MCAssembler.h revision 456b5012704bcece2c8c28783e6efabb7b998616
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallString.h"
15#include "llvm/ADT/ilist.h"
16#include "llvm/ADT/ilist_node.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/System/DataTypes.h"
21#include <vector> // FIXME: Shouldn't be needed.
22
23namespace llvm {
24class raw_ostream;
25class MCAsmLayout;
26class MCAssembler;
27class MCContext;
28class MCCodeEmitter;
29class MCExpr;
30class MCFragment;
31class MCObjectWriter;
32class MCSection;
33class MCSectionData;
34class MCSymbol;
35class MCSymbolData;
36class MCValue;
37class TargetAsmBackend;
38
39/// MCAsmFixup - Represent a fixed size region of bytes inside some fragment
40/// which needs to be rewritten. This region will either be rewritten by the
41/// assembler or cause a relocation entry to be generated.
42//
43// FIXME: This should probably just be merged with MCFixup.
44class MCAsmFixup {
45public:
46  /// Offset - The offset inside the fragment which needs to be rewritten.
47  uint64_t Offset;
48
49  /// Value - The expression to eventually write into the fragment.
50  const MCExpr *Value;
51
52  /// Kind - The fixup kind.
53  MCFixupKind Kind;
54
55public:
56  MCAsmFixup(uint64_t _Offset, const MCExpr &_Value, MCFixupKind _Kind)
57    : Offset(_Offset), Value(&_Value), Kind(_Kind) {}
58};
59
60class MCFragment : public ilist_node<MCFragment> {
61  friend class MCAsmLayout;
62
63  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
64  void operator=(const MCFragment&); // DO NOT IMPLEMENT
65
66public:
67  enum FragmentType {
68    FT_Align,
69    FT_Data,
70    FT_Fill,
71    FT_Inst,
72    FT_Org
73  };
74
75private:
76  FragmentType Kind;
77
78  /// Parent - The data for the section this fragment is in.
79  MCSectionData *Parent;
80
81  /// Atom - The atom this fragment is in, as represented by it's defining
82  /// symbol. Atom's are only used by backends which set
83  /// \see MCAsmBackend::hasReliableSymbolDifference().
84  MCSymbolData *Atom;
85
86  /// @name Assembler Backend Data
87  /// @{
88  //
89  // FIXME: This could all be kept private to the assembler implementation.
90
91  /// Offset - The offset of this fragment in its section. This is ~0 until
92  /// initialized.
93  uint64_t Offset;
94
95  /// EffectiveSize - The compute size of this section. This is ~0 until
96  /// initialized.
97  uint64_t EffectiveSize;
98
99  /// Ordinal - The global index of this fragment. This is the index across all
100  /// sections, not just the parent section.
101  unsigned Ordinal;
102
103  /// @}
104
105protected:
106  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
107
108public:
109  // Only for sentinel.
110  MCFragment();
111  virtual ~MCFragment();
112
113  FragmentType getKind() const { return Kind; }
114
115  MCSectionData *getParent() const { return Parent; }
116  void setParent(MCSectionData *Value) { Parent = Value; }
117
118  MCSymbolData *getAtom() const { return Atom; }
119  void setAtom(MCSymbolData *Value) { Atom = Value; }
120
121  unsigned getOrdinal() const { return Ordinal; }
122  void setOrdinal(unsigned Value) { Ordinal = Value; }
123
124  static bool classof(const MCFragment *O) { return true; }
125
126  virtual void dump();
127};
128
129class MCDataFragment : public MCFragment {
130  SmallString<32> Contents;
131
132  /// Fixups - The list of fixups in this fragment.
133  std::vector<MCAsmFixup> Fixups;
134
135public:
136  typedef std::vector<MCAsmFixup>::const_iterator const_fixup_iterator;
137  typedef std::vector<MCAsmFixup>::iterator fixup_iterator;
138
139public:
140  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
141
142  /// @name Accessors
143  /// @{
144
145  SmallString<32> &getContents() { return Contents; }
146  const SmallString<32> &getContents() const { return Contents; }
147
148  /// @}
149  /// @name Fixup Access
150  /// @{
151
152  void addFixup(MCAsmFixup Fixup) {
153    // Enforce invariant that fixups are in offset order.
