand(raw_ostream &O, bool PrintType = true,
204                      const Module *M = nullptr) const;
205
206  /// All values are typed, get the type of this value.
207  ///
208  Type *getType() const { return VTy; }
209
210  /// All values hold a context through their type.
211  LLVMContext &getContext() const;
212
213  // All values can potentially be named.
214  bool hasName() const { return Name != nullptr && SubclassID != MDStringVal; }
215  ValueName *getValueName() const { return Name; }
216  void setValueName(ValueName *VN) { Name = VN; }
217
218  /// getName() - Return a constant reference to the value's name. This is cheap
219  /// and guaranteed to return the same reference as long as the value is not
220  /// modified.
221  StringRef getName() const;
222
223  /// setName() - Change the name of the value, choosing a new unique name if
224  /// the provided name is taken.
225  ///
226  /// \param Name The new name; or "" if the value's name should be removed.
227  void setName(const Twine &Name);
228
229
230  /// takeName - transfer the name from V to this value, setting V's name to
231  /// empty.  It is an error to call V->takeName(V).
232  void takeName(Value *V);
233
234  /// replaceAllUsesWith - Go through the uses list for this definition and make
235  /// each use point to "V" instead of "this".  After this completes, 'this's
236  /// use list is guaranteed to be empty.
237  ///
238  void replaceAllUsesWith(Value *V);
239
240  //----------------------------------------------------------------------
241  // Methods for handling the chain of uses of this Value.
242  //
243  bool               use_empty() const { return UseList == nullptr; }
244
245  typedef use_iterator_impl<Use>       use_iterator;
246  typedef use_iterator_impl<const Use> const_use_iterator;
247  use_iterator       use_begin()       { return use_iterator(UseList); }
248  const_use_iterator use_begin() const { return const_use_iterator(UseList); }
249  use_iterator       use_end()         { return use_iterator();   }
250  const_use_iterator use_end()   const { return const_use_iterator();   }
251  iterator_range<use_iterator> uses() {
252    return iterator_range<use_iterator>(use_begin(), use_end());
253  }
254  iterator_range<const_use_iterator> uses() const {
255    return iterator_range<const_use_iterator>(use_begin(), use_end());
256  }
257
258  typedef user_iterator_impl<User>       user_iterator;
259  typedef user_iterator_impl<const User> const_user_iterator;
260  user_iterator       user_begin()       { return user_iterator(UseList); }
261  const_user_iterator user_begin() const { return const_user_iterator(UseList); }
262  user_iterator       user_end()         { return user_iterator();   }
263  const_user_iterator user_end()   const { return const_user_iterator();   }
264  User               *user_back()        { return *user_begin(); }
265  const User         *user_back()  const { return *user_begin(); }
266  iterator_range<user_iterator> users() {
267    return iterator_range<user_iterator>(user_begin(), user_end());
268  }
269  iterator_range<const_user_iterator> users() const {
270    return iterator_range<const_user_iterator>(user_begin(), user_end());
271  }
272
273  /// hasOneUse - Return true if there is exactly one user of this value.  This
274  /// is specialized because it is a common request and does not require
275  /// traversing the whole use list.
276  ///
277  bool hasOneUse() const {
278    const_use_iterator I = use_begin(), E = use_end();
279    if (I == E) return false;
280    return ++I == E;
281  }
282
283  /// hasNUses - Return true if this Value has exactly N users.
284  ///
285  bool hasNUses(unsigned N) const;
286
287  /// hasNUsesOrMore - Return true if this value has N users or more.  This is
288  /// logically equivalent to getNumUses() >= N.
289  ///
290  bool hasNUsesOrMore(unsigned N) const;
291
292  bool isUsedInBasicBlock(const BasicBlock *BB) const;
293
294  /// getNumUses - This method computes the number of uses of this Value.  This
295  /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore
296  /// to check for specific values.
297  unsigned getNumUses() const;
298
299  /// addUse - This method should only be used by the Use class.
300  ///
301  void addUse(Use &U) { U.addToList(&UseList); }
302
303  /// An enumeration for keeping track of the concrete subclass of Value that
304  /// is actually instantiated. Values of this enumeration are kept in the
305  /// Value classes SubclassID field. They are used for concrete type
306  /// identification.
