MCAssembler.h revision 6566e0a55e3d9403f77db81a79a5dadedb4e666e
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallString.h"
15#include "llvm/ADT/ilist.h"
16#include "llvm/ADT/ilist_node.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/Support/DataTypes.h"
21#include <vector> // FIXME: Shouldn't be needed.
22
23namespace llvm {
24class raw_ostream;
25class MCAsmLayout;
26class MCAssembler;
27class MCBinaryExpr;
28class MCContext;
29class MCCodeEmitter;
30class MCExpr;
31class MCFragment;
32class MCObjectWriter;
33class MCSection;
34class MCSectionData;
35class MCSymbol;
36class MCSymbolData;
37class MCValue;
38class TargetAsmBackend;
39
40class MCFragment : public ilist_node<MCFragment> {
41  friend class MCAsmLayout;
42
43  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
44  void operator=(const MCFragment&); // DO NOT IMPLEMENT
45
46public:
47  enum FragmentType {
48    FT_Align,
49    FT_Data,
50    FT_Fill,
51    FT_Inst,
52    FT_Org,
53    FT_Dwarf,
54    FT_LEB
55  };
56
57private:
58  FragmentType Kind;
59
60  /// Parent - The data for the section this fragment is in.
61  MCSectionData *Parent;
62
63  /// Atom - The atom this fragment is in, as represented by it's defining
64  /// symbol. Atom's are only used by backends which set
65  /// \see MCAsmBackend::hasReliableSymbolDifference().
66  MCSymbolData *Atom;
67
68  /// @name Assembler Backend Data
69  /// @{
70  //
71  // FIXME: This could all be kept private to the assembler implementation.
72
73  /// Offset - The offset of this fragment in its section. This is ~0 until
74  /// initialized.
75  uint64_t Offset;
76
77  /// EffectiveSize - The compute size of this section. This is ~0 until
78  /// initialized.
79  uint64_t EffectiveSize;
80
81  /// LayoutOrder - The global layout order of this fragment. This is the index
82  /// across all fragments in the file, not just within the section.
83  unsigned LayoutOrder;
84
85  /// @}
86
87protected:
88  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
89
90public:
91  // Only for sentinel.
92  MCFragment();
93  virtual ~MCFragment();
94
95  FragmentType getKind() const { return Kind; }
96
97  MCSectionData *getParent() const { return Parent; }
98  void setParent(MCSectionData *Value) { Parent = Value; }
99
100  MCSymbolData *getAtom() const { return Atom; }
101  void setAtom(MCSymbolData *Value) { Atom = Value; }
102
103  unsigned getLayoutOrder() const { return LayoutOrder; }
104  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
105
106  static bool classof(const MCFragment *O) { return true; }
107
108  void dump();
109};
110
111class MCDataFragment : public MCFragment {
112  SmallString<32> Contents;
113
114  /// Fixups - The list of fixups in this fragment.
115  std::vector<MCFixup> Fixups;
116
117public:
118  typedef std::vector<MCFixup>::const_iterator const_fixup_iterator;
119  typedef std::vector<MCFixup>::iterator fixup_iterator;
120
121public:
122  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
123
124  /// @name Accessors
125  /// @{
126
127  SmallString<32> &getContents() { return Contents; }
128  const SmallString<32> &getContents() const { return Contents; }
129
130  /// @}
131  /// @name Fixup Access
132  /// @{
133
134  void addFixup(MCFixup Fixup) {
135    // Enforce invariant that fixups are in offset order.
136    assert((Fixups.empty() || Fixup.getOffset() > Fixups.back().getOffset()) &&
137           "Fixups must be added in order!");
138    Fixups.push_back(Fixup);
139  }
140
141  std::vector<MCFixup> &getFixups() { return Fixups; }
142  const std::vector<MCFixup> &getFixups() const { return Fixups; }
143
144  fixup_iterator fixup_begin() { return Fixups.begin(); }
145  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
146
147  fixup_iterator fixup_end() {return Fixups.end();}
148  const_fixup_iterator fixup_end() const {return Fixups.end();}
149
150  size_t fixup_size() const { return Fixups.size(); }
151
152  /// @}
153
154  static bool classof(const MCFragment *F) {
155    return F->getKind() == MCFragment::FT_Data;
156  }
157  static bool classof(const MCDataFragment *) { return true; }
158};
159
160// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
161// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
162// with this approach (as opposed to making MCInstFragment a very light weight
163// object with just the MCInst and a code size, then we should just change
164// MCDataFragment to have an optional MCInst at its end.