154    assert((Fixups.empty() || Fixup.Offset > Fixups.back().Offset) &&
155           "Fixups must be added in order!");
156    Fixups.push_back(Fixup);
157  }
158
159  std::vector<MCAsmFixup> &getFixups() { return Fixups; }
160  const std::vector<MCAsmFixup> &getFixups() const { return Fixups; }
161
162  fixup_iterator fixup_begin() { return Fixups.begin(); }
163  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
164
165  fixup_iterator fixup_end() {return Fixups.end();}
166  const_fixup_iterator fixup_end() const {return Fixups.end();}
167
168  size_t fixup_size() const { return Fixups.size(); }
169
170  /// @}
171
172  static bool classof(const MCFragment *F) {
173    return F->getKind() == MCFragment::FT_Data;
174  }
175  static bool classof(const MCDataFragment *) { return true; }
176
177  virtual void dump();
178};
179
180// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
181// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
182// with this approach (as opposed to making MCInstFragment a very light weight
183// object with just the MCInst and a code size, then we should just change
184// MCDataFragment to have an optional MCInst at its end.
185class MCInstFragment : public MCFragment {
186  /// Inst - The instruction this is a fragment for.
187  MCInst Inst;
188
189  /// InstSize - The size of the currently encoded instruction.
190  SmallString<8> Code;
191
192  /// Fixups - The list of fixups in this fragment.
193  SmallVector<MCAsmFixup, 1> Fixups;
194
195public:
196  typedef SmallVectorImpl<MCAsmFixup>::const_iterator const_fixup_iterator;
197  typedef SmallVectorImpl<MCAsmFixup>::iterator fixup_iterator;
198
199public:
200  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
201    : MCFragment(FT_Inst, SD), Inst(_Inst) {
202  }
203
204  /// @name Accessors
205  /// @{
206
207  SmallVectorImpl<char> &getCode() { return Code; }
208  const SmallVectorImpl<char> &getCode() const { return Code; }
209
210  unsigned getInstSize() const { return Code.size(); }
211
212  MCInst &getInst() { return Inst; }
213  const MCInst &getInst() const { return Inst; }
214
215  void setInst(MCInst Value) { Inst = Value; }
216
217  /// @}
218  /// @name Fixup Access
219  /// @{
220
221  SmallVectorImpl<MCAsmFixup> &getFixups() { return Fixups; }
222  const SmallVectorImpl<MCAsmFixup> &getFixups() const { return Fixups; }
223
224  fixup_iterator fixup_begin() { return Fixups.begin(); }
225  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
226
227  fixup_iterator fixup_end() {return Fixups.end();}
228  const_fixup_iterator fixup_end() const {return Fixups.end();}
229
230  size_t fixup_size() const { return Fixups.size(); }
231
232  /// @}
233
234  static bool classof(const MCFragment *F) {
235    return F->getKind() == MCFragment::FT_Inst;
236  }
237  static bool classof(const MCInstFragment *) { return true; }
238
239  virtual void dump();
240};
241
242class MCAlignFragment : public MCFragment {
243  /// Alignment - The alignment to ensure, in bytes.
244  unsigned Alignment;
245
246  /// Value - Value to use for filling padding bytes.
247  int64_t Value;
248
249  /// ValueSize - The size of the integer (in bytes) of \arg Value.
250  unsigned ValueSize;
251
252  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
253  /// cannot be satisfied in this width then this fragment is ignored.
254  unsigned MaxBytesToEmit;
255
256  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
257  /// of using the provided value. The exact interpretation of this flag is
258  /// target dependent.
259  bool EmitNops : 1;
260
261  /// OnlyAlignAddress - Flag to indicate that this align is only used to adjust
262  /// the address space size of a section and that it should not be included as
263  /// part of the section size. This flag can only be used on the last fragment
264  /// in a section.
265  bool OnlyAlignAddress : 1;
266
267public:
268  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
269                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
270    : MCFragment(FT_Align, SD), Alignment(_Alignment),
271      Value(_Value),ValueSize(_ValueSize),
272      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false),
273      OnlyAlignAddress(false) {}
274
275  /// @name Accessors
276  /// @{
277
278  unsigned getAlignment() const { return Alignment; }
279
280  int64_t getValue() const { return Value; }
281
282  unsigned getValueSize() const { return ValueSize; }
283
284  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
285
286  bool hasEmitNops() const { return EmitNops; }
287  void setEmitNops(bool Value) { EmitNops = Value; }
288
289  bool hasOnlyAlignAddress() const { return OnlyAlignAddress; }
290  void setOnlyAlignAddress(bool Value) { OnlyAlignAddress = Value; }
291
292  /// @}
293
294  static bool classof(const MCFragment *F) {
295    return F->getKind() == MCFragment::FT_Align;
296  }
297  static bool classof(const MCAlignFragment *) { return true; }
298
299  virtual void dump();
300};
301
302class MCFillFragment : public MCFragment {
303  /// Value - Value to use for filling bytes.
