MCAssembler.h revision 7a45903bf40a023ce96f4da953bb6cb2cb1a1b50
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/ilist_node.h"
18#include "llvm/Support/Casting.h"
19#include "llvm/MC/MCFixup.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/Support/DataTypes.h"
22#include <vector> // FIXME: Shouldn't be needed.
23
24namespace llvm {
25class raw_ostream;
26class MCAsmLayout;
27class MCAssembler;
28class MCBinaryExpr;
29class MCContext;
30class MCCodeEmitter;
31class MCExpr;
32class MCFragment;
33class MCObjectWriter;
34class MCSection;
35class MCSectionData;
36class MCSymbol;
37class MCSymbolData;
38class MCValue;
39class TargetAsmBackend;
40
41class MCFragment : public ilist_node<MCFragment> {
42  friend class MCAsmLayout;
43
44  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
45  void operator=(const MCFragment&); // DO NOT IMPLEMENT
46
47public:
48  enum FragmentType {
49    FT_Align,
50    FT_Data,
51    FT_Fill,
52    FT_Inst,
53    FT_Org,
54    FT_Dwarf,
55    FT_LEB
56  };
57
58private:
59  FragmentType Kind;
60
61  /// Parent - The data for the section this fragment is in.
62  MCSectionData *Parent;
63
64  /// Atom - The atom this fragment is in, as represented by it's defining
65  /// symbol. Atom's are only used by backends which set
66  /// \see MCAsmBackend::hasReliableSymbolDifference().
67  MCSymbolData *Atom;
68
69  /// @name Assembler Backend Data
70  /// @{
71  //
72  // FIXME: This could all be kept private to the assembler implementation.
73
74  /// Offset - The offset of this fragment in its section. This is ~0 until
75  /// initialized.
76  uint64_t Offset;
77
78  /// LayoutOrder - The layout order of this fragment.
79  unsigned LayoutOrder;
80
81  /// @}
82
83protected:
84  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
85
86public:
87  // Only for sentinel.
88  MCFragment();
89  virtual ~MCFragment();
90
91  FragmentType getKind() const { return Kind; }
92
93  MCSectionData *getParent() const { return Parent; }
94  void setParent(MCSectionData *Value) { Parent = Value; }
95
96  MCSymbolData *getAtom() const { return Atom; }
97  void setAtom(MCSymbolData *Value) { Atom = Value; }
98
99  unsigned getLayoutOrder() const { return LayoutOrder; }
100  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
101
102  static bool classof(const MCFragment *O) { return true; }
103
104  void dump();
105};
106
107class MCDataFragment : public MCFragment {
108  SmallString<32> Contents;
109
110  /// Fixups - The list of fixups in this fragment.
111  std::vector<MCFixup> Fixups;
112
113public:
114  typedef std::vector<MCFixup>::const_iterator const_fixup_iterator;
115  typedef std::vector<MCFixup>::iterator fixup_iterator;
116
117public:
118  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
119
120  /// @name Accessors
121  /// @{
122
123  SmallString<32> &getContents() { return Contents; }
124  const SmallString<32> &getContents() const { return Contents; }
125
126  /// @}
127  /// @name Fixup Access
128  /// @{
129
130  void addFixup(MCFixup Fixup) {
131    // Enforce invariant that fixups are in offset order.
132    assert((Fixups.empty() || Fixup.getOffset() > Fixups.back().getOffset()) &&
133           "Fixups must be added in order!");
134    Fixups.push_back(Fixup);
135  }
136
137  std::vector<MCFixup> &getFixups() { return Fixups; }
138  const std::vector<MCFixup> &getFixups() const { return Fixups; }
139
140  fixup_iterator fixup_begin() { return Fixups.begin(); }
141  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
142
143  fixup_iterator fixup_end() {return Fixups.end();}
144  const_fixup_iterator fixup_end() const {return Fixups.end();}
145
146  size_t fixup_size() const { return Fixups.size(); }
147
148  /// @}
149
150  static bool classof(const MCFragment *F) {
151    return F->getKind() == MCFragment::FT_Data;
152  }
153  static bool classof(const MCDataFragment *) { return true; }
154};
155
156// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
157// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
158// with this approach (as opposed to making MCInstFragment a very light weight
159// object with just the MCInst and a code size, then we should just change
160// MCDataFragment to have an optional MCInst at its end.
161class MCInstFragment : public MCFragment {
162  /// Inst - The instruction this is a fragment for.
