1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/ilist_node.h"
18#include "llvm/MC/MCDirectives.h"
19#include "llvm/MC/MCFixup.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCLinkerOptimizationHint.h"
22#include "llvm/MC/MCSubtargetInfo.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/DataTypes.h"
25#include <algorithm>
26#include <vector> // FIXME: Shouldn't be needed.
27
28namespace llvm {
29class raw_ostream;
30class MCAsmLayout;
31class MCAssembler;
32class MCContext;
33class MCCodeEmitter;
34class MCExpr;
35class MCFragment;
36class MCObjectWriter;
37class MCSection;
38class MCSectionData;
39class MCSubtargetInfo;
40class MCSymbol;
41class MCSymbolData;
42class MCValue;
43class MCAsmBackend;
44
45class MCFragment : public ilist_node<MCFragment> {
46  friend class MCAsmLayout;
47
48  MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION;
49  void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
50
51public:
52  enum FragmentType {
53    FT_Align,
54    FT_Data,
55    FT_CompactEncodedInst,
56    FT_Fill,
57    FT_Relaxable,
58    FT_Org,
59    FT_Dwarf,
60    FT_DwarfFrame,
61    FT_LEB
62  };
63
64private:
65  FragmentType Kind;
66
67  /// Parent - The data for the section this fragment is in.
68  MCSectionData *Parent;
69
70  /// Atom - The atom this fragment is in, as represented by it's defining
71  /// symbol.
72  MCSymbolData *Atom;
73
74  /// @name Assembler Backend Data
75  /// @{
76  //
77  // FIXME: This could all be kept private to the assembler implementation.
78
79  /// Offset - The offset of this fragment in its section. This is ~0 until
80  /// initialized.
81  uint64_t Offset;
82
83  /// LayoutOrder - The layout order of this fragment.
84  unsigned LayoutOrder;
85
86  /// @}
87
88protected:
89  MCFragment(FragmentType _Kind, MCSectionData *_Parent = nullptr);
90
91public:
92  // Only for sentinel.
93  MCFragment();
94  virtual ~MCFragment();
95
96  FragmentType getKind() const { return Kind; }
97
98  MCSectionData *getParent() const { return Parent; }
99  void setParent(MCSectionData *Value) { Parent = Value; }
100
101  MCSymbolData *getAtom() const { return Atom; }
102  void setAtom(MCSymbolData *Value) { Atom = Value; }
103
104  unsigned getLayoutOrder() const { return LayoutOrder; }
105  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
106
107  /// \brief Does this fragment have instructions emitted into it? By default
108  /// this is false, but specific fragment types may set it to true.
109  virtual bool hasInstructions() const { return false; }
110
111  /// \brief Should this fragment be placed at the end of an aligned bundle?
112  virtual bool alignToBundleEnd() const { return false; }
113  virtual void setAlignToBundleEnd(bool V) { }
114
115  /// \brief Get the padding size that must be inserted before this fragment.
116  /// Used for bundling. By default, no padding is inserted.
117  /// Note that padding size is restricted to 8 bits. This is an optimization
118  /// to reduce the amount of space used for each fragment. In practice, larger
119  /// padding should never be required.
120  virtual uint8_t getBundlePadding() const {
121    return 0;
122  }
123
124  /// \brief Set the padding size for this fragment. By default it's a no-op,
125  /// and only some fragments have a meaningful implementation.
126  virtual void setBundlePadding(uint8_t N) {
127  }
128
129  void dump();
130};
131
132/// Interface implemented by fragments that contain encoded instructions and/or
133/// data.
134///
135class MCEncodedFragment : public MCFragment {
136  virtual void anchor();
137
138  uint8_t BundlePadding;
139public:
140  MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = nullptr)
141    : MCFragment(FType, SD), BundlePadding(0)
142  {
143  }
144  virtual ~MCEncodedFragment();
145
146  virtual SmallVectorImpl<char> &getContents() = 0;
147  virtual const SmallVectorImpl<char> &getContents() const = 0;
148
149  uint8_t getBundlePadding() const override {
150    return BundlePadding;
151  }
152
153  void setBundlePadding(uint8_t N) override {
154    BundlePadding = N;
155  }
156
157  static bool classof(const MCFragment *F) {
158    MCFragment::FragmentType Kind = F->getKind();
159    switch (Kind) {
160      default:
161        return false;
162      case MCFragment::FT_Relaxable:
163      case MCFragment::FT_CompactEncodedInst:
164      case MCFragment::FT_Data:
165        return true;
166    }
167  }
168};
169
170/// Interface implemented by fragments that contain encoded instructions and/or
171/// data and also have fixups registered.