307  enum ValueTy {
308    ArgumentVal,              // This is an instance of Argument
309    BasicBlockVal,            // This is an instance of BasicBlock
310    FunctionVal,              // This is an instance of Function
311    GlobalAliasVal,           // This is an instance of GlobalAlias
312    GlobalVariableVal,        // This is an instance of GlobalVariable
313    UndefValueVal,            // This is an instance of UndefValue
314    BlockAddressVal,          // This is an instance of BlockAddress
315    ConstantExprVal,          // This is an instance of ConstantExpr
316    ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
317    ConstantDataArrayVal,     // This is an instance of ConstantDataArray
318    ConstantDataVectorVal,    // This is an instance of ConstantDataVector
319    ConstantIntVal,           // This is an instance of ConstantInt
320    ConstantFPVal,            // This is an instance of ConstantFP
321    ConstantArrayVal,         // This is an instance of ConstantArray
322    ConstantStructVal,        // This is an instance of ConstantStruct
323    ConstantVectorVal,        // This is an instance of ConstantVector
324    ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
325    MDNodeVal,                // This is an instance of MDNode
326    MDStringVal,              // This is an instance of MDString
327    InlineAsmVal,             // This is an instance of InlineAsm
328    InstructionVal,           // This is an instance of Instruction
329    // Enum values starting at InstructionVal are used for Instructions;
330    // don't add new values here!
331
332    // Markers:
333    ConstantFirstVal = FunctionVal,
334    ConstantLastVal  = ConstantPointerNullVal
335  };
336
337  /// getValueID - Return an ID for the concrete type of this object.  This is
338  /// used to implement the classof checks.  This should not be used for any
339  /// other purpose, as the values may change as LLVM evolves.  Also, note that
340  /// for instructions, the Instruction's opcode is added to InstructionVal. So
341  /// this means three things:
342  /// # there is no value with code InstructionVal (no opcode==0).
343  /// # there are more possible values for the value type than in ValueTy enum.
344  /// # the InstructionVal enumerator must be the highest valued enumerator in
345  ///   the ValueTy enum.
346  unsigned getValueID() const {
347    return SubclassID;
348  }
349
350  /// getRawSubclassOptionalData - Return the raw optional flags value
351  /// contained in this value. This should only be used when testing two
352  /// Values for equivalence.
353  unsigned getRawSubclassOptionalData() const {
354    return SubclassOptionalData;
355  }
356
357  /// clearSubclassOptionalData - Clear the optional flags contained in
358  /// this value.
359  void clearSubclassOptionalData() {
360    SubclassOptionalData = 0;
361  }
362
363  /// hasSameSubclassOptionalData - Test whether the optional flags contained
364  /// in this value are equal to the optional flags in the given value.
365  bool hasSameSubclassOptionalData(const Value *V) const {
366    return SubclassOptionalData == V->SubclassOptionalData;
367  }
368
369  /// intersectOptionalDataWith - Clear any optional flags in this value
370  /// that are not also set in the given value.
371  void intersectOptionalDataWith(const Value *V) {
372    SubclassOptionalData &= V->SubclassOptionalData;
373  }
374
375  /// hasValueHandle - Return true if there is a value handle associated with
376  /// this value.
377  bool hasValueHandle() const { return HasValueHandle; }
378
379  /// \brief Strips off any unneeded pointer casts, all-zero GEPs and aliases
380  /// from the specified value, returning the original uncasted value.
381  ///
382  /// If this is called on a non-pointer value, it returns 'this'.
383  Value *stripPointerCasts();
384  const Value *stripPointerCasts() const {
385    return const_cast<Value*>(this)->stripPointerCasts();
386  }
387
388  /// \brief Strips off any unneeded pointer casts and all-zero GEPs from the
389  /// specified value, returning the original uncasted value.
390  ///
391  /// If this is called on a non-pointer value, it returns 'this'.
392  Value *stripPointerCastsNoFollowAliases();
393  const Value *stripPointerCastsNoFollowAliases() const {
394    return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
395  }
396
397  /// \brief Strips off unneeded pointer casts and all-constant GEPs from the
398  /// specified value, returning the original pointer value.
399  ///
400  /// If this is called on a non-pointer value, it returns 'this'.
401  Value *stripInBoundsConstantOffsets();
402  const Value *stripInBoundsConstantOffsets() const {
403    return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
404  }
405
406  /// \brief Strips like \c stripInBoundsConstantOffsets but also accumulates
407  /// the constant offset stripped.
408  ///
409  /// Stores the resulting constant offset stripped into the APInt provided.
410  /// The provided APInt will be extended or truncated as needed to be the
411  /// correct bitwidth for an offset of this pointer type.
412  ///
413  /// If this is called on a non-pointer value, it returns 'this'.
414  Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
415                                                   APInt &Offset);
416  const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
417                                                         APInt &Offset) const {
418    return const_cast<Value *>(this)
419        ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
420  }
421
422  /// \brief Strips off unneeded pointer casts and any in-bounds offsets from
423  /// the specified value, returning the original pointer value.
424  ///
425  /// If this is called on a non-pointer value, it returns 'this'.
426  Value *stripInBoundsOffsets();
427  const Value *stripInBoundsOffsets() const {
428    return const_cast<Value*>(this)->stripInBoundsOffsets();
429  }
430
431  /// isDereferenceablePointer - Test if this value is always a pointer to
432  /// allocated and suitably aligned memory for a simple load or store.