165class MCInstFragment : public MCFragment {
166  /// Inst - The instruction this is a fragment for.
167  MCInst Inst;
168
169  /// Code - Binary data for the currently encoded instruction.
170  SmallString<8> Code;
171
172  /// Fixups - The list of fixups in this fragment.
173  SmallVector<MCFixup, 1> Fixups;
174
175public:
176  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
177  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
178
179public:
180  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
181    : MCFragment(FT_Inst, SD), Inst(_Inst) {
182  }
183
184  /// @name Accessors
185  /// @{
186
187  SmallVectorImpl<char> &getCode() { return Code; }
188  const SmallVectorImpl<char> &getCode() const { return Code; }
189
190  unsigned getInstSize() const { return Code.size(); }
191
192  MCInst &getInst() { return Inst; }
193  const MCInst &getInst() const { return Inst; }
194
195  void setInst(MCInst Value) { Inst = Value; }
196
197  /// @}
198  /// @name Fixup Access
199  /// @{
200
201  SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
202  const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
203
204  fixup_iterator fixup_begin() { return Fixups.begin(); }
205  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
206
207  fixup_iterator fixup_end() {return Fixups.end();}
208  const_fixup_iterator fixup_end() const {return Fixups.end();}
209
210  size_t fixup_size() const { return Fixups.size(); }
211
212  /// @}
213
214  static bool classof(const MCFragment *F) {
215    return F->getKind() == MCFragment::FT_Inst;
216  }
217  static bool classof(const MCInstFragment *) { return true; }
218};
219
220class MCAlignFragment : public MCFragment {
221  /// Alignment - The alignment to ensure, in bytes.
222  unsigned Alignment;
223
224  /// Value - Value to use for filling padding bytes.
225  int64_t Value;
226
227  /// ValueSize - The size of the integer (in bytes) of \arg Value.
228  unsigned ValueSize;
229
230  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
231  /// cannot be satisfied in this width then this fragment is ignored.
232  unsigned MaxBytesToEmit;
233
234  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
235  /// of using the provided value. The exact interpretation of this flag is
236  /// target dependent.
237  bool EmitNops : 1;
238
239  /// OnlyAlignAddress - Flag to indicate that this align is only used to adjust
240  /// the address space size of a section and that it should not be included as
241  /// part of the section size. This flag can only be used on the last fragment
242  /// in a section.
243  bool OnlyAlignAddress : 1;
244
245public:
246  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
247                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
248    : MCFragment(FT_Align, SD), Alignment(_Alignment),
249      Value(_Value),ValueSize(_ValueSize),
250      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false),
251      OnlyAlignAddress(false) {}
252
253  /// @name Accessors
254  /// @{
255
256  unsigned getAlignment() const { return Alignment; }
257
258  int64_t getValue() const { return Value; }
259
260  unsigned getValueSize() const { return ValueSize; }
261
262  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
263
264  bool hasEmitNops() const { return EmitNops; }
265  void setEmitNops(bool Value) { EmitNops = Value; }
266
267  bool hasOnlyAlignAddress() const { return OnlyAlignAddress; }
268  void setOnlyAlignAddress(bool Value) { OnlyAlignAddress = Value; }
269
270  /// @}
271
272  static bool classof(const MCFragment *F) {
273    return F->getKind() == MCFragment::FT_Align;
274  }
275  static bool classof(const MCAlignFragment *) { return true; }
276};
277
278class MCFillFragment : public MCFragment {
279  /// Value - Value to use for filling bytes.
