MCAssembler.h revision 624d466a671feb563c137d1216ecad9d03d1a2ed
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallString.h"
15#include "llvm/ADT/ilist.h"
16#include "llvm/ADT/ilist_node.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/System/DataTypes.h"
21#include <vector> // FIXME: Shouldn't be needed.
22
23namespace llvm {
24class raw_ostream;
25class MCAsmLayout;
26class MCAssembler;
27class MCContext;
28class MCCodeEmitter;
29class MCExpr;
30class MCFragment;
31class MCObjectWriter;
32class MCSection;
33class MCSectionData;
34class MCSymbol;
35class MCSymbolData;
36class MCValue;
37class TargetAsmBackend;
38
39/// MCAsmFixup - Represent a fixed size region of bytes inside some fragment
40/// which needs to be rewritten. This region will either be rewritten by the
41/// assembler or cause a relocation entry to be generated.
42//
43// FIXME: This should probably just be merged with MCFixup.
44class MCAsmFixup {
45public:
46  /// Offset - The offset inside the fragment which needs to be rewritten.
47  uint64_t Offset;
48
49  /// Value - The expression to eventually write into the fragment.
50  const MCExpr *Value;
51
52  /// Kind - The fixup kind.
53  MCFixupKind Kind;
54
55public:
56  MCAsmFixup(uint64_t _Offset, const MCExpr &_Value, MCFixupKind _Kind)
57    : Offset(_Offset), Value(&_Value), Kind(_Kind) {}
58};
59
60class MCFragment : public ilist_node<MCFragment> {
61  friend class MCAsmLayout;
62
63  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
64  void operator=(const MCFragment&); // DO NOT IMPLEMENT
65
66public:
67  enum FragmentType {
68    FT_Align,
69    FT_Data,
70    FT_Fill,
71    FT_Inst,
72    FT_Org,
73    FT_ZeroFill
74  };
75
76private:
77  FragmentType Kind;
78
79  /// Parent - The data for the section this fragment is in.
80  MCSectionData *Parent;
81
82  /// Atom - The atom this fragment is in, as represented by it's defining
83  /// symbol. Atom's are only used by backends which set
84  /// \see MCAsmBackend::hasReliableSymbolDifference().
85  MCSymbolData *Atom;
86
87  /// @name Assembler Backend Data
88  /// @{
89  //
90  // FIXME: This could all be kept private to the assembler implementation.
91
92  /// Offset - The offset of this fragment in its section. This is ~0 until
93  /// initialized.
94  uint64_t Offset;
95
96  /// EffectiveSize - The compute size of this section. This is ~0 until
97  /// initialized.
98  uint64_t EffectiveSize;
99
100  /// Ordinal - The global index of this fragment. This is the index across all
101  /// sections, not just the parent section.
102  unsigned Ordinal;
103
104  /// @}
105
106protected:
107  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
108
109public:
110  // Only for sentinel.
111  MCFragment();
112  virtual ~MCFragment();
113
114  FragmentType getKind() const { return Kind; }
115
116  MCSectionData *getParent() const { return Parent; }
117  void setParent(MCSectionData *Value) { Parent = Value; }
118
119  MCSymbolData *getAtom() const { return Atom; }
120  void setAtom(MCSymbolData *Value) { Atom = Value; }
121
122  unsigned getOrdinal() const { return Ordinal; }
123  void setOrdinal(unsigned Value) { Ordinal = Value; }
124
125  static bool classof(const MCFragment *O) { return true; }
126
127  virtual void dump();
128};
129
130class MCDataFragment : public MCFragment {
131  SmallString<32> Contents;
132
133  /// Fixups - The list of fixups in this fragment.
134  std::vector<MCAsmFixup> Fixups;
135
136public:
137  typedef std::vector<MCAsmFixup>::const_iterator const_fixup_iterator;
138  typedef std::vector<MCAsmFixup>::iterator fixup_iterator;
139
140public:
141  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
142
143  /// @name Accessors
144  /// @{
145
146  SmallString<32> &getContents() { return Contents; }
147  const SmallString<32> &getContents() const { return Contents; }
148
149  /// @}
150  /// @name Fixup Access
151  /// @{
152
153  void addFixup(MCAsmFixup Fixup) {
154    // Enforce invariant that fixups are in offset order.