163  MCInst Inst;
164
165  /// Code - Binary data for the currently encoded instruction.
166  SmallString<8> Code;
167
168  /// Fixups - The list of fixups in this fragment.
169  SmallVector<MCFixup, 1> Fixups;
170
171public:
172  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
173  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
174
175public:
176  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
177    : MCFragment(FT_Inst, SD), Inst(_Inst) {
178  }
179
180  /// @name Accessors
181  /// @{
182
183  SmallVectorImpl<char> &getCode() { return Code; }
184  const SmallVectorImpl<char> &getCode() const { return Code; }
185
186  unsigned getInstSize() const { return Code.size(); }
187
188  MCInst &getInst() { return Inst; }
189  const MCInst &getInst() const { return Inst; }
190
191  void setInst(MCInst Value) { Inst = Value; }
192
193  /// @}
194  /// @name Fixup Access
195  /// @{
196
197  SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
198  const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
199
200  fixup_iterator fixup_begin() { return Fixups.begin(); }
201  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
202
203  fixup_iterator fixup_end() {return Fixups.end();}
204  const_fixup_iterator fixup_end() const {return Fixups.end();}
205
206  size_t fixup_size() const { return Fixups.size(); }
207
208  /// @}
209
210  static bool classof(const MCFragment *F) {
211    return F->getKind() == MCFragment::FT_Inst;
212  }
213  static bool classof(const MCInstFragment *) { return true; }
214};
215
216class MCAlignFragment : public MCFragment {
217  /// Alignment - The alignment to ensure, in bytes.
218  unsigned Alignment;
219
220  /// Value - Value to use for filling padding bytes.
221  int64_t Value;
222
223  /// ValueSize - The size of the integer (in bytes) of \arg Value.
224  unsigned ValueSize;
225
226  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
227  /// cannot be satisfied in this width then this fragment is ignored.
228  unsigned MaxBytesToEmit;
229
230  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
231  /// of using the provided value. The exact interpretation of this flag is
232  /// target dependent.
233  bool EmitNops : 1;
234
235public:
236  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
237                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
238    : MCFragment(FT_Align, SD), Alignment(_Alignment),
239      Value(_Value),ValueSize(_ValueSize),
240      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
241
242  /// @name Accessors
243  /// @{
244
245  unsigned getAlignment() const { return Alignment; }
246
247  int64_t getValue() const { return Value; }
248
249  unsigned getValueSize() const { return ValueSize; }
250
251  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
252
253  bool hasEmitNops() const { return EmitNops; }
254  void setEmitNops(bool Value) { EmitNops = Value; }
255
256  /// @}
257
258  static bool classof(const MCFragment *F) {
259    return F->getKind() == MCFragment::FT_Align;
260  }
261  static bool classof(const MCAlignFragment *) { return true; }
262};
263
264class MCFillFragment : public MCFragment {
265  /// Value - Value to use for filling bytes.
266  int64_t Value;
267
268  /// ValueSize - The size (in bytes) of \arg Value to use when filling, or 0 if
269  /// this is a virtual fill fragment.
270  unsigned ValueSize;
271
272  /// Size - The number of bytes to insert.
273  uint64_t Size;
274
275public:
276  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
277                 MCSectionData *SD = 0)
278    : MCFragment(FT_Fill, SD),
279      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
280    assert((!ValueSize || (Size % ValueSize) == 0) &&
281           "Fill size must be a multiple of the value size!");
282  }
283
284  /// @name Accessors
285  /// @{
286
287  int64_t getValue() const { return Value; }
288
289  unsigned getValueSize() const { return ValueSize; }
290
291  uint64_t getSize() const { return Size; }
292
293  /// @}
294
295  static bool classof(const MCFragment *F) {
296    return F->getKind() == MCFragment::FT_Fill;
297  }
298  static bool classof(const MCFillFragment *) { return true; }
299};
300
301class MCOrgFragment : public MCFragment {
302  /// Offset - The offset this fragment should start at.
303  const MCExpr *Offset;
304
305  /// Value - Value to use for filling bytes.
306  int8_t Value;
307
308public:
309  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
310    : MCFragment(FT_Org, SD),
311      Offset(&_Offset), Value(_Value) {}
312
313  /// @name Accessors
314  /// @{
315
316  const MCExpr &getOffset() const { return *Offset; }
317
318  uint8_t getValue() const { return Value; }
319
320  /// @}
321
322  static bool classof(const MCFragment *F) {
323    return F->getKind() == MCFragment::FT_Org;
324  }
325  static bool classof(const MCOrgFragment *) { return true; }
326};
327
328class MCLEBFragment : public MCFragment {
329  /// Value - The value this fragment should contain.