172///
173class MCEncodedFragmentWithFixups : public MCEncodedFragment {
174  void anchor() override;
175
176public:
177  MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
178                              MCSectionData *SD = nullptr)
179    : MCEncodedFragment(FType, SD)
180  {
181  }
182
183  virtual ~MCEncodedFragmentWithFixups();
184
185  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
186  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
187
188  virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
189  virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
190
191  virtual fixup_iterator fixup_begin() = 0;
192  virtual const_fixup_iterator fixup_begin() const  = 0;
193  virtual fixup_iterator fixup_end() = 0;
194  virtual const_fixup_iterator fixup_end() const = 0;
195
196  static bool classof(const MCFragment *F) {
197    MCFragment::FragmentType Kind = F->getKind();
198    return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
199  }
200};
201
202/// Fragment for data and encoded instructions.
203///
204class MCDataFragment : public MCEncodedFragmentWithFixups {
205  void anchor() override;
206
207  /// \brief Does this fragment contain encoded instructions anywhere in it?
208  bool HasInstructions;
209
210  /// \brief Should this fragment be aligned to the end of a bundle?
211  bool AlignToBundleEnd;
212
213  SmallVector<char, 32> Contents;
214
215  /// Fixups - The list of fixups in this fragment.
216  SmallVector<MCFixup, 4> Fixups;
217public:
218  MCDataFragment(MCSectionData *SD = nullptr)
219    : MCEncodedFragmentWithFixups(FT_Data, SD),
220      HasInstructions(false), AlignToBundleEnd(false)
221  {
222  }
223
224  SmallVectorImpl<char> &getContents() override { return Contents; }
225  const SmallVectorImpl<char> &getContents() const override {
226    return Contents;
227  }
228
229  SmallVectorImpl<MCFixup> &getFixups() override {
230    return Fixups;
231  }
232
233  const SmallVectorImpl<MCFixup> &getFixups() const override {
234    return Fixups;
235  }
236
237  bool hasInstructions() const override { return HasInstructions; }
238  virtual void setHasInstructions(bool V) { HasInstructions = V; }
239
240  bool alignToBundleEnd() const override { return AlignToBundleEnd; }
241  void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; }
242
243  fixup_iterator fixup_begin() override { return Fixups.begin(); }
244  const_fixup_iterator fixup_begin() const override { return Fixups.begin(); }
245
246  fixup_iterator fixup_end() override {return Fixups.end();}
247  const_fixup_iterator fixup_end() const override {return Fixups.end();}
248
249  static bool classof(const MCFragment *F) {
250    return F->getKind() == MCFragment::FT_Data;
251  }
252};
253
254/// This is a compact (memory-size-wise) fragment for holding an encoded
255/// instruction (non-relaxable) that has no fixups registered. When applicable,
256/// it can be used instead of MCDataFragment and lead to lower memory
257/// consumption.
258///
259class MCCompactEncodedInstFragment : public MCEncodedFragment {
260  void anchor() override;
261
262  /// \brief Should this fragment be aligned to the end of a bundle?
263  bool AlignToBundleEnd;
264
265  SmallVector<char, 4> Contents;
266public:
267  MCCompactEncodedInstFragment(MCSectionData *SD = nullptr)
268    : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false)
269  {
270  }
271
272  bool hasInstructions() const override {
273    return true;
274  }
275
276  SmallVectorImpl<char> &getContents() override { return Contents; }
277  const SmallVectorImpl<char> &getContents() const override { return Contents; }
278
279  bool alignToBundleEnd() const override { return AlignToBundleEnd; }
280  void setAlignToBundleEnd(bool V) override { AlignToBundleEnd = V; }
281
282  static bool classof(const MCFragment *F) {
283    return F->getKind() == MCFragment::FT_CompactEncodedInst;
284  }
285};
286
287/// A relaxable fragment holds on to its MCInst, since it may need to be
288/// relaxed during the assembler layout and relaxation stage.
289///
290class MCRelaxableFragment : public MCEncodedFragmentWithFixups {
291  void anchor() override;
292
293  /// Inst - The instruction this is a fragment for.
294  MCInst Inst;
295
296  /// STI - The MCSubtargetInfo in effect when the instruction was encoded.
297  /// Keep a copy instead of a reference to make sure that updates to STI
298  /// in the assembler are not seen here.
299  const MCSubtargetInfo STI;
300
301  /// Contents - Binary data for the currently encoded instruction.
302  SmallVector<char, 8> Contents;
303
304  /// Fixups - The list of fixups in this fragment.
305  SmallVector<MCFixup, 1> Fixups;
306
307public:
308  MCRelaxableFragment(const MCInst &_Inst,
309                      const MCSubtargetInfo &_STI,
310                      MCSectionData *SD = nullptr)
311    : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(_Inst), STI(_STI) {
312  }
313
314  SmallVectorImpl<char> &getContents() override { return Contents; }
315  const SmallVectorImpl<char> &getContents() const override { return Contents; }
316
317  const MCInst &getInst() const { return Inst; }
318  void setInst(const MCInst& Value) { Inst = Value; }
319
320  const MCSubtargetInfo &getSubtargetInfo() { return STI; }
321
322  SmallVectorImpl<MCFixup> &getFixups() override {
323    return Fixups;
324  }
325
326  const SmallVectorImpl<MCFixup> &getFixups() const override {
327    return Fixups;
328  }
329
330  bool hasInstructions() const override { return true; }
331
332  fixup_iterator fixup_begin() override { return Fixups.begin(); }
333  const_fixup_iterator fixup_begin() const override { return Fixups.begin(); }
334
335  fixup_iterator fixup_end() override {return Fixups.end();}
336  const_fixup_iterator fixup_end() const override {return Fixups.end();}
337
338  static bool classof(const MCFragment *F) {
339    return F->getKind() == MCFragment::FT_Relaxable;
340  }
341};
342
343class MCAlignFragment : public MCFragment {
344  virtual void anchor();
345
346  /// Alignment - The alignment to ensure, in bytes.