155    assert((Fixups.empty() || Fixup.Offset > Fixups.back().Offset) &&
156           "Fixups must be added in order!");
157    Fixups.push_back(Fixup);
158  }
159
160  std::vector<MCAsmFixup> &getFixups() { return Fixups; }
161  const std::vector<MCAsmFixup> &getFixups() const { return Fixups; }
162
163  fixup_iterator fixup_begin() { return Fixups.begin(); }
164  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
165
166  fixup_iterator fixup_end() {return Fixups.end();}
167  const_fixup_iterator fixup_end() const {return Fixups.end();}
168
169  size_t fixup_size() const { return Fixups.size(); }
170
171  /// @}
172
173  static bool classof(const MCFragment *F) {
174    return F->getKind() == MCFragment::FT_Data;
175  }
176  static bool classof(const MCDataFragment *) { return true; }
177
178  virtual void dump();
179};
180
181// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
182// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
183// with this approach (as opposed to making MCInstFragment a very light weight
184// object with just the MCInst and a code size, then we should just change
185// MCDataFragment to have an optional MCInst at its end.
186class MCInstFragment : public MCFragment {
187  /// Inst - The instruction this is a fragment for.
188  MCInst Inst;
189
190  /// InstSize - The size of the currently encoded instruction.
191  SmallString<8> Code;
192
193  /// Fixups - The list of fixups in this fragment.
194  SmallVector<MCAsmFixup, 1> Fixups;
195
196public:
197  typedef SmallVectorImpl<MCAsmFixup>::const_iterator const_fixup_iterator;
198  typedef SmallVectorImpl<MCAsmFixup>::iterator fixup_iterator;
199
200public:
201  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
202    : MCFragment(FT_Inst, SD), Inst(_Inst) {
203  }
204
205  /// @name Accessors
206  /// @{
207
208  SmallVectorImpl<char> &getCode() { return Code; }
209  const SmallVectorImpl<char> &getCode() const { return Code; }
210
211  unsigned getInstSize() const { return Code.size(); }
212
213  MCInst &getInst() { return Inst; }
214  const MCInst &getInst() const { return Inst; }
215
216  void setInst(MCInst Value) { Inst = Value; }
217
218  /// @}
219  /// @name Fixup Access
220  /// @{
221
222  SmallVectorImpl<MCAsmFixup> &getFixups() { return Fixups; }
223  const SmallVectorImpl<MCAsmFixup> &getFixups() const { return Fixups; }
224
225  fixup_iterator fixup_begin() { return Fixups.begin(); }
226  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
227
228  fixup_iterator fixup_end() {return Fixups.end();}
229  const_fixup_iterator fixup_end() const {return Fixups.end();}
230
231  size_t fixup_size() const { return Fixups.size(); }
232
233  /// @}
234
235  static bool classof(const MCFragment *F) {
236    return F->getKind() == MCFragment::FT_Inst;
237  }
238  static bool classof(const MCInstFragment *) { return true; }
239
240  virtual void dump();
241};
242
243class MCAlignFragment : public MCFragment {
244  /// Alignment - The alignment to ensure, in bytes.
245  unsigned Alignment;
246
247  /// Value - Value to use for filling padding bytes.
248  int64_t Value;
249
250  /// ValueSize - The size of the integer (in bytes) of \arg Value.
251  unsigned ValueSize;
252
253  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
254  /// cannot be satisfied in this width then this fragment is ignored.
255  unsigned MaxBytesToEmit;
256
257  /// EmitNops - true when aligning code and optimal nops to be used for
258  /// filling.
259  bool EmitNops;
260
261public:
262  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
263                  unsigned _MaxBytesToEmit, bool _EmitNops,
264		  MCSectionData *SD = 0)
265    : MCFragment(FT_Align, SD), Alignment(_Alignment),
266      Value(_Value),ValueSize(_ValueSize),
267      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(_EmitNops) {}
268
269  /// @name Accessors
270  /// @{
271
272  unsigned getAlignment() const { return Alignment; }
273
274  int64_t getValue() const { return Value; }
275
276  unsigned getValueSize() const { return ValueSize; }
277
278  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
279
280  unsigned getEmitNops() const { return EmitNops; }
281
282  /// @}
283
284  static bool classof(const MCFragment *F) {
285    return F->getKind() == MCFragment::FT_Align;
286  }
287  static bool classof(const MCAlignFragment *) { return true; }
288
289  virtual void dump();
290};
291
292class MCFillFragment : public MCFragment {
293  /// Value - Value to use for filling bytes.