330  const MCExpr *Value;
331
332  /// IsSigned - True if this is a sleb128, false if uleb128.
333  bool IsSigned;
334
335  SmallString<8> Contents;
336public:
337  MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
338    : MCFragment(FT_LEB, SD),
339      Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
340
341  /// @name Accessors
342  /// @{
343
344  const MCExpr &getValue() const { return *Value; }
345
346  bool isSigned() const { return IsSigned; }
347
348  SmallString<8> &getContents() { return Contents; }
349  const SmallString<8> &getContents() const { return Contents; }
350
351  /// @}
352
353  static bool classof(const MCFragment *F) {
354    return F->getKind() == MCFragment::FT_LEB;
355  }
356  static bool classof(const MCLEBFragment *) { return true; }
357};
358
359class MCDwarfLineAddrFragment : public MCFragment {
360  /// LineDelta - the value of the difference between the two line numbers
361  /// between two .loc dwarf directives.
362  int64_t LineDelta;
363
364  /// AddrDelta - The expression for the difference of the two symbols that
365  /// make up the address delta between two .loc dwarf directives.
366  const MCExpr *AddrDelta;
367
368  SmallString<8> Contents;
369
370public:
371  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
372                      MCSectionData *SD = 0)
373    : MCFragment(FT_Dwarf, SD),
374      LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
375
376  /// @name Accessors
377  /// @{
378
379  int64_t getLineDelta() const { return LineDelta; }
380
381  const MCExpr &getAddrDelta() const { return *AddrDelta; }
382
383  SmallString<8> &getContents() { return Contents; }
384  const SmallString<8> &getContents() const { return Contents; }
385
386  /// @}
387
388  static bool classof(const MCFragment *F) {
389    return F->getKind() == MCFragment::FT_Dwarf;
390  }
391  static bool classof(const MCDwarfLineAddrFragment *) { return true; }
392};
393
394// FIXME: Should this be a separate class, or just merged into MCSection? Since
395// we anticipate the fast path being through an MCAssembler, the only reason to
396// keep it out is for API abstraction.
397class MCSectionData : public ilist_node<MCSectionData> {
398  friend class MCAsmLayout;
399
400  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
401  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
402
403public:
404  typedef iplist<MCFragment> FragmentListType;
405
406  typedef FragmentListType::const_iterator const_iterator;
407  typedef FragmentListType::iterator iterator;
408
409  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
410  typedef FragmentListType::reverse_iterator reverse_iterator;
411
412private:
413  FragmentListType Fragments;
414  const MCSection *Section;
415
416  /// Ordinal - The section index in the assemblers section list.
417  unsigned Ordinal;
418
419  /// LayoutOrder - The index of this section in the layout order.
420  unsigned LayoutOrder;
421
422  /// Alignment - The maximum alignment seen in this section.
423  unsigned Alignment;
424
425  /// @name Assembler Backend Data
426  /// @{
427  //
428  // FIXME: This could all be kept private to the assembler implementation.
429
430  /// HasInstructions - Whether this section has had instructions emitted into
431  /// it.
432  unsigned HasInstructions : 1;
433
434  /// @}
435
436public:
437  // Only for use as sentinel.
438  MCSectionData();
439  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
440
441  const MCSection &getSection() const { return *Section; }
442
443  unsigned getAlignment() const { return Alignment; }
444  void setAlignment(unsigned Value) { Alignment = Value; }
445
446  bool hasInstructions() const { return HasInstructions; }
447  void setHasInstructions(bool Value) { HasInstructions = Value; }
448
449  unsigned getOrdinal() const { return Ordinal; }
450  void setOrdinal(unsigned Value) { Ordinal = Value; }
451
452  unsigned getLayoutOrder() const { return LayoutOrder; }
453  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
454
455  /// @name Fragment Access
456  /// @{
457
458  const FragmentListType &getFragmentList() const { return Fragments; }
459  FragmentListType &getFragmentList() { return Fragments; }
460
461  iterator begin() { return Fragments.begin(); }
462  const_iterator begin() const { return Fragments.begin(); }
463
464  iterator end() { return Fragments.end(); }
465  const_iterator end() const { return Fragments.end(); }
466
467  reverse_iterator rbegin() { return Fragments.rbegin(); }
468  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
469
470  reverse_iterator rend() { return Fragments.rend(); }
471  const_reverse_iterator rend() const { return Fragments.rend(); }
472
473  size_t size() const { return Fragments.size(); }
474
475  bool empty() const { return Fragments.empty(); }
476
477  void dump();
478
479  /// @}
480};
481
482// FIXME: Same concerns as with SectionData.