347  unsigned Alignment;
348
349  /// Value - Value to use for filling padding bytes.
350  int64_t Value;
351
352  /// ValueSize - The size of the integer (in bytes) of \p Value.
353  unsigned ValueSize;
354
355  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
356  /// cannot be satisfied in this width then this fragment is ignored.
357  unsigned MaxBytesToEmit;
358
359  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
360  /// of using the provided value. The exact interpretation of this flag is
361  /// target dependent.
362  bool EmitNops : 1;
363
364public:
365  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
366                  unsigned _MaxBytesToEmit, MCSectionData *SD = nullptr)
367    : MCFragment(FT_Align, SD), Alignment(_Alignment),
368      Value(_Value),ValueSize(_ValueSize),
369      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
370
371  /// @name Accessors
372  /// @{
373
374  unsigned getAlignment() const { return Alignment; }
375
376  int64_t getValue() const { return Value; }
377
378  unsigned getValueSize() const { return ValueSize; }
379
380  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
381
382  bool hasEmitNops() const { return EmitNops; }
383  void setEmitNops(bool Value) { EmitNops = Value; }
384
385  /// @}
386
387  static bool classof(const MCFragment *F) {
388    return F->getKind() == MCFragment::FT_Align;
389  }
390};
391
392class MCFillFragment : public MCFragment {
393  virtual void anchor();
394
395  /// Value - Value to use for filling bytes.
396  int64_t Value;
397
398  /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
399  /// this is a virtual fill fragment.
400  unsigned ValueSize;
401
402  /// Size - The number of bytes to insert.
403  uint64_t Size;
404
405public:
406  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
407                 MCSectionData *SD = nullptr)
408    : MCFragment(FT_Fill, SD),
409      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
410    assert((!ValueSize || (Size % ValueSize) == 0) &&
411           "Fill size must be a multiple of the value size!");
412  }
413
414  /// @name Accessors
415  /// @{
416
417  int64_t getValue() const { return Value; }
418
419  unsigned getValueSize() const { return ValueSize; }
420
421  uint64_t getSize() const { return Size; }
422
423  /// @}
424
425  static bool classof(const MCFragment *F) {
426    return F->getKind() == MCFragment::FT_Fill;
427  }
428};
429
430class MCOrgFragment : public MCFragment {
431  virtual void anchor();
432
433  /// Offset - The offset this fragment should start at.
434  const MCExpr *Offset;
435
436  /// Value - Value to use for filling bytes.
437  int8_t Value;
438
439public:
440  MCOrgFragment(const MCExpr &_Offset, int8_t _Value,
441                MCSectionData *SD = nullptr)
442    : MCFragment(FT_Org, SD),
443      Offset(&_Offset), Value(_Value) {}
444
445  /// @name Accessors
446  /// @{
447
448  const MCExpr &getOffset() const { return *Offset; }
449
450  uint8_t getValue() const { return Value; }
451
452  /// @}
453
454  static bool classof(const MCFragment *F) {
455    return F->getKind() == MCFragment::FT_Org;
456  }
457};
458
459class MCLEBFragment : public MCFragment {
460  virtual void anchor();
461
462  /// Value - The value this fragment should contain.
463  const MCExpr *Value;
464
465  /// IsSigned - True if this is a sleb128, false if uleb128.
466  bool IsSigned;
467
468  SmallString<8> Contents;
469public:
470  MCLEBFragment(const MCExpr &Value_, bool IsSigned_,
471                MCSectionData *SD = nullptr)
472    : MCFragment(FT_LEB, SD),
473      Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
474
475  /// @name Accessors
476  /// @{
477
478  const MCExpr &getValue() const { return *Value; }
479
480  bool isSigned() const { return IsSigned; }
481
482  SmallString<8> &getContents() { return Contents; }
483  const SmallString<8> &getContents() const { return Contents; }
484
485  /// @}
486
487  static bool classof(const MCFragment *F) {
488    return F->getKind() == MCFragment::FT_LEB;
489  }
490};
491
492class MCDwarfLineAddrFragment : public MCFragment {
493  virtual void anchor();
494
495  /// LineDelta - the value of the difference between the two line numbers
496  /// between two .loc dwarf directives.
497  int64_t LineDelta;
498
499  /// AddrDelta - The expression for the difference of the two symbols that
500  /// make up the address delta between two .loc dwarf directives.