294  int64_t Value;
295
296  /// ValueSize - The size (in bytes) of \arg Value to use when filling.
297  unsigned ValueSize;
298
299  /// Count - The number of copies of \arg Value to insert.
300  uint64_t Count;
301
302public:
303  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Count,
304                 MCSectionData *SD = 0)
305    : MCFragment(FT_Fill, SD),
306      Value(_Value), ValueSize(_ValueSize), Count(_Count) {}
307
308  /// @name Accessors
309  /// @{
310
311  int64_t getValue() const { return Value; }
312
313  unsigned getValueSize() const { return ValueSize; }
314
315  uint64_t getCount() const { return Count; }
316
317  /// @}
318
319  static bool classof(const MCFragment *F) {
320    return F->getKind() == MCFragment::FT_Fill;
321  }
322  static bool classof(const MCFillFragment *) { return true; }
323
324  virtual void dump();
325};
326
327class MCOrgFragment : public MCFragment {
328  /// Offset - The offset this fragment should start at.
329  const MCExpr *Offset;
330
331  /// Value - Value to use for filling bytes.
332  int8_t Value;
333
334public:
335  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
336    : MCFragment(FT_Org, SD),
337      Offset(&_Offset), Value(_Value) {}
338
339  /// @name Accessors
340  /// @{
341
342  const MCExpr &getOffset() const { return *Offset; }
343
344  uint8_t getValue() const { return Value; }
345
346  /// @}
347
348  static bool classof(const MCFragment *F) {
349    return F->getKind() == MCFragment::FT_Org;
350  }
351  static bool classof(const MCOrgFragment *) { return true; }
352
353  virtual void dump();
354};
355
356/// MCZeroFillFragment - Represent data which has a fixed size and alignment,
357/// but requires no physical space in the object file.
358class MCZeroFillFragment : public MCFragment {
359  /// Size - The size of this fragment.
360  uint64_t Size;
361
362  /// Alignment - The alignment for this fragment.
363  unsigned Alignment;
364
365public:
366  MCZeroFillFragment(uint64_t _Size, unsigned _Alignment, MCSectionData *SD = 0)
367    : MCFragment(FT_ZeroFill, SD),
368      Size(_Size), Alignment(_Alignment) {}
369
370  /// @name Accessors
371  /// @{
372
373  uint64_t getSize() const { return Size; }
374
375  unsigned getAlignment() const { return Alignment; }
376
377  /// @}
378
379  static bool classof(const MCFragment *F) {
380    return F->getKind() == MCFragment::FT_ZeroFill;
381  }
382  static bool classof(const MCZeroFillFragment *) { return true; }
383
384  virtual void dump();
385};
386
387// FIXME: Should this be a separate class, or just merged into MCSection? Since
388// we anticipate the fast path being through an MCAssembler, the only reason to
389// keep it out is for API abstraction.
390class MCSectionData : public ilist_node<MCSectionData> {
391  friend class MCAsmLayout;
392
393  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
394  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
395
396public:
397  typedef iplist<MCFragment> FragmentListType;
398
399  typedef FragmentListType::const_iterator const_iterator;
400  typedef FragmentListType::iterator iterator;
401
402  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
403  typedef FragmentListType::reverse_iterator reverse_iterator;
404
405private:
406  iplist<MCFragment> Fragments;
407  const MCSection *Section;
408
409  /// Ordinal - The section index in the assemblers section list.
410  unsigned Ordinal;
411
412  /// Alignment - The maximum alignment seen in this section.
413  unsigned Alignment;
414
415  /// @name Assembler Backend Data
416  /// @{
417  //
418  // FIXME: This could all be kept private to the assembler implementation.
419
420  /// Address - The computed address of this section. This is ~0 until
421  /// initialized.
422  uint64_t Address;
423
424  /// Size - The content size of this section. This is ~0 until initialized.
425  uint64_t Size;
426
427  /// FileSize - The size of this section in the object file. This is ~0 until
428  /// initialized.
429  uint64_t FileSize;
430
431  /// HasInstructions - Whether this section has had instructions emitted into
432  /// it.
433  unsigned HasInstructions : 1;
434
435  /// @}
436
437public:
438  // Only for use as sentinel.