433  bool isDereferenceablePointer(const DataLayout *DL = nullptr) const;
434
435  /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
436  /// return the value in the PHI node corresponding to PredBB.  If not, return
437  /// ourself.  This is useful if you want to know the value something has in a
438  /// predecessor block.
439  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
440
441  const Value *DoPHITranslation(const BasicBlock *CurBB,
442                                const BasicBlock *PredBB) const{
443    return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
444  }
445
446  /// MaximumAlignment - This is the greatest alignment value supported by
447  /// load, store, and alloca instructions, and global values.
448  static const unsigned MaximumAlignment = 1u << 29;
449
450  /// mutateType - Mutate the type of this Value to be of the specified type.
451  /// Note that this is an extremely dangerous operation which can create
452  /// completely invalid IR very easily.  It is strongly recommended that you
453  /// recreate IR objects with the right types instead of mutating them in
454  /// place.
455  void mutateType(Type *Ty) {
456    VTy = Ty;
457  }
458
459protected:
460  unsigned short getSubclassDataFromValue() const { return SubclassData; }
461  void setValueSubclassData(unsigned short D) { SubclassData = D; }
462};
463
464inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
465  V.print(OS);
466  return OS;
467}
468
469void Use::set(Value *V) {
470  if (Val) removeFromList();
471  Val = V;
472  if (V) V->addUse(*this);
473}
474
475
476// isa - Provide some specializations of isa so that we don't have to include
477// the subtype header files to test to see if the value is a subclass...
478//
479template <> struct isa_impl<Constant, Value> {
480  static inline bool doit(const Value &Val) {
481    return Val.getValueID() >= Value::ConstantFirstVal &&
482      Val.getValueID() <= Value::ConstantLastVal;
483  }
484};
485
486template <> struct isa_impl<Argument, Value> {
487  static inline bool doit (const Value &Val) {
488    return Val.getValueID() == Value::ArgumentVal;
489  }
490};
491
492template <> struct isa_impl<InlineAsm, Value> {
493  static inline bool doit(const Value &Val) {
494    return Val.getValueID() == Value::InlineAsmVal;
495  }
496};
497
498template <> struct isa_impl<Instruction, Value> {
499  static inline bool doit(const Value &Val) {
500    return Val.getValueID() >= Value::InstructionVal;
501  }
502};
503
504template <> struct isa_impl<BasicBlock, Value> {
505  static inline bool doit(const Value &Val) {
506    return Val.getValueID() == Value::BasicBlockVal;
507  }
508};
509
510template <> struct isa_impl<Function, Value> {
511  static inline bool doit(const Value &Val) {
512    return Val.getValueID() == Value::FunctionVal;
513  }
514};
515
516template <> struct isa_impl<GlobalVariable, Value> {
517  static inline bool doit(const Value &Val) {
518    return Val.getValueID() == Value::GlobalVariableVal;
519  }
520};
521
522template <> struct isa_impl<GlobalAlias, Value> {
523  static inline bool doit(const Value &Val) {
524    return Val.getValueID() == Value::GlobalAliasVal;
525  }
526};
527
528template <> struct isa_impl<GlobalValue, Value> {
529  static inline bool doit(const Value &Val) {
530    return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
531  }
532};
533
534template <> struct isa_impl<GlobalObject, Value> {
535  static inline bool doit(const Value &Val) {
536    return isa<GlobalVariable>(Val) || isa<Function>(Val);
537  }
538};
539
540template <> struct isa_impl<MDNode, Value> {
541  static inline bool doit(const Value &Val) {
542    return Val.getValueID() == Value::MDNodeVal;
543  }
544};
545
546// Value* is only 4-byte aligned.
547template<>
548class PointerLikeTypeTraits<Value*> {
549  typedef Value* PT;
550public:
551  static inline void *getAsVoidPointer(PT P) { return P; }
552  static inline PT getFromVoidPointer(void *P) {
553    return static_cast<PT>(P);
554  }
555  enum { NumLowBitsAvailable = 2 };
556};
557
558// Create wrappers for C Binding types (see CBindingWrapping.h).
559DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
560
561/* Specialized opaque value conversions.
562 */
563inline Value **unwrap(LLVMValueRef *Vals) {
564  return reinterpret_cast<Value**>(Vals);
565}
566
567template<typename T>
568inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
569#ifdef DEBUG
570  for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
571    cast<T>(*I);
572#endif
573  (void)Length;
574  return reinterpret_cast<T**>(Vals);
575}
576
577inline LLVMValueRef *wrap(const Value **Vals) {
578  return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
579}
580
581} // End llvm namespace
582
583#endif
584