280  int64_t Value;
281
282  /// ValueSize - The size (in bytes) of \arg Value to use when filling, or 0 if
283  /// this is a virtual fill fragment.
284  unsigned ValueSize;
285
286  /// Size - The number of bytes to insert.
287  uint64_t Size;
288
289public:
290  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
291                 MCSectionData *SD = 0)
292    : MCFragment(FT_Fill, SD),
293      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
294    assert((!ValueSize || (Size % ValueSize) == 0) &&
295           "Fill size must be a multiple of the value size!");
296  }
297
298  /// @name Accessors
299  /// @{
300
301  int64_t getValue() const { return Value; }
302
303  unsigned getValueSize() const { return ValueSize; }
304
305  uint64_t getSize() const { return Size; }
306
307  /// @}
308
309  static bool classof(const MCFragment *F) {
310    return F->getKind() == MCFragment::FT_Fill;
311  }
312  static bool classof(const MCFillFragment *) { return true; }
313};
314
315class MCOrgFragment : public MCFragment {
316  /// Offset - The offset this fragment should start at.
317  const MCExpr *Offset;
318
319  /// Value - Value to use for filling bytes.
320  int8_t Value;
321
322  /// Size - The current estimate of the size.
323  unsigned Size;
324
325public:
326  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
327    : MCFragment(FT_Org, SD),
328      Offset(&_Offset), Value(_Value), Size(0) {}
329
330  /// @name Accessors
331  /// @{
332
333  const MCExpr &getOffset() const { return *Offset; }
334
335  uint8_t getValue() const { return Value; }
336
337  unsigned getSize() const { return Size; }
338
339  void setSize(unsigned Size_) { Size = Size_; }
340  /// @}
341
342  static bool classof(const MCFragment *F) {
343    return F->getKind() == MCFragment::FT_Org;
344  }
345  static bool classof(const MCOrgFragment *) { return true; }
346};
347
348class MCLEBFragment : public MCFragment {
349  /// Value - The value this fragment should contain.
350  const MCExpr *Value;
351
352  /// IsSigned - True if this is a sleb128, false if uleb128.
353  bool IsSigned;
354
355  /// Size - The current size estimate.
356  uint64_t Size;
357
358public:
359  MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
360    : MCFragment(FT_LEB, SD),
361      Value(&Value_), IsSigned(IsSigned_), Size(1) {}
362
363  /// @name Accessors
364  /// @{
365
366  const MCExpr &getValue() const { return *Value; }
367
368  bool isSigned() const { return IsSigned; }
369
370  uint64_t getSize() const { return Size; }
371
372  void setSize(uint64_t Size_) { Size = Size_; }
373
374  /// @}
375
376  static bool classof(const MCFragment *F) {
377    return F->getKind() == MCFragment::FT_LEB;
378  }
379  static bool classof(const MCLEBFragment *) { return true; }
380};
381
382class MCDwarfLineAddrFragment : public MCFragment {
383  /// LineDelta - the value of the difference between the two line numbers
384  /// between two .loc dwarf directives.
385  int64_t LineDelta;
386
387  /// AddrDelta - The expression for the difference of the two symbols that
388  /// make up the address delta between two .loc dwarf directives.
389  const MCExpr *AddrDelta;
390
391  /// Size - The current size estimate.
392  uint64_t Size;
393
394public:
395  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
396                      MCSectionData *SD = 0)
397    : MCFragment(FT_Dwarf, SD),
398      LineDelta(_LineDelta), AddrDelta(&_AddrDelta), Size(1) {}
399
400  /// @name Accessors
401  /// @{
402
403  int64_t getLineDelta() const { return LineDelta; }
404
405  const MCExpr &getAddrDelta() const { return *AddrDelta; }
406
407  uint64_t getSize() const { return Size; }
408
409  void setSize(uint64_t Size_) { Size = Size_; }
410
411  /// @}
412
413  static bool classof(const MCFragment *F) {
414    return F->getKind() == MCFragment::FT_Dwarf;
415  }
416  static bool classof(const MCDwarfLineAddrFragment *) { return true; }
417};
418
419// FIXME: Should this be a separate class, or just merged into MCSection? Since
420// we anticipate the fast path being through an MCAssembler, the only reason to
421// keep it out is for API abstraction.