483class MCSymbolData : public ilist_node<MCSymbolData> {
484public:
485  const MCSymbol *Symbol;
486
487  /// Fragment - The fragment this symbol's value is relative to, if any.
488  MCFragment *Fragment;
489
490  /// Offset - The offset to apply to the fragment address to form this symbol's
491  /// value.
492  uint64_t Offset;
493
494  /// IsExternal - True if this symbol is visible outside this translation
495  /// unit.
496  unsigned IsExternal : 1;
497
498  /// IsPrivateExtern - True if this symbol is private extern.
499  unsigned IsPrivateExtern : 1;
500
501  /// CommonSize - The size of the symbol, if it is 'common', or 0.
502  //
503  // FIXME: Pack this in with other fields? We could put it in offset, since a
504  // common symbol can never get a definition.
505  uint64_t CommonSize;
506
507  /// SymbolSize - An expression describing how to calculate the size of
508  /// a symbol. If a symbol has no size this field will be NULL.
509  const MCExpr *SymbolSize;
510
511  /// CommonAlign - The alignment of the symbol, if it is 'common'.
512  //
513  // FIXME: Pack this in with other fields?
514  unsigned CommonAlign;
515
516  /// Flags - The Flags field is used by object file implementations to store
517  /// additional per symbol information which is not easily classified.
518  uint32_t Flags;
519
520  /// Index - Index field, for use by the object file implementation.
521  uint64_t Index;
522
523public:
524  // Only for use as sentinel.
525  MCSymbolData();
526  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
527               MCAssembler *A = 0);
528
529  /// @name Accessors
530  /// @{
531
532  const MCSymbol &getSymbol() const { return *Symbol; }
533
534  MCFragment *getFragment() const { return Fragment; }
535  void setFragment(MCFragment *Value) { Fragment = Value; }
536
537  uint64_t getOffset() const { return Offset; }
538  void setOffset(uint64_t Value) { Offset = Value; }
539
540  /// @}
541  /// @name Symbol Attributes
542  /// @{
543
544  bool isExternal() const { return IsExternal; }
545  void setExternal(bool Value) { IsExternal = Value; }
546
547  bool isPrivateExtern() const { return IsPrivateExtern; }
548  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
549
550  /// isCommon - Is this a 'common' symbol.
551  bool isCommon() const { return CommonSize != 0; }
552
553  /// setCommon - Mark this symbol as being 'common'.
554  ///
555  /// \param Size - The size of the symbol.
556  /// \param Align - The alignment of the symbol.
557  void setCommon(uint64_t Size, unsigned Align) {
558    CommonSize = Size;
559    CommonAlign = Align;
560  }
561
562  /// getCommonSize - Return the size of a 'common' symbol.
563  uint64_t getCommonSize() const {
564    assert(isCommon() && "Not a 'common' symbol!");
565    return CommonSize;
566  }
567
568  void setSize(const MCExpr *SS) {
569    SymbolSize = SS;
570  }
571
572  const MCExpr *getSize() const {
573    return SymbolSize;
574  }
575
576
577  /// getCommonAlignment - Return the alignment of a 'common' symbol.
578  unsigned getCommonAlignment() const {
579    assert(isCommon() && "Not a 'common' symbol!");
580    return CommonAlign;
581  }
582
583  /// getFlags - Get the (implementation defined) symbol flags.
584  uint32_t getFlags() const { return Flags; }
585
586  /// setFlags - Set the (implementation defined) symbol flags.
587  void setFlags(uint32_t Value) { Flags = Value; }
588
589  /// modifyFlags - Modify the flags via a mask
590  void modifyFlags(uint32_t Value, uint32_t Mask) {
591    Flags = (Flags & ~Mask) | Value;
592  }
593
594  /// getIndex - Get the (implementation defined) index.
595  uint64_t getIndex() const { return Index; }
596
597  /// setIndex - Set the (implementation defined) index.
598  void setIndex(uint64_t Value) { Index = Value; }
599
600  /// @}
601
602  void dump();
603};
604
605// FIXME: This really doesn't belong here. See comments below.