501  const MCExpr *AddrDelta;
502
503  SmallString<8> Contents;
504
505public:
506  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
507                      MCSectionData *SD = nullptr)
508    : MCFragment(FT_Dwarf, SD),
509      LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
510
511  /// @name Accessors
512  /// @{
513
514  int64_t getLineDelta() const { return LineDelta; }
515
516  const MCExpr &getAddrDelta() const { return *AddrDelta; }
517
518  SmallString<8> &getContents() { return Contents; }
519  const SmallString<8> &getContents() const { return Contents; }
520
521  /// @}
522
523  static bool classof(const MCFragment *F) {
524    return F->getKind() == MCFragment::FT_Dwarf;
525  }
526};
527
528class MCDwarfCallFrameFragment : public MCFragment {
529  virtual void anchor();
530
531  /// AddrDelta - The expression for the difference of the two symbols that
532  /// make up the address delta between two .cfi_* dwarf directives.
533  const MCExpr *AddrDelta;
534
535  SmallString<8> Contents;
536
537public:
538  MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,
539                           MCSectionData *SD = nullptr)
540    : MCFragment(FT_DwarfFrame, SD),
541      AddrDelta(&_AddrDelta) { Contents.push_back(0); }
542
543  /// @name Accessors
544  /// @{
545
546  const MCExpr &getAddrDelta() const { return *AddrDelta; }
547
548  SmallString<8> &getContents() { return Contents; }
549  const SmallString<8> &getContents() const { return Contents; }
550
551  /// @}
552
553  static bool classof(const MCFragment *F) {
554    return F->getKind() == MCFragment::FT_DwarfFrame;
555  }
556};
557
558// FIXME: Should this be a separate class, or just merged into MCSection? Since
559// we anticipate the fast path being through an MCAssembler, the only reason to
560// keep it out is for API abstraction.
561class MCSectionData : public ilist_node<MCSectionData> {
562  friend class MCAsmLayout;
563
564  MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION;
565  void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
566
567public:
568  typedef iplist<MCFragment> FragmentListType;
569
570  typedef FragmentListType::const_iterator const_iterator;
571  typedef FragmentListType::iterator iterator;
572
573  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
574  typedef FragmentListType::reverse_iterator reverse_iterator;
575
576  /// \brief Express the state of bundle locked groups while emitting code.
577  enum BundleLockStateType {
578    NotBundleLocked,
579    BundleLocked,
580    BundleLockedAlignToEnd
581  };
582private:
583  FragmentListType Fragments;
584  const MCSection *Section;
585
586  /// Ordinal - The section index in the assemblers section list.
587  unsigned Ordinal;
588
589  /// LayoutOrder - The index of this section in the layout order.
590  unsigned LayoutOrder;
591
592  /// Alignment - The maximum alignment seen in this section.
593  unsigned Alignment;
594
595  /// \brief Keeping track of bundle-locked state.
596  BundleLockStateType BundleLockState;
597
598  /// \brief We've seen a bundle_lock directive but not its first instruction
599  /// yet.
600  bool BundleGroupBeforeFirstInst;
601
602  /// @name Assembler Backend Data
603  /// @{
604  //
605  // FIXME: This could all be kept private to the assembler implementation.
606
607  /// HasInstructions - Whether this section has had instructions emitted into
608  /// it.
609  unsigned HasInstructions : 1;
610
611  /// Mapping from subsection number to insertion point for subsection numbers
612  /// below that number.
613  SmallVector<std::pair<unsigned, MCFragment *>, 1> SubsectionFragmentMap;
614
615  /// @}
616
617public:
618  // Only for use as sentinel.
619  MCSectionData();
620  MCSectionData(const MCSection &Section, MCAssembler *A = nullptr);
621
622  const MCSection &getSection() const { return *Section; }
623
624  unsigned getAlignment() const { return Alignment; }
625  void setAlignment(unsigned Value) { Alignment = Value; }
626
627  bool hasInstructions() const { return HasInstructions; }
628  void setHasInstructions(bool Value) { HasInstructions = Value; }
629
630  unsigned getOrdinal() const { return Ordinal; }
631  void setOrdinal(unsigned Value) { Ordinal = Value; }
632
633  unsigned getLayoutOrder() const { return LayoutOrder; }
634  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
635
636  /// @name Fragment Access
637  /// @{
638
639  const FragmentListType &getFragmentList() const { return Fragments; }
640  FragmentListType &getFragmentList() { return Fragments; }
641
642  iterator begin() { return Fragments.begin(); }
643  const_iterator begin() const { return Fragments.begin(); }
644
645  iterator end() { return Fragments.end(); }
646  const_iterator end() const { return Fragments.end(); }
647
648  reverse_iterator rbegin() { return Fragments.rbegin(); }
649  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
650
651  reverse_iterator rend() { return Fragments.rend(); }
652  const_reverse_iterator rend() const { return Fragments.rend(); }
653
654  size_t size() const { return Fragments.size(); }
655
656  bool empty() const { return Fragments.empty(); }
657
658  iterator getSubsectionInsertionPoint(unsigned Subsection);
659
660  bool isBundleLocked() const {
661    return BundleLockState != NotBundleLocked;
662  }
663
664  BundleLockStateType getBundleLockState() const {
665    return BundleLockState;
666  }
667
668  void setBundleLockState(BundleLockStateType NewState) {
669    BundleLockState = NewState;
670  }
671
672  bool isBundleGroupBeforeFirstInst() const {
673    return BundleGroupBeforeFirstInst;
674  }
675
676  void setBundleGroupBeforeFirstInst(bool IsFirst) {
677    BundleGroupBeforeFirstInst = IsFirst;
678  }
679
680  void dump();
681
682  /// @}
683};
684
685// FIXME: Same concerns as with SectionData.