422class MCSectionData : public ilist_node<MCSectionData> {
423  friend class MCAsmLayout;
424
425  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
426  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
427
428public:
429  typedef iplist<MCFragment> FragmentListType;
430
431  typedef FragmentListType::const_iterator const_iterator;
432  typedef FragmentListType::iterator iterator;
433
434  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
435  typedef FragmentListType::reverse_iterator reverse_iterator;
436
437private:
438  FragmentListType Fragments;
439  const MCSection *Section;
440
441  /// Ordinal - The section index in the assemblers section list.
442  unsigned Ordinal;
443
444  /// LayoutOrder - The index of this section in the layout order.
445  unsigned LayoutOrder;
446
447  /// Alignment - The maximum alignment seen in this section.
448  unsigned Alignment;
449
450  /// @name Assembler Backend Data
451  /// @{
452  //
453  // FIXME: This could all be kept private to the assembler implementation.
454
455  /// Address - The computed address of this section. This is ~0 until
456  /// initialized.
457  uint64_t Address;
458
459  /// HasInstructions - Whether this section has had instructions emitted into
460  /// it.
461  unsigned HasInstructions : 1;
462
463  /// @}
464
465public:
466  // Only for use as sentinel.
467  MCSectionData();
468  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
469
470  const MCSection &getSection() const { return *Section; }
471
472  unsigned getAlignment() const { return Alignment; }
473  void setAlignment(unsigned Value) { Alignment = Value; }
474
475  bool hasInstructions() const { return HasInstructions; }
476  void setHasInstructions(bool Value) { HasInstructions = Value; }
477
478  unsigned getOrdinal() const { return Ordinal; }
479  void setOrdinal(unsigned Value) { Ordinal = Value; }
480
481  unsigned getLayoutOrder() const { return LayoutOrder; }
482  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
483
484  /// @name Fragment Access
485  /// @{
486
487  const FragmentListType &getFragmentList() const { return Fragments; }
488  FragmentListType &getFragmentList() { return Fragments; }
489
490  iterator begin() { return Fragments.begin(); }
491  const_iterator begin() const { return Fragments.begin(); }
492
493  iterator end() { return Fragments.end(); }
494  const_iterator end() const { return Fragments.end(); }
495
496  reverse_iterator rbegin() { return Fragments.rbegin(); }
497  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
498
499  reverse_iterator rend() { return Fragments.rend(); }
500  const_reverse_iterator rend() const { return Fragments.rend(); }
501
502  size_t size() const { return Fragments.size(); }
503
504  bool empty() const { return Fragments.empty(); }
505
506  void dump();
507
508  /// @}
509};
510
511// FIXME: Same concerns as with SectionData.
512class MCSymbolData : public ilist_node<MCSymbolData> {
513public:
514  const MCSymbol *Symbol;
515
516  /// Fragment - The fragment this symbol's value is relative to, if any.
517  MCFragment *Fragment;
518
519  /// Offset - The offset to apply to the fragment address to form this symbol's
520  /// value.
521  uint64_t Offset;
522
523  /// IsExternal - True if this symbol is visible outside this translation
524  /// unit.
525  unsigned IsExternal : 1;
526
527  /// IsPrivateExtern - True if this symbol is private extern.
528  unsigned IsPrivateExtern : 1;
529
530  /// CommonSize - The size of the symbol, if it is 'common', or 0.
531  //
532  // FIXME: Pack this in with other fields? We could put it in offset, since a
533  // common symbol can never get a definition.
534  uint64_t CommonSize;
535
536  /// SymbolSize - An expression describing how to calculate the size of
537  /// a symbol. If a symbol has no size this field will be NULL.
538  const MCExpr *SymbolSize;
539
540  /// CommonAlign - The alignment of the symbol, if it is 'common'.
541  //
542  // FIXME: Pack this in with other fields?