304  int64_t Value;
305
306  /// ValueSize - The size (in bytes) of \arg Value to use when filling, or 0 if
307  /// this is a virtual fill fragment.
308  unsigned ValueSize;
309
310  /// Size - The number of bytes to insert.
311  uint64_t Size;
312
313public:
314  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
315                 MCSectionData *SD = 0)
316    : MCFragment(FT_Fill, SD),
317      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
318    assert((!ValueSize || (Size % ValueSize) == 0) &&
319           "Fill size must be a multiple of the value size!");
320  }
321
322  /// @name Accessors
323  /// @{
324
325  int64_t getValue() const { return Value; }
326
327  unsigned getValueSize() const { return ValueSize; }
328
329  uint64_t getSize() const { return Size; }
330
331  /// @}
332
333  static bool classof(const MCFragment *F) {
334    return F->getKind() == MCFragment::FT_Fill;
335  }
336  static bool classof(const MCFillFragment *) { return true; }
337
338  virtual void dump();
339};
340
341class MCOrgFragment : public MCFragment {
342  /// Offset - The offset this fragment should start at.
343  const MCExpr *Offset;
344
345  /// Value - Value to use for filling bytes.
346  int8_t Value;
347
348public:
349  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
350    : MCFragment(FT_Org, SD),
351      Offset(&_Offset), Value(_Value) {}
352
353  /// @name Accessors
354  /// @{
355
356  const MCExpr &getOffset() const { return *Offset; }
357
358  uint8_t getValue() const { return Value; }
359
360  /// @}
361
362  static bool classof(const MCFragment *F) {
363    return F->getKind() == MCFragment::FT_Org;
364  }
365  static bool classof(const MCOrgFragment *) { return true; }
366
367  virtual void dump();
368};
369
370// FIXME: Should this be a separate class, or just merged into MCSection? Since
371// we anticipate the fast path being through an MCAssembler, the only reason to
372// keep it out is for API abstraction.
373class MCSectionData : public ilist_node<MCSectionData> {
374  friend class MCAsmLayout;
375
376  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
377  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
378
379public:
380  typedef iplist<MCFragment> FragmentListType;
381
382  typedef FragmentListType::const_iterator const_iterator;
383  typedef FragmentListType::iterator iterator;
384
385  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
386  typedef FragmentListType::reverse_iterator reverse_iterator;
387
388private:
389  iplist<MCFragment> Fragments;
390  const MCSection *Section;
391
392  /// Ordinal - The section index in the assemblers section list.
393  unsigned Ordinal;
394
395  /// Alignment - The maximum alignment seen in this section.
396  unsigned Alignment;
397
398  /// @name Assembler Backend Data
399  /// @{
400  //
401  // FIXME: This could all be kept private to the assembler implementation.
402
403  /// Address - The computed address of this section. This is ~0 until
404  /// initialized.
405  uint64_t Address;
406
407  /// Size - The logical size of this section. This is ~0 until initialized.
408  uint64_t Size;
409
410  /// AddressSize - The address space size used by this section. This is ~0
411  /// until initialized.
412  uint64_t AddressSize;
413
414  /// FileSize - The size of this section in the object file. This is ~0 until
415  /// initialized.
416  uint64_t FileSize;
417
418  /// HasInstructions - Whether this section has had instructions emitted into
419  /// it.
420  unsigned HasInstructions : 1;
421
422  /// @}
423
424public:
425  // Only for use as sentinel.