686class MCSymbolData : public ilist_node<MCSymbolData> {
687public:
688  const MCSymbol *Symbol;
689
690  /// Fragment - The fragment this symbol's value is relative to, if any.
691  MCFragment *Fragment;
692
693  /// Offset - The offset to apply to the fragment address to form this symbol's
694  /// value.
695  uint64_t Offset;
696
697  /// IsExternal - True if this symbol is visible outside this translation
698  /// unit.
699  unsigned IsExternal : 1;
700
701  /// IsPrivateExtern - True if this symbol is private extern.
702  unsigned IsPrivateExtern : 1;
703
704  /// CommonSize - The size of the symbol, if it is 'common', or 0.
705  //
706  // FIXME: Pack this in with other fields? We could put it in offset, since a
707  // common symbol can never get a definition.
708  uint64_t CommonSize;
709
710  /// SymbolSize - An expression describing how to calculate the size of
711  /// a symbol. If a symbol has no size this field will be NULL.
712  const MCExpr *SymbolSize;
713
714  /// CommonAlign - The alignment of the symbol, if it is 'common'.
715  //
716  // FIXME: Pack this in with other fields?
717  unsigned CommonAlign;
718
719  /// Flags - The Flags field is used by object file implementations to store
720  /// additional per symbol information which is not easily classified.
721  uint32_t Flags;
722
723  /// Index - Index field, for use by the object file implementation.
724  uint64_t Index;
725
726public:
727  // Only for use as sentinel.
728  MCSymbolData();
729  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
730               MCAssembler *A = nullptr);
731
732  /// @name Accessors
733  /// @{
734
735  const MCSymbol &getSymbol() const { return *Symbol; }
736
737  MCFragment *getFragment() const { return Fragment; }
738  void setFragment(MCFragment *Value) { Fragment = Value; }
739
740  uint64_t getOffset() const { return Offset; }
741  void setOffset(uint64_t Value) { Offset = Value; }
742
743  /// @}
744  /// @name Symbol Attributes
745  /// @{
746
747  bool isExternal() const { return IsExternal; }
748  void setExternal(bool Value) { IsExternal = Value; }
749
750  bool isPrivateExtern() const { return IsPrivateExtern; }
751  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
752
753  /// isCommon - Is this a 'common' symbol.
754  bool isCommon() const { return CommonSize != 0; }
755
756  /// setCommon - Mark this symbol as being 'common'.
757  ///
758  /// \param Size - The size of the symbol.
759  /// \param Align - The alignment of the symbol.
760  void setCommon(uint64_t Size, unsigned Align) {
761    CommonSize = Size;
762    CommonAlign = Align;
763  }
764
765  /// getCommonSize - Return the size of a 'common' symbol.
766  uint64_t getCommonSize() const {
767    assert(isCommon() && "Not a 'common' symbol!");
768    return CommonSize;
769  }
770
771  void setSize(const MCExpr *SS) {
772    SymbolSize = SS;
773  }
774
775  const MCExpr *getSize() const {
776    return SymbolSize;
777  }
778
779
780  /// getCommonAlignment - Return the alignment of a 'common' symbol.
781  unsigned getCommonAlignment() const {
782    assert(isCommon() && "Not a 'common' symbol!");
783    return CommonAlign;
784  }
785
786  /// getFlags - Get the (implementation defined) symbol flags.
787  uint32_t getFlags() const { return Flags; }
788
789  /// setFlags - Set the (implementation defined) symbol flags.
790  void setFlags(uint32_t Value) { Flags = Value; }
791
792  /// modifyFlags - Modify the flags via a mask
793  void modifyFlags(uint32_t Value, uint32_t Mask) {
794    Flags = (Flags & ~Mask) | Value;
795  }
796
797  /// getIndex - Get the (implementation defined) index.
798  uint64_t getIndex() const { return Index; }
799
800  /// setIndex - Set the (implementation defined) index.
801  void setIndex(uint64_t Value) { Index = Value; }
802
803  /// @}
804
805  void dump() const;
806};
807
808// FIXME: This really doesn't belong here. See comments below.
809struct IndirectSymbolData {
810  MCSymbol *Symbol;
811  MCSectionData *SectionData;
812};
813
814// FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
815// to one another.