543  unsigned CommonAlign;
544
545  /// Flags - The Flags field is used by object file implementations to store
546  /// additional per symbol information which is not easily classified.
547  uint32_t Flags;
548
549  /// Index - Index field, for use by the object file implementation.
550  uint64_t Index;
551
552public:
553  // Only for use as sentinel.
554  MCSymbolData();
555  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
556               MCAssembler *A = 0);
557
558  /// @name Accessors
559  /// @{
560
561  const MCSymbol &getSymbol() const { return *Symbol; }
562
563  MCFragment *getFragment() const { return Fragment; }
564  void setFragment(MCFragment *Value) { Fragment = Value; }
565
566  uint64_t getOffset() const { return Offset; }
567  void setOffset(uint64_t Value) { Offset = Value; }
568
569  /// @}
570  /// @name Symbol Attributes
571  /// @{
572
573  bool isExternal() const { return IsExternal; }
574  void setExternal(bool Value) { IsExternal = Value; }
575
576  bool isPrivateExtern() const { return IsPrivateExtern; }
577  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
578
579  /// isCommon - Is this a 'common' symbol.
580  bool isCommon() const { return CommonSize != 0; }
581
582  /// setCommon - Mark this symbol as being 'common'.
583  ///
584  /// \param Size - The size of the symbol.
585  /// \param Align - The alignment of the symbol.
586  void setCommon(uint64_t Size, unsigned Align) {
587    CommonSize = Size;
588    CommonAlign = Align;
589  }
590
591  /// getCommonSize - Return the size of a 'common' symbol.
592  uint64_t getCommonSize() const {
593    assert(isCommon() && "Not a 'common' symbol!");
594    return CommonSize;
595  }
596
597  void setSize(const MCExpr *SS) {
598    SymbolSize = SS;
599  }
600
601  const MCExpr *getSize() const {
602    return SymbolSize;
603  }
604
605
606  /// getCommonAlignment - Return the alignment of a 'common' symbol.
607  unsigned getCommonAlignment() const {
608    assert(isCommon() && "Not a 'common' symbol!");
609    return CommonAlign;
610  }
611
612  /// getFlags - Get the (implementation defined) symbol flags.
613  uint32_t getFlags() const { return Flags; }
614
615  /// setFlags - Set the (implementation defined) symbol flags.
616  void setFlags(uint32_t Value) { Flags = Value; }
617
618  /// modifyFlags - Modify the flags via a mask
619  void modifyFlags(uint32_t Value, uint32_t Mask) {
620    Flags = (Flags & ~Mask) | Value;
621  }
622
623  /// getIndex - Get the (implementation defined) index.
624  uint64_t getIndex() const { return Index; }
625
626  /// setIndex - Set the (implementation defined) index.
627  void setIndex(uint64_t Value) { Index = Value; }
628
629  /// @}
630
631  void dump();
632};
633
634// FIXME: This really doesn't belong here. See comments below.
635struct IndirectSymbolData {
636  MCSymbol *Symbol;
637  MCSectionData *SectionData;
638};
639
640class MCAssembler {
641  friend class MCAsmLayout;
642
643public:
644  typedef iplist<MCSectionData> SectionDataListType;
645  typedef iplist<MCSymbolData> SymbolDataListType;
646
647  typedef SectionDataListType::const_iterator const_iterator;
648  typedef SectionDataListType::iterator iterator;
649
650  typedef SymbolDataListType::const_iterator const_symbol_iterator;
651  typedef SymbolDataListType::iterator symbol_iterator;
652
653  typedef std::vector<IndirectSymbolData>::const_iterator
654    const_indirect_symbol_iterator;
655  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
656
657private:
658  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
659  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
660
661  MCContext &Context;
662
663  TargetAsmBackend &Backend;
664
665  MCCodeEmitter &Emitter;
666
667  raw_ostream &OS;
668
669  iplist<MCSectionData> Sections;
670
671  iplist<MCSymbolData> Symbols;
672
673  /// The map of sections to their associated assembler backend data.
674  //
675  // FIXME: Avoid this indirection?