426  MCSectionData();
427  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
428
429  const MCSection &getSection() const { return *Section; }
430
431  unsigned getAlignment() const { return Alignment; }
432  void setAlignment(unsigned Value) { Alignment = Value; }
433
434  bool hasInstructions() const { return HasInstructions; }
435  void setHasInstructions(bool Value) { HasInstructions = Value; }
436
437  unsigned getOrdinal() const { return Ordinal; }
438  void setOrdinal(unsigned Value) { Ordinal = Value; }
439
440  /// @name Fragment Access
441  /// @{
442
443  const FragmentListType &getFragmentList() const { return Fragments; }
444  FragmentListType &getFragmentList() { return Fragments; }
445
446  iterator begin() { return Fragments.begin(); }
447  const_iterator begin() const { return Fragments.begin(); }
448
449  iterator end() { return Fragments.end(); }
450  const_iterator end() const { return Fragments.end(); }
451
452  reverse_iterator rbegin() { return Fragments.rbegin(); }
453  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
454
455  reverse_iterator rend() { return Fragments.rend(); }
456  const_reverse_iterator rend() const { return Fragments.rend(); }
457
458  size_t size() const { return Fragments.size(); }
459
460  bool empty() const { return Fragments.empty(); }
461
462  void dump();
463
464  /// @}
465};
466
467// FIXME: Same concerns as with SectionData.
468class MCSymbolData : public ilist_node<MCSymbolData> {
469public:
470  const MCSymbol *Symbol;
471
472  /// Fragment - The fragment this symbol's value is relative to, if any.
473  MCFragment *Fragment;
474
475  /// Offset - The offset to apply to the fragment address to form this symbol's
476  /// value.
477  uint64_t Offset;
478
479  /// IsExternal - True if this symbol is visible outside this translation
480  /// unit.
481  unsigned IsExternal : 1;
482
483  /// IsPrivateExtern - True if this symbol is private extern.
484  unsigned IsPrivateExtern : 1;
485
486  /// CommonSize - The size of the symbol, if it is 'common', or 0.
487  //
488  // FIXME: Pack this in with other fields? We could put it in offset, since a
489  // common symbol can never get a definition.
490  uint64_t CommonSize;
491
492  /// CommonAlign - The alignment of the symbol, if it is 'common'.
493  //
494  // FIXME: Pack this in with other fields?
495  unsigned CommonAlign;
496
497  /// Flags - The Flags field is used by object file implementations to store
498  /// additional per symbol information which is not easily classified.
499  uint32_t Flags;
500
501  /// Index - Index field, for use by the object file implementation.
502  uint64_t Index;
503
504public:
505  // Only for use as sentinel.
506  MCSymbolData();
507  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
508               MCAssembler *A = 0);
509
510  /// @name Accessors
511  /// @{
512
513  const MCSymbol &getSymbol() const { return *Symbol; }
514
515  MCFragment *getFragment() const { return Fragment; }
516  void setFragment(MCFragment *Value) { Fragment = Value; }
517
518  uint64_t getOffset() const { return Offset; }
519  void setOffset(uint64_t Value) { Offset = Value; }
520
521  /// @}
522  /// @name Symbol Attributes
523  /// @{
524
525  bool isExternal() const { return IsExternal; }
526  void setExternal(bool Value) { IsExternal = Value; }
527
528  bool isPrivateExtern() const { return IsPrivateExtern; }
529  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
530
531  /// isCommon - Is this a 'common' symbol.
532  bool isCommon() const { return CommonSize != 0; }
533
534  /// setCommon - Mark this symbol as being 'common'.
535  ///
536  /// \param Size - The size of the symbol.
537  /// \param Align - The alignment of the symbol.
538  void setCommon(uint64_t Size, unsigned Align) {
539    CommonSize = Size;
540    CommonAlign = Align;
541  }
542
543  /// getCommonSize - Return the size of a 'common' symbol.
544  uint64_t getCommonSize() const {
545    assert(isCommon() && "Not a 'common' symbol!");
546    return CommonSize;
547  }
548
549  /// getCommonAlignment - Return the alignment of a 'common' symbol.
550  unsigned getCommonAlignment() const {
551    assert(isCommon() && "Not a 'common' symbol!");
552    return CommonAlign;
553  }
554
555  /// getFlags - Get the (implementation defined) symbol flags.
556  uint32_t getFlags() const { return Flags; }
557
558  /// setFlags - Set the (implementation defined) symbol flags.
559  void setFlags(uint32_t Value) { Flags = Value; }
560
561  /// modifyFlags - Modify the flags via a mask
562  void modifyFlags(uint32_t Value, uint32_t Mask) {
563    Flags = (Flags & ~Mask) | Value;
564  }
565
566  /// getIndex - Get the (implementation defined) index.
567  uint64_t getIndex() const { return Index; }
568
569  /// setIndex - Set the (implementation defined) index.