816struct DataRegionData {
817  // This enum should be kept in sync w/ the mach-o definition in
818  // llvm/Object/MachOFormat.h.
819  enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
820  MCSymbol *Start;
821  MCSymbol *End;
822};
823
824class MCAssembler {
825  friend class MCAsmLayout;
826
827public:
828  typedef iplist<MCSectionData> SectionDataListType;
829  typedef iplist<MCSymbolData> SymbolDataListType;
830
831  typedef SectionDataListType::const_iterator const_iterator;
832  typedef SectionDataListType::iterator iterator;
833
834  typedef SymbolDataListType::const_iterator const_symbol_iterator;
835  typedef SymbolDataListType::iterator symbol_iterator;
836
837  typedef iterator_range<symbol_iterator> symbol_range;
838  typedef iterator_range<const_symbol_iterator> const_symbol_range;
839
840  typedef std::vector<std::string> FileNameVectorType;
841  typedef FileNameVectorType::const_iterator const_file_name_iterator;
842
843  typedef std::vector<IndirectSymbolData>::const_iterator
844    const_indirect_symbol_iterator;
845  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
846
847  typedef std::vector<DataRegionData>::const_iterator
848    const_data_region_iterator;
849  typedef std::vector<DataRegionData>::iterator data_region_iterator;
850
851  /// MachO specific deployment target version info.
852  // A Major version of 0 indicates that no version information was supplied
853  // and so the corresponding load command should not be emitted.
854  typedef struct {
855    MCVersionMinType Kind;
856    unsigned Major;
857    unsigned Minor;
858    unsigned Update;
859  } VersionMinInfoType;
860private:
861  MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION;
862  void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
863
864  MCContext &Context;
865
866  MCAsmBackend &Backend;
867
868  MCCodeEmitter &Emitter;
869
870  MCObjectWriter &Writer;
871
872  raw_ostream &OS;
873
874  iplist<MCSectionData> Sections;
875
876  iplist<MCSymbolData> Symbols;
877
878  /// The map of sections to their associated assembler backend data.
879  //
880  // FIXME: Avoid this indirection?
881  DenseMap<const MCSection*, MCSectionData*> SectionMap;
882
883  /// The map of symbols to their associated assembler backend data.
884  //
885  // FIXME: Avoid this indirection?
886  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
887
888  std::vector<IndirectSymbolData> IndirectSymbols;
889
890  std::vector<DataRegionData> DataRegions;
891
892  /// The list of linker options to propagate into the object file.
893  std::vector<std::vector<std::string> > LinkerOptions;
894
895  /// List of declared file names
896  FileNameVectorType FileNames;
897
898  /// The set of function symbols for which a .thumb_func directive has
899  /// been seen.
900  //
901  // FIXME: We really would like this in target specific code rather than
902  // here. Maybe when the relocation stuff moves to target specific,
903  // this can go with it? The streamer would need some target specific
904  // refactoring too.
905  mutable SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
906
907  /// \brief The bundle alignment size currently set in the assembler.
908  ///
909  /// By default it's 0, which means bundling is disabled.
910  unsigned BundleAlignSize;
911
912  unsigned RelaxAll : 1;
913  unsigned NoExecStack : 1;
914  unsigned SubsectionsViaSymbols : 1;
915
916  /// ELF specific e_header flags
917  // It would be good if there were an MCELFAssembler class to hold this.
918  // ELF header flags are used both by the integrated and standalone assemblers.
919  // Access to the flags is necessary in cases where assembler directives affect
920  // which flags to be set.
921  unsigned ELFHeaderEFlags;
922
923  /// Used to communicate Linker Optimization Hint information between
924  /// the Streamer and the .o writer
925  MCLOHContainer LOHContainer;
926
927  VersionMinInfoType VersionMinInfo;
928private:
929  /// Evaluate a fixup to a relocatable expression and the value which should be
930  /// placed into the fixup.
931  ///
932  /// \param Layout The layout to use for evaluation.
933  /// \param Fixup The fixup to evaluate.
934  /// \param DF The fragment the fixup is inside.
935  /// \param Target [out] On return, the relocatable expression the fixup
936  /// evaluates to.
937  /// \param Value [out] On return, the value of the fixup as currently laid
938  /// out.
939  /// \return Whether the fixup value was fully resolved. This is true if the
940  /// \p Value result is fixed, otherwise the value may change due to
941  /// relocation.
942  bool evaluateFixup(const MCAsmLayout &Layout,
943                     const MCFixup &Fixup, const MCFragment *DF,
944                     MCValue &Target, uint64_t &Value) const;
945
946  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
947  /// (increased in size, in order to hold its value correctly).
948  bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
949                            const MCAsmLayout &Layout) const;
950
951  /// Check whether the given fragment needs relaxation.
952  bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
953                               const MCAsmLayout &Layout) const;
954
955  /// \brief Perform one layout iteration and return true if any offsets
956  /// were adjusted.