676  DenseMap<const MCSection*, MCSectionData*> SectionMap;
677
678  /// The map of symbols to their associated assembler backend data.
679  //
680  // FIXME: Avoid this indirection?
681  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
682
683  std::vector<IndirectSymbolData> IndirectSymbols;
684
685  unsigned RelaxAll : 1;
686  unsigned SubsectionsViaSymbols : 1;
687  unsigned PadSectionToAlignment : 1;
688
689private:
690  /// Evaluate a fixup to a relocatable expression and the value which should be
691  /// placed into the fixup.
692  ///
693  /// \param Layout The layout to use for evaluation.
694  /// \param Fixup The fixup to evaluate.
695  /// \param DF The fragment the fixup is inside.
696  /// \param Target [out] On return, the relocatable expression the fixup
697  /// evaluates to.
698  /// \param Value [out] On return, the value of the fixup as currently layed
699  /// out.
700  /// \return Whether the fixup value was fully resolved. This is true if the
701  /// \arg Value result is fixed, otherwise the value may change due to
702  /// relocation.
703  bool EvaluateFixup(const MCObjectWriter &Writer, const MCAsmLayout &Layout,
704                     const MCFixup &Fixup, const MCFragment *DF,
705                     MCValue &Target, uint64_t &Value) const;
706
707  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
708  /// (increased in size, in order to hold its value correctly).
709  bool FixupNeedsRelaxation(const MCObjectWriter &Writer,
710                            const MCFixup &Fixup, const MCFragment *DF,
711                            const MCAsmLayout &Layout) const;
712
713  /// Check whether the given fragment needs relaxation.
714  bool FragmentNeedsRelaxation(const MCObjectWriter &Writer,
715                               const MCInstFragment *IF,
716                               const MCAsmLayout &Layout) const;
717
718  /// Compute the effective fragment size assuming it is layed out at the given
719  /// \arg SectionAddress and \arg FragmentOffset.
720  uint64_t ComputeFragmentSize(const MCFragment &F,
721                               uint64_t SectionAddress,
722                               uint64_t FragmentOffset) const;
723
724  /// LayoutOnce - Perform one layout iteration and return true if any offsets
725  /// were adjusted.
726  bool LayoutOnce(const MCObjectWriter &Writer, MCAsmLayout &Layout);
727
728  bool RelaxInstruction(const MCObjectWriter &Writer, MCAsmLayout &Layout,
729                        MCInstFragment &IF);
730
731  bool RelaxOrg(const MCObjectWriter &Writer, MCAsmLayout &Layout,
732                MCOrgFragment &OF);
733
734  bool RelaxLEB(const MCObjectWriter &Writer, MCAsmLayout &Layout,
735                MCLEBFragment &IF);
736
737  bool RelaxDwarfLineAddr(const MCObjectWriter &Writer, MCAsmLayout &Layout,
738			  MCDwarfLineAddrFragment &DF);
739
740  /// FinishLayout - Finalize a layout, including fragment lowering.
741  void FinishLayout(MCAsmLayout &Layout);
742
743public:
744  /// Find the symbol which defines the atom containing the given symbol, or
745  /// null if there is no such symbol.
746  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
747
748  /// Check whether a particular symbol is visible to the linker and is required
749  /// in the symbol table, or whether it can be discarded by the assembler. This
750  /// also effects whether the assembler treats the label as potentially
751  /// defining a separate atom.
752  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
753
754  /// Emit the section contents using the given object writer.
755  //
756  // FIXME: Should MCAssembler always have a reference to the object writer?
757  void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout,
758                        MCObjectWriter *OW) const;
759
760  void AddSectionToTheEnd(const MCObjectWriter &Writer, MCSectionData &SD,
761                          MCAsmLayout &Layout);
762
763public:
764  /// Construct a new assembler instance.
765  ///
766  /// \arg OS - The stream to output to.
767  //
768  // FIXME: How are we going to parameterize this? Two obvious options are stay
769  // concrete and require clients to pass in a target like object. The other
770  // option is to make this abstract, and have targets provide concrete
771  // implementations as we do with AsmParser.