606struct IndirectSymbolData {
607  MCSymbol *Symbol;
608  MCSectionData *SectionData;
609};
610
611class MCAssembler {
612  friend class MCAsmLayout;
613
614public:
615  typedef iplist<MCSectionData> SectionDataListType;
616  typedef iplist<MCSymbolData> SymbolDataListType;
617
618  typedef SectionDataListType::const_iterator const_iterator;
619  typedef SectionDataListType::iterator iterator;
620
621  typedef SymbolDataListType::const_iterator const_symbol_iterator;
622  typedef SymbolDataListType::iterator symbol_iterator;
623
624  typedef std::vector<IndirectSymbolData>::const_iterator
625    const_indirect_symbol_iterator;
626  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
627
628private:
629  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
630  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
631
632  MCContext &Context;
633
634  TargetAsmBackend &Backend;
635
636  MCCodeEmitter &Emitter;
637
638  MCObjectWriter &Writer;
639
640  raw_ostream &OS;
641
642  iplist<MCSectionData> Sections;
643
644  iplist<MCSymbolData> Symbols;
645
646  /// The map of sections to their associated assembler backend data.
647  //
648  // FIXME: Avoid this indirection?
649  DenseMap<const MCSection*, MCSectionData*> SectionMap;
650
651  /// The map of symbols to their associated assembler backend data.
652  //
653  // FIXME: Avoid this indirection?
654  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
655
656  std::vector<IndirectSymbolData> IndirectSymbols;
657
658  /// The set of function symbols for which a .thumb_func directive has
659  /// been seen.
660  //
661  // FIXME: We really would like this in target specific code rather than
662  // here. Maybe when the relocation stuff moves to target specific,
663  // this can go with it? The streamer would need some target specific
664  // refactoring too.
665  SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
666
667  unsigned RelaxAll : 1;
668  unsigned SubsectionsViaSymbols : 1;
669
670private:
671  /// Evaluate a fixup to a relocatable expression and the value which should be
672  /// placed into the fixup.
673  ///
674  /// \param Layout The layout to use for evaluation.
675  /// \param Fixup The fixup to evaluate.
676  /// \param DF The fragment the fixup is inside.
677  /// \param Target [out] On return, the relocatable expression the fixup
678  /// evaluates to.
679  /// \param Value [out] On return, the value of the fixup as currently layed
680  /// out.
681  /// \return Whether the fixup value was fully resolved. This is true if the
682  /// \arg Value result is fixed, otherwise the value may change due to
683  /// relocation.
684  bool EvaluateFixup(const MCAsmLayout &Layout,
685                     const MCFixup &Fixup, const MCFragment *DF,
686                     MCValue &Target, uint64_t &Value) const;
687
688  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
689  /// (increased in size, in order to hold its value correctly).
690  bool FixupNeedsRelaxation(const MCFixup &Fixup, const MCFragment *DF,
691                            const MCAsmLayout &Layout) const;
692
693  /// Check whether the given fragment needs relaxation.
694  bool FragmentNeedsRelaxation(const MCInstFragment *IF,
695                               const MCAsmLayout &Layout) const;
696
697  /// LayoutOnce - Perform one layout iteration and return true if any offsets
698  /// were adjusted.
699  bool LayoutOnce(MCAsmLayout &Layout);
700
701  bool LayoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
702
703  bool RelaxInstruction(MCAsmLayout &Layout, MCInstFragment &IF);
704
705  bool RelaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
706
707  bool RelaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
708
709  /// FinishLayout - Finalize a layout, including fragment lowering.
710  void FinishLayout(MCAsmLayout &Layout);
711
712  uint64_t HandleFixup(const MCAsmLayout &Layout,
713                       MCFragment &F, const MCFixup &Fixup);
714
715public:
716  /// Compute the effective fragment size assuming it is layed out at the given
717  /// \arg SectionAddress and \arg FragmentOffset.
718  uint64_t ComputeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const;
719
720  /// Find the symbol which defines the atom containing the given symbol, or
721  /// null if there is no such symbol.
722  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
723
724  /// Check whether a particular symbol is visible to the linker and is required
725  /// in the symbol table, or whether it can be discarded by the assembler. This
726  /// also effects whether the assembler treats the label as potentially
727  /// defining a separate atom.
728  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
729
730  /// Emit the section contents using the given object writer.
731  void WriteSectionData(const MCSectionData *Section,
732                        const MCAsmLayout &Layout) const;
733
734  /// Check whether a given symbol has been flagged with .thumb_func.
735  bool isThumbFunc(const MCSymbol *Func) const {
736    return ThumbFuncs.count(Func);
737  }
738
739  /// Flag a function symbol as the target of a .thumb_func directive.