957  bool layoutOnce(MCAsmLayout &Layout);
958
959  /// \brief Perform one layout iteration of the given section and return true
960  /// if any offsets were adjusted.
961  bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
962
963  bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
964
965  bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
966
967  bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
968  bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
969                                   MCDwarfCallFrameFragment &DF);
970
971  /// finishLayout - Finalize a layout, including fragment lowering.
972  void finishLayout(MCAsmLayout &Layout);
973
974  std::pair<uint64_t, bool> handleFixup(const MCAsmLayout &Layout,
975                                        MCFragment &F, const MCFixup &Fixup);
976
977public:
978  /// Compute the effective fragment size assuming it is laid out at the given
979  /// \p SectionAddress and \p FragmentOffset.
980  uint64_t computeFragmentSize(const MCAsmLayout &Layout,
981                               const MCFragment &F) const;
982
983  /// Find the symbol which defines the atom containing the given symbol, or
984  /// null if there is no such symbol.
985  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
986
987  /// Check whether a particular symbol is visible to the linker and is required
988  /// in the symbol table, or whether it can be discarded by the assembler. This
989  /// also effects whether the assembler treats the label as potentially
990  /// defining a separate atom.
991  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
992
993  /// Emit the section contents using the given object writer.
994  void writeSectionData(const MCSectionData *Section,
995                        const MCAsmLayout &Layout) const;
996
997  /// Check whether a given symbol has been flagged with .thumb_func.
998  bool isThumbFunc(const MCSymbol *Func) const;
999
1000  /// Flag a function symbol as the target of a .thumb_func directive.
1001  void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
1002
1003  /// ELF e_header flags
1004  unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;}
1005  void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
1006
1007  /// MachO deployment target version information.
1008  const VersionMinInfoType &getVersionMinInfo() const { return VersionMinInfo; }
1009  void setVersionMinInfo(MCVersionMinType Kind, unsigned Major, unsigned Minor,
1010                         unsigned Update) {
1011    VersionMinInfo.Kind = Kind;
1012    VersionMinInfo.Major = Major;
1013    VersionMinInfo.Minor = Minor;
1014    VersionMinInfo.Update = Update;
1015  }
1016
1017public:
1018  /// Construct a new assembler instance.
1019  ///
1020  /// \param OS The stream to output to.
1021  //
1022  // FIXME: How are we going to parameterize this? Two obvious options are stay
1023  // concrete and require clients to pass in a target like object. The other
1024  // option is to make this abstract, and have targets provide concrete
1025  // implementations as we do with AsmParser.
1026  MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
1027              MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
1028              raw_ostream &OS);
1029  ~MCAssembler();
1030
1031  /// Reuse an assembler instance
1032  ///
1033  void reset();
1034
1035  MCContext &getContext() const { return Context; }
1036
1037  MCAsmBackend &getBackend() const { return Backend; }
1038
1039  MCCodeEmitter &getEmitter() const { return Emitter; }
1040
1041  MCObjectWriter &getWriter() const { return Writer; }
1042
1043  /// Finish - Do final processing and write the object to the output stream.
1044  /// \p Writer is used for custom object writer (as the MCJIT does),
1045  /// if not specified it is automatically created from backend.
1046  void Finish();
1047
1048  // FIXME: This does not belong here.
1049  bool getSubsectionsViaSymbols() const {
1050    return SubsectionsViaSymbols;
1051  }
1052  void setSubsectionsViaSymbols(bool Value) {
1053    SubsectionsViaSymbols = Value;
1054  }
1055
1056  bool getRelaxAll() const { return RelaxAll; }
1057  void setRelaxAll(bool Value) { RelaxAll = Value; }
1058
1059  bool getNoExecStack() const { return NoExecStack; }
1060  void setNoExecStack(bool Value) { NoExecStack = Value; }
1061
1062  bool isBundlingEnabled() const {
1063    return BundleAlignSize != 0;
1064  }
1065
1066  unsigned getBundleAlignSize() const {
1067    return BundleAlignSize;
1068  }
1069
1070  void setBundleAlignSize(unsigned Size) {
1071    assert((Size == 0 || !(Size & (Size - 1))) &&
1072           "Expect a power-of-two bundle align size");
1073    BundleAlignSize = Size;
1074  }
1075
1076  /// @name Section List Access
1077  /// @{
1078
1079  const SectionDataListType &getSectionList() const { return Sections; }
1080  SectionDataListType &getSectionList() { return Sections; }
1081
1082  iterator begin() { return Sections.begin(); }
1083  const_iterator begin() const { return Sections.begin(); }
1084
1085  iterator end() { return Sections.end(); }
1086  const_iterator end() const { return Sections.end(); }
1087
1088  size_t size() const { return Sections.size(); }
1089
1090  /// @}
1091  /// @name Symbol List Access
1092  /// @{
1093
1094  const SymbolDataListType &getSymbolList() const { return Symbols; }
1095  SymbolDataListType &getSymbolList() { return Symbols; }
1096
1097  symbol_iterator symbol_begin() { return Symbols.begin(); }
1098  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
1099
1100  symbol_iterator symbol_end() { return Symbols.end(); }
1101  const_symbol_iterator symbol_end() const { return Symbols.end(); }
1102
1103  symbol_range symbols() { return make_range(symbol_begin(), symbol_end()); }
1104  const_symbol_range symbols() const { return make_range(symbol_begin(), symbol_end()); }
1105
1106  size_t symbol_size() const { return Symbols.size(); }
1107
1108  /// @}
1109  /// @name Indirect Symbol List Access
1110  /// @{
1111
1112  // FIXME: This is a total hack, this should not be here. Once things are
1113  // factored so that the streamer has direct access to the .o writer, it can
1114  // disappear.