772  MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
773              MCCodeEmitter &_Emitter, bool _PadSectionToAlignment,
774              raw_ostream &OS);
775  ~MCAssembler();
776
777  MCContext &getContext() const { return Context; }
778
779  TargetAsmBackend &getBackend() const { return Backend; }
780
781  MCCodeEmitter &getEmitter() const { return Emitter; }
782
783  /// Finish - Do final processing and write the object to the output stream.
784  /// \arg Writer is used for custom object writer (as the MCJIT does),
785  /// if not specified it is automatically created from backend.
786  void Finish(MCObjectWriter *Writer = 0);
787
788  // FIXME: This does not belong here.
789  bool getSubsectionsViaSymbols() const {
790    return SubsectionsViaSymbols;
791  }
792  void setSubsectionsViaSymbols(bool Value) {
793    SubsectionsViaSymbols = Value;
794  }
795
796  bool getRelaxAll() const { return RelaxAll; }
797  void setRelaxAll(bool Value) { RelaxAll = Value; }
798
799  /// @name Section List Access
800  /// @{
801
802  const SectionDataListType &getSectionList() const { return Sections; }
803  SectionDataListType &getSectionList() { return Sections; }
804
805  iterator begin() { return Sections.begin(); }
806  const_iterator begin() const { return Sections.begin(); }
807
808  iterator end() { return Sections.end(); }
809  const_iterator end() const { return Sections.end(); }
810
811  size_t size() const { return Sections.size(); }
812
813  /// @}
814  /// @name Symbol List Access
815  /// @{
816
817  const SymbolDataListType &getSymbolList() const { return Symbols; }
818  SymbolDataListType &getSymbolList() { return Symbols; }
819
820  symbol_iterator symbol_begin() { return Symbols.begin(); }
821  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
822
823  symbol_iterator symbol_end() { return Symbols.end(); }
824  const_symbol_iterator symbol_end() const { return Symbols.end(); }
825
826  size_t symbol_size() const { return Symbols.size(); }
827
828  /// @}
829  /// @name Indirect Symbol List Access
830  /// @{
831
832  // FIXME: This is a total hack, this should not be here. Once things are
833  // factored so that the streamer has direct access to the .o writer, it can
834  // disappear.
835  std::vector<IndirectSymbolData> &getIndirectSymbols() {
836    return IndirectSymbols;
837  }
838
839  indirect_symbol_iterator indirect_symbol_begin() {
840    return IndirectSymbols.begin();
841  }
842  const_indirect_symbol_iterator indirect_symbol_begin() const {
843    return IndirectSymbols.begin();
844  }
845
846  indirect_symbol_iterator indirect_symbol_end() {
847    return IndirectSymbols.end();
848  }
849  const_indirect_symbol_iterator indirect_symbol_end() const {
850    return IndirectSymbols.end();
851  }
852
853  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
854
855  /// @}
856  /// @name Backend Data Access
857  /// @{
858
859  MCSectionData &getSectionData(const MCSection &Section) const {
860    MCSectionData *Entry = SectionMap.lookup(&Section);
861    assert(Entry && "Missing section data!");
862    return *Entry;
863  }
864
865  MCSectionData &getOrCreateSectionData(const MCSection &Section,
866                                        bool *Created = 0) {
867    MCSectionData *&Entry = SectionMap[&Section];
868
869    if (Created) *Created = !Entry;
870    if (!Entry)
871      Entry = new MCSectionData(Section, this);
872
873    return *Entry;
874  }
875
876  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
877    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
878    assert(Entry && "Missing symbol data!");
879    return *Entry;
880  }
881
882  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
883                                      bool *Created = 0) {
884    MCSymbolData *&Entry = SymbolMap[&Symbol];
885
886    if (Created) *Created = !Entry;
887    if (!Entry)
888      Entry = new MCSymbolData(Symbol, 0, 0, this);
889
890    return *Entry;
891  }
892
893  /// @}
894
895  void dump();
896};
897
898} // end namespace llvm
899
900#endif
901