570  void setIndex(uint64_t Value) { Index = Value; }
571
572  /// @}
573
574  void dump();
575};
576
577// FIXME: This really doesn't belong here. See comments below.
578struct IndirectSymbolData {
579  MCSymbol *Symbol;
580  MCSectionData *SectionData;
581};
582
583class MCAssembler {
584  friend class MCAsmLayout;
585
586public:
587  typedef iplist<MCSectionData> SectionDataListType;
588  typedef iplist<MCSymbolData> SymbolDataListType;
589
590  typedef SectionDataListType::const_iterator const_iterator;
591  typedef SectionDataListType::iterator iterator;
592
593  typedef SymbolDataListType::const_iterator const_symbol_iterator;
594  typedef SymbolDataListType::iterator symbol_iterator;
595
596  typedef std::vector<IndirectSymbolData>::const_iterator
597    const_indirect_symbol_iterator;
598  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
599
600private:
601  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
602  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
603
604  MCContext &Context;
605
606  TargetAsmBackend &Backend;
607
608  MCCodeEmitter &Emitter;
609
610  raw_ostream &OS;
611
612  iplist<MCSectionData> Sections;
613
614  iplist<MCSymbolData> Symbols;
615
616  /// The map of sections to their associated assembler backend data.
617  //
618  // FIXME: Avoid this indirection?
619  DenseMap<const MCSection*, MCSectionData*> SectionMap;
620
621  /// The map of symbols to their associated assembler backend data.
622  //
623  // FIXME: Avoid this indirection?
624  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
625
626  std::vector<IndirectSymbolData> IndirectSymbols;
627
628  unsigned RelaxAll : 1;
629  unsigned SubsectionsViaSymbols : 1;
630
631private:
632  /// Evaluate a fixup to a relocatable expression and the value which should be
633  /// placed into the fixup.
634  ///
635  /// \param Layout The layout to use for evaluation.
636  /// \param Fixup The fixup to evaluate.
637  /// \param DF The fragment the fixup is inside.
638  /// \param Target [out] On return, the relocatable expression the fixup
639  /// evaluates to.
640  /// \param Value [out] On return, the value of the fixup as currently layed
641  /// out.
642  /// \return Whether the fixup value was fully resolved. This is true if the
643  /// \arg Value result is fixed, otherwise the value may change due to
644  /// relocation.
645  bool EvaluateFixup(const MCAsmLayout &Layout,
646                     const MCAsmFixup &Fixup, const MCFragment *DF,
647                     MCValue &Target, uint64_t &Value) const;
648
649  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
650  /// (increased in size, in order to hold its value correctly).
651  bool FixupNeedsRelaxation(const MCAsmFixup &Fixup, const MCFragment *DF,
652                            const MCAsmLayout &Layout) const;
653
654  /// Check whether the given fragment needs relaxation.
655  bool FragmentNeedsRelaxation(const MCInstFragment *IF,
656                               const MCAsmLayout &Layout) const;
657
658  /// LayoutFragment - Performs layout of the given \arg Fragment; assuming that
659  /// the previous fragment has already been layed out correctly, and the parent
660  /// section has been initialized.
661  void LayoutFragment(MCAsmLayout &Layout, MCFragment &Fragment);
662
663  /// LayoutSection - Performs layout of the section referenced by the given
664  /// \arg SectionOrderIndex. The layout assumes that the previous section has
665  /// already been layed out correctly.
666  void LayoutSection(MCAsmLayout &Layout, unsigned SectionOrderIndex);
667
668  /// LayoutOnce - Perform one layout iteration and return true if any offsets
669  /// were adjusted.
670  bool LayoutOnce(MCAsmLayout &Layout);
671
672  /// FinishLayout - Finalize a layout, including fragment lowering.
673  void FinishLayout(MCAsmLayout &Layout);
674
675public:
676  /// Find the symbol which defines the atom containing the given symbol, or
677  /// null if there is no such symbol.
678  const MCSymbolData *getAtom(const MCAsmLayout &Layout,
679                              const MCSymbolData *Symbol) const;
680
681  /// Check whether a particular symbol is visible to the linker and is required
682  /// in the symbol table, or whether it can be discarded by the assembler. This
683  /// also effects whether the assembler treats the label as potentially
684  /// defining a separate atom.