439  MCSectionData();
440  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
441
442  const MCSection &getSection() const { return *Section; }
443
444  unsigned getAlignment() const { return Alignment; }
445  void setAlignment(unsigned Value) { Alignment = Value; }
446
447  bool hasInstructions() const { return HasInstructions; }
448  void setHasInstructions(bool Value) { HasInstructions = Value; }
449
450  unsigned getOrdinal() const { return Ordinal; }
451  void setOrdinal(unsigned Value) { Ordinal = Value; }
452
453  /// @name Fragment Access
454  /// @{
455
456  const FragmentListType &getFragmentList() const { return Fragments; }
457  FragmentListType &getFragmentList() { return Fragments; }
458
459  iterator begin() { return Fragments.begin(); }
460  const_iterator begin() const { return Fragments.begin(); }
461
462  iterator end() { return Fragments.end(); }
463  const_iterator end() const { return Fragments.end(); }
464
465  reverse_iterator rbegin() { return Fragments.rbegin(); }
466  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
467
468  reverse_iterator rend() { return Fragments.rend(); }
469  const_reverse_iterator rend() const { return Fragments.rend(); }
470
471  size_t size() const { return Fragments.size(); }
472
473  bool empty() const { return Fragments.empty(); }
474
475  void dump();
476
477  /// @}
478};
479
480// FIXME: Same concerns as with SectionData.
481class MCSymbolData : public ilist_node<MCSymbolData> {
482public:
483  const MCSymbol *Symbol;
484
485  /// Fragment - The fragment this symbol's value is relative to, if any.
486  MCFragment *Fragment;
487
488  /// Offset - The offset to apply to the fragment address to form this symbol's
489  /// value.
490  uint64_t Offset;
491
492  /// IsExternal - True if this symbol is visible outside this translation
493  /// unit.
494  unsigned IsExternal : 1;
495
496  /// IsPrivateExtern - True if this symbol is private extern.
497  unsigned IsPrivateExtern : 1;
498
499  /// CommonSize - The size of the symbol, if it is 'common', or 0.
500  //
501  // FIXME: Pack this in with other fields? We could put it in offset, since a
502  // common symbol can never get a definition.
503  uint64_t CommonSize;
504
505  /// CommonAlign - The alignment of the symbol, if it is 'common'.
506  //
507  // FIXME: Pack this in with other fields?
508  unsigned CommonAlign;
509
510  /// Flags - The Flags field is used by object file implementations to store
511  /// additional per symbol information which is not easily classified.
512  uint32_t Flags;
513
514  /// Index - Index field, for use by the object file implementation.
515  uint64_t Index;
516
517public:
518  // Only for use as sentinel.
519  MCSymbolData();
520  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
521               MCAssembler *A = 0);
522
523  /// @name Accessors
524  /// @{
525
526  const MCSymbol &getSymbol() const { return *Symbol; }
527
528  MCFragment *getFragment() const { return Fragment; }
529  void setFragment(MCFragment *Value) { Fragment = Value; }
530
531  uint64_t getOffset() const { return Offset; }
532  void setOffset(uint64_t Value) { Offset = Value; }
533
534  /// @}
535  /// @name Symbol Attributes
536  /// @{
537
538  bool isExternal() const { return IsExternal; }
539  void setExternal(bool Value) { IsExternal = Value; }
540
541  bool isPrivateExtern() const { return IsPrivateExtern; }
542  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
543
544  /// isCommon - Is this a 'common' symbol.
545  bool isCommon() const { return CommonSize != 0; }
546
547  /// setCommon - Mark this symbol as being 'common'.
548  ///
549  /// \param Size - The size of the symbol.
550  /// \param Align - The alignment of the symbol.
551  void setCommon(uint64_t Size, unsigned Align) {
552    CommonSize = Size;
553    CommonAlign = Align;
554  }
555
556  /// getCommonSize - Return the size of a 'common' symbol.
557  uint64_t getCommonSize() const {
558    assert(isCommon() && "Not a 'common' symbol!");
559    return CommonSize;
560  }
561
562  /// getCommonAlignment - Return the alignment of a 'common' symbol.
563  unsigned getCommonAlignment() const {
564    assert(isCommon() && "Not a 'common' symbol!");
565    return CommonAlign;
566  }
567
568  /// getFlags - Get the (implementation defined) symbol flags.
569  uint32_t getFlags() const { return Flags; }
570
571  /// setFlags - Set the (implementation defined) symbol flags.
572  void setFlags(uint32_t Value) { Flags = Value; }
573
574  /// modifyFlags - Modify the flags via a mask
575  void modifyFlags(uint32_t Value, uint32_t Mask) {
576    Flags = (Flags & ~Mask) | Value;
577  }
578
579  /// getIndex - Get the (implementation defined) index.