740  void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
741
742public:
743  /// Construct a new assembler instance.
744  ///
745  /// \arg OS - The stream to output to.
746  //
747  // FIXME: How are we going to parameterize this? Two obvious options are stay
748  // concrete and require clients to pass in a target like object. The other
749  // option is to make this abstract, and have targets provide concrete
750  // implementations as we do with AsmParser.
751  MCAssembler(MCContext &Context_, TargetAsmBackend &Backend_,
752              MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
753              raw_ostream &OS);
754  ~MCAssembler();
755
756  MCContext &getContext() const { return Context; }
757
758  TargetAsmBackend &getBackend() const { return Backend; }
759
760  MCCodeEmitter &getEmitter() const { return Emitter; }
761
762  MCObjectWriter &getWriter() const { return Writer; }
763
764  /// Finish - Do final processing and write the object to the output stream.
765  /// \arg Writer is used for custom object writer (as the MCJIT does),
766  /// if not specified it is automatically created from backend.
767  void Finish();
768
769  // FIXME: This does not belong here.
770  bool getSubsectionsViaSymbols() const {
771    return SubsectionsViaSymbols;
772  }
773  void setSubsectionsViaSymbols(bool Value) {
774    SubsectionsViaSymbols = Value;
775  }
776
777  bool getRelaxAll() const { return RelaxAll; }
778  void setRelaxAll(bool Value) { RelaxAll = Value; }
779
780  /// @name Section List Access
781  /// @{
782
783  const SectionDataListType &getSectionList() const { return Sections; }
784  SectionDataListType &getSectionList() { return Sections; }
785
786  iterator begin() { return Sections.begin(); }
787  const_iterator begin() const { return Sections.begin(); }
788
789  iterator end() { return Sections.end(); }
790  const_iterator end() const { return Sections.end(); }
791
792  size_t size() const { return Sections.size(); }
793
794  /// @}
795  /// @name Symbol List Access
796  /// @{
797
798  const SymbolDataListType &getSymbolList() const { return Symbols; }
799  SymbolDataListType &getSymbolList() { return Symbols; }
800
801  symbol_iterator symbol_begin() { return Symbols.begin(); }
802  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
803
804  symbol_iterator symbol_end() { return Symbols.end(); }
805  const_symbol_iterator symbol_end() const { return Symbols.end(); }
806
807  size_t symbol_size() const { return Symbols.size(); }
808
809  /// @}
810  /// @name Indirect Symbol List Access
811  /// @{
812
813  // FIXME: This is a total hack, this should not be here. Once things are
814  // factored so that the streamer has direct access to the .o writer, it can
815  // disappear.
816  std::vector<IndirectSymbolData> &getIndirectSymbols() {
817    return IndirectSymbols;
818  }
819
820  indirect_symbol_iterator indirect_symbol_begin() {
821    return IndirectSymbols.begin();
822  }
823  const_indirect_symbol_iterator indirect_symbol_begin() const {
824    return IndirectSymbols.begin();
825  }
826
827  indirect_symbol_iterator indirect_symbol_end() {
828    return IndirectSymbols.end();
829  }
830  const_indirect_symbol_iterator indirect_symbol_end() const {
831    return IndirectSymbols.end();
832  }
833
834  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
835
836  /// @}
837  /// @name Backend Data Access
838  /// @{
839
840  MCSectionData &getSectionData(const MCSection &Section) const {
841    MCSectionData *Entry = SectionMap.lookup(&Section);
842    assert(Entry && "Missing section data!");
843    return *Entry;
844  }
845
846  MCSectionData &getOrCreateSectionData(const MCSection &Section,
847                                        bool *Created = 0) {
848    MCSectionData *&Entry = SectionMap[&Section];
849
850    if (Created) *Created = !Entry;
851    if (!Entry)
852      Entry = new MCSectionData(Section, this);
853
854    return *Entry;
855  }
856
857  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
858    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
859    assert(Entry && "Missing symbol data!");
860    return *Entry;
861  }
862
863  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
864                                      bool *Created = 0) {
865    MCSymbolData *&Entry = SymbolMap[&Symbol];
866
867    if (Created) *Created = !Entry;
868    if (!Entry)
869      Entry = new MCSymbolData(Symbol, 0, 0, this);
870
871    return *Entry;
872  }
873
874  /// @}
875
876  void dump();
877};
878
879} // end namespace llvm
880
881#endif
882