1115  std::vector<IndirectSymbolData> &getIndirectSymbols() {
1116    return IndirectSymbols;
1117  }
1118
1119  indirect_symbol_iterator indirect_symbol_begin() {
1120    return IndirectSymbols.begin();
1121  }
1122  const_indirect_symbol_iterator indirect_symbol_begin() const {
1123    return IndirectSymbols.begin();
1124  }
1125
1126  indirect_symbol_iterator indirect_symbol_end() {
1127    return IndirectSymbols.end();
1128  }
1129  const_indirect_symbol_iterator indirect_symbol_end() const {
1130    return IndirectSymbols.end();
1131  }
1132
1133  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
1134
1135  /// @}
1136  /// @name Linker Option List Access
1137  /// @{
1138
1139  std::vector<std::vector<std::string> > &getLinkerOptions() {
1140    return LinkerOptions;
1141  }
1142
1143  /// @}
1144  /// @name Data Region List Access
1145  /// @{
1146
1147  // FIXME: This is a total hack, this should not be here. Once things are
1148  // factored so that the streamer has direct access to the .o writer, it can
1149  // disappear.
1150  std::vector<DataRegionData> &getDataRegions() {
1151    return DataRegions;
1152  }
1153
1154  data_region_iterator data_region_begin() {
1155    return DataRegions.begin();
1156  }
1157  const_data_region_iterator data_region_begin() const {
1158    return DataRegions.begin();
1159  }
1160
1161  data_region_iterator data_region_end() {
1162    return DataRegions.end();
1163  }
1164  const_data_region_iterator data_region_end() const {
1165    return DataRegions.end();
1166  }
1167
1168  size_t data_region_size() const { return DataRegions.size(); }
1169
1170  /// @}
1171  /// @name Data Region List Access
1172  /// @{
1173
1174  // FIXME: This is a total hack, this should not be here. Once things are
1175  // factored so that the streamer has direct access to the .o writer, it can
1176  // disappear.
1177  MCLOHContainer & getLOHContainer() {
1178    return LOHContainer;
1179  }
1180  const MCLOHContainer & getLOHContainer() const {
1181    return const_cast<MCAssembler *>(this)->getLOHContainer();
1182  }
1183  /// @}
1184  /// @name Backend Data Access
1185  /// @{
1186
1187  MCSectionData &getSectionData(const MCSection &Section) const {
1188    MCSectionData *Entry = SectionMap.lookup(&Section);
1189    assert(Entry && "Missing section data!");
1190    return *Entry;
1191  }
1192
1193  MCSectionData &getOrCreateSectionData(const MCSection &Section,
1194                                        bool *Created = nullptr) {
1195    MCSectionData *&Entry = SectionMap[&Section];
1196
1197    if (Created) *Created = !Entry;
1198    if (!Entry)
1199      Entry = new MCSectionData(Section, this);
1200
1201    return *Entry;
1202  }
1203
1204  bool hasSymbolData(const MCSymbol &Symbol) const {
1205    return SymbolMap.lookup(&Symbol) != nullptr;
1206  }
1207
1208  MCSymbolData &getSymbolData(const MCSymbol &Symbol) {
1209    return const_cast<MCSymbolData &>(
1210        static_cast<const MCAssembler &>(*this).getSymbolData(Symbol));
1211  }
1212
1213  const MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
1214    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
1215    assert(Entry && "Missing symbol data!");
1216    return *Entry;
1217  }
1218
1219  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
1220                                      bool *Created = nullptr) {
1221    MCSymbolData *&Entry = SymbolMap[&Symbol];
1222
1223    if (Created) *Created = !Entry;
1224    if (!Entry)
1225      Entry = new MCSymbolData(Symbol, nullptr, 0, this);
1226
1227    return *Entry;
1228  }
1229
1230  const_file_name_iterator file_names_begin() const {
1231    return FileNames.begin();
1232  }
1233
1234  const_file_name_iterator file_names_end() const {
1235    return FileNames.end();
1236  }
1237
1238  void addFileName(StringRef FileName) {
1239    if (std::find(file_names_begin(), file_names_end(), FileName) ==
1240        file_names_end())
1241      FileNames.push_back(FileName);
1242  }
1243
1244  /// @}
1245
1246  void dump();
1247};
1248
1249} // end namespace llvm
1250
1251#endif
1252