580  uint64_t getIndex() const { return Index; }
581
582  /// setIndex - Set the (implementation defined) index.
583  void setIndex(uint64_t Value) { Index = Value; }
584
585  /// @}
586
587  void dump();
588};
589
590// FIXME: This really doesn't belong here. See comments below.
591struct IndirectSymbolData {
592  MCSymbol *Symbol;
593  MCSectionData *SectionData;
594};
595
596class MCAssembler {
597  friend class MCAsmLayout;
598
599public:
600  typedef iplist<MCSectionData> SectionDataListType;
601  typedef iplist<MCSymbolData> SymbolDataListType;
602
603  typedef SectionDataListType::const_iterator const_iterator;
604  typedef SectionDataListType::iterator iterator;
605
606  typedef SymbolDataListType::const_iterator const_symbol_iterator;
607  typedef SymbolDataListType::iterator symbol_iterator;
608
609  typedef std::vector<IndirectSymbolData>::const_iterator
610    const_indirect_symbol_iterator;
611  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
612
613private:
614  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
615  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
616
617  MCContext &Context;
618
619  TargetAsmBackend &Backend;
620
621  MCCodeEmitter &Emitter;
622
623  raw_ostream &OS;
624
625  iplist<MCSectionData> Sections;
626
627  iplist<MCSymbolData> Symbols;
628
629  /// The map of sections to their associated assembler backend data.
630  //
631  // FIXME: Avoid this indirection?
632  DenseMap<const MCSection*, MCSectionData*> SectionMap;
633
634  /// The map of symbols to their associated assembler backend data.
635  //
636  // FIXME: Avoid this indirection?
637  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
638
639  std::vector<IndirectSymbolData> IndirectSymbols;
640
641  unsigned RelaxAll : 1;
642  unsigned SubsectionsViaSymbols : 1;
643
644private:
645  /// Evaluate a fixup to a relocatable expression and the value which should be
646  /// placed into the fixup.
647  ///
648  /// \param Layout The layout to use for evaluation.
649  /// \param Fixup The fixup to evaluate.
650  /// \param DF The fragment the fixup is inside.
651  /// \param Target [out] On return, the relocatable expression the fixup
652  /// evaluates to.
653  /// \param Value [out] On return, the value of the fixup as currently layed
654  /// out.
655  /// \return Whether the fixup value was fully resolved. This is true if the
656  /// \arg Value result is fixed, otherwise the value may change due to
657  /// relocation.
658  bool EvaluateFixup(const MCAsmLayout &Layout,
659                     const MCAsmFixup &Fixup, const MCFragment *DF,
660                     MCValue &Target, uint64_t &Value) const;
661
662  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
663  /// (increased in size, in order to hold its value correctly).
664  bool FixupNeedsRelaxation(const MCAsmFixup &Fixup, const MCFragment *DF,
665                            const MCAsmLayout &Layout) const;
666
667  /// Check whether the given fragment needs relaxation.
668  bool FragmentNeedsRelaxation(const MCInstFragment *IF,
669                               const MCAsmLayout &Layout) const;
670
671  /// LayoutSection - Assign the section the given \arg StartAddress, and then
672  /// assign offsets and sizes to the fragments in the section \arg SD, and
673  /// update the section size.
674  ///
675  /// \return The address at the end of the section, for use in laying out the
676  /// succeeding section.
677  uint64_t LayoutSection(MCSectionData &SD, MCAsmLayout &Layout,
678                         uint64_t StartAddress);
679
680  /// LayoutOnce - Perform one layout iteration and return true if any offsets
681  /// were adjusted.
682  bool LayoutOnce(MCAsmLayout &Layout);
683
684  /// FinishLayout - Finalize a layout, including fragment lowering.
685  void FinishLayout(MCAsmLayout &Layout);
686
687public:
688  /// Find the symbol which defines the atom containing the given symbol, or
689  /// null if there is no such symbol.
690  const MCSymbolData *getAtom(const MCAsmLayout &Layout,
691                              const MCSymbolData *Symbol) const;
692
693  /// Check whether a particular symbol is visible to the linker and is required
694  /// in the symbol table, or whether it can be discarded by the assembler. This
695  /// also effects whether the assembler treats the label as potentially
696  /// defining a separate atom.