685  bool isSymbolLinkerVisible(const MCSymbolData *SD) const;
686
687  /// Emit the section contents using the given object writer.
688  //
689  // FIXME: Should MCAssembler always have a reference to the object writer?
690  void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout,
691                        MCObjectWriter *OW) const;
692
693public:
694  /// Construct a new assembler instance.
695  ///
696  /// \arg OS - The stream to output to.
697  //
698  // FIXME: How are we going to parameterize this? Two obvious options are stay
699  // concrete and require clients to pass in a target like object. The other
700  // option is to make this abstract, and have targets provide concrete
701  // implementations as we do with AsmParser.
702  MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
703              MCCodeEmitter &_Emitter, raw_ostream &OS);
704  ~MCAssembler();
705
706  MCContext &getContext() const { return Context; }
707
708  TargetAsmBackend &getBackend() const { return Backend; }
709
710  MCCodeEmitter &getEmitter() const { return Emitter; }
711
712  /// Finish - Do final processing and write the object to the output stream.
713  void Finish();
714
715  // FIXME: This does not belong here.
716  bool getSubsectionsViaSymbols() const {
717    return SubsectionsViaSymbols;
718  }
719  void setSubsectionsViaSymbols(bool Value) {
720    SubsectionsViaSymbols = Value;
721  }
722
723  bool getRelaxAll() const { return RelaxAll; }
724  void setRelaxAll(bool Value) { RelaxAll = Value; }
725
726  /// @name Section List Access
727  /// @{
728
729  const SectionDataListType &getSectionList() const { return Sections; }
730  SectionDataListType &getSectionList() { return Sections; }
731
732  iterator begin() { return Sections.begin(); }
733  const_iterator begin() const { return Sections.begin(); }
734
735  iterator end() { return Sections.end(); }
736  const_iterator end() const { return Sections.end(); }
737
738  size_t size() const { return Sections.size(); }
739
740  /// @}
741  /// @name Symbol List Access
742  /// @{
743
744  const SymbolDataListType &getSymbolList() const { return Symbols; }
745  SymbolDataListType &getSymbolList() { return Symbols; }
746
747  symbol_iterator symbol_begin() { return Symbols.begin(); }
748  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
749
750  symbol_iterator symbol_end() { return Symbols.end(); }
751  const_symbol_iterator symbol_end() const { return Symbols.end(); }
752
753  size_t symbol_size() const { return Symbols.size(); }
754
755  /// @}
756  /// @name Indirect Symbol List Access
757  /// @{
758
759  // FIXME: This is a total hack, this should not be here. Once things are
760  // factored so that the streamer has direct access to the .o writer, it can
761  // disappear.
762  std::vector<IndirectSymbolData> &getIndirectSymbols() {
763    return IndirectSymbols;
764  }
765
766  indirect_symbol_iterator indirect_symbol_begin() {
767    return IndirectSymbols.begin();
768  }
769  const_indirect_symbol_iterator indirect_symbol_begin() const {
770    return IndirectSymbols.begin();
771  }
772
773  indirect_symbol_iterator indirect_symbol_end() {
774    return IndirectSymbols.end();
775  }
776  const_indirect_symbol_iterator indirect_symbol_end() const {
777    return IndirectSymbols.end();
778  }
779
780  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
781
782  /// @}
783  /// @name Backend Data Access
784  /// @{
785
786  MCSectionData &getSectionData(const MCSection &Section) const {
787    MCSectionData *Entry = SectionMap.lookup(&Section);
788    assert(Entry && "Missing section data!");
789    return *Entry;
790  }
791
792  MCSectionData &getOrCreateSectionData(const MCSection &Section,
793                                        bool *Created = 0) {
794    MCSectionData *&Entry = SectionMap[&Section];
795
796    if (Created) *Created = !Entry;
797    if (!Entry)
798      Entry = new MCSectionData(Section, this);
799
800    return *Entry;
801  }
802
803  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
804    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
805    assert(Entry && "Missing symbol data!");
806    return *Entry;
807  }
808
809  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
810                                      bool *Created = 0) {
811    MCSymbolData *&Entry = SymbolMap[&Symbol];
812
813    if (Created) *Created = !Entry;
814    if (!Entry)
815      Entry = new MCSymbolData(Symbol, 0, 0, this);
816
817    return *Entry;
818  }
819
820  /// @}
821
822  void dump();
823};
824
825} // end namespace llvm
826
827#endif
828