697  bool isSymbolLinkerVisible(const MCSymbolData *SD) const;
698
699  /// Emit the section contents using the given object writer.
700  //
701  // FIXME: Should MCAssembler always have a reference to the object writer?
702  void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout,
703                        MCObjectWriter *OW) const;
704
705public:
706  /// Construct a new assembler instance.
707  ///
708  /// \arg OS - The stream to output to.
709  //
710  // FIXME: How are we going to parameterize this? Two obvious options are stay
711  // concrete and require clients to pass in a target like object. The other
712  // option is to make this abstract, and have targets provide concrete
713  // implementations as we do with AsmParser.
714  MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
715              MCCodeEmitter &_Emitter, raw_ostream &OS);
716  ~MCAssembler();
717
718  MCContext &getContext() const { return Context; }
719
720  TargetAsmBackend &getBackend() const { return Backend; }
721
722  MCCodeEmitter &getEmitter() const { return Emitter; }
723
724  /// Finish - Do final processing and write the object to the output stream.
725  void Finish();
726
727  // FIXME: This does not belong here.
728  bool getSubsectionsViaSymbols() const {
729    return SubsectionsViaSymbols;
730  }
731  void setSubsectionsViaSymbols(bool Value) {
732    SubsectionsViaSymbols = Value;
733  }
734
735  bool getRelaxAll() const { return RelaxAll; }
736  void setRelaxAll(bool Value) { RelaxAll = Value; }
737
738  /// @name Section List Access
739  /// @{
740
741  const SectionDataListType &getSectionList() const { return Sections; }
742  SectionDataListType &getSectionList() { return Sections; }
743
744  iterator begin() { return Sections.begin(); }
745  const_iterator begin() const { return Sections.begin(); }
746
747  iterator end() { return Sections.end(); }
748  const_iterator end() const { return Sections.end(); }
749
750  size_t size() const { return Sections.size(); }
751
752  /// @}
753  /// @name Symbol List Access
754  /// @{
755
756  const SymbolDataListType &getSymbolList() const { return Symbols; }
757  SymbolDataListType &getSymbolList() { return Symbols; }
758
759  symbol_iterator symbol_begin() { return Symbols.begin(); }
760  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
761
762  symbol_iterator symbol_end() { return Symbols.end(); }
763  const_symbol_iterator symbol_end() const { return Symbols.end(); }
764
765  size_t symbol_size() const { return Symbols.size(); }
766
767  /// @}
768  /// @name Indirect Symbol List Access
769  /// @{
770
771  // FIXME: This is a total hack, this should not be here. Once things are
772  // factored so that the streamer has direct access to the .o writer, it can
773  // disappear.
774  std::vector<IndirectSymbolData> &getIndirectSymbols() {
775    return IndirectSymbols;
776  }
777
778  indirect_symbol_iterator indirect_symbol_begin() {
779    return IndirectSymbols.begin();
780  }
781  const_indirect_symbol_iterator indirect_symbol_begin() const {
782    return IndirectSymbols.begin();
783  }
784
785  indirect_symbol_iterator indirect_symbol_end() {
786    return IndirectSymbols.end();
787  }
788  const_indirect_symbol_iterator indirect_symbol_end() const {
789    return IndirectSymbols.end();
790  }
791
792  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
793
794  /// @}
795  /// @name Backend Data Access
796  /// @{
797
798  MCSectionData &getSectionData(const MCSection &Section) const {
799    MCSectionData *Entry = SectionMap.lookup(&Section);
800    assert(Entry && "Missing section data!");
801    return *Entry;
802  }
803
804  MCSectionData &getOrCreateSectionData(const MCSection &Section,
805                                        bool *Created = 0) {
806    MCSectionData *&Entry = SectionMap[&Section];
807
808    if (Created) *Created = !Entry;
809    if (!Entry)
810      Entry = new MCSectionData(Section, this);
811
812    return *Entry;
813  }
814
815  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
816    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
817    assert(Entry && "Missing symbol data!");
818    return *Entry;
819  }
820
821  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
822                                      bool *Created = 0) {
823    MCSymbolData *&Entry = SymbolMap[&Symbol];
824
825    if (Created) *Created = !Entry;
826    if (!Entry)
827      Entry = new MCSymbolData(Symbol, 0, 0, this);
828
829    return *Entry;
830  }
831
832  /// @}
833
834  void dump();
835};
836
837} // end namespace llvm
838
839#endif
840