MCAssembler.h revision 85f2ecc697a8ca6c8cf08093054cbbb9d2060ccf
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallString.h"
15#include "llvm/ADT/ilist.h"
16#include "llvm/ADT/ilist_node.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/Support/DataTypes.h"
21#include <vector> // FIXME: Shouldn't be needed.
22
23namespace llvm {
24class raw_ostream;
25class MCAsmLayout;
26class MCAssembler;
27class MCBinaryExpr;
28class MCContext;
29class MCCodeEmitter;
30class MCExpr;
31class MCFragment;
32class MCObjectWriter;
33class MCSection;
34class MCSectionData;
35class MCSymbol;
36class MCSymbolData;
37class MCValue;
38class TargetAsmBackend;
39
40class MCFragment : public ilist_node<MCFragment> {
41  friend class MCAsmLayout;
42
43  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
44  void operator=(const MCFragment&); // DO NOT IMPLEMENT
45
46public:
47  enum FragmentType {
48    FT_Align,
49    FT_Data,
50    FT_Fill,
51    FT_Inst,
52    FT_Org,
53    FT_Dwarf,
54    FT_LEB
55  };
56
57private:
58  FragmentType Kind;
59
60  /// Parent - The data for the section this fragment is in.
61  MCSectionData *Parent;
62
63  /// Atom - The atom this fragment is in, as represented by it's defining
64  /// symbol. Atom's are only used by backends which set
65  /// \see MCAsmBackend::hasReliableSymbolDifference().
66  MCSymbolData *Atom;
67
68  /// @name Assembler Backend Data
69  /// @{
70  //
71  // FIXME: This could all be kept private to the assembler implementation.
72
73  /// Offset - The offset of this fragment in its section. This is ~0 until
74  /// initialized.
75  uint64_t Offset;
76
77  /// EffectiveSize - The compute size of this section. This is ~0 until
78  /// initialized.
79  uint64_t EffectiveSize;
80
81  /// LayoutOrder - The global layout order of this fragment. This is the index
82  /// across all fragments in the file, not just within the section.
83  unsigned LayoutOrder;
84
85  /// @}
86
87protected:
88  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
89
90public:
91  // Only for sentinel.
92  MCFragment();
93  virtual ~MCFragment();
94
95  FragmentType getKind() const { return Kind; }
96
97  MCSectionData *getParent() const { return Parent; }
98  void setParent(MCSectionData *Value) { Parent = Value; }
99
100  MCSymbolData *getAtom() const { return Atom; }
101  void setAtom(MCSymbolData *Value) { Atom = Value; }
102
103  unsigned getLayoutOrder() const { return LayoutOrder; }
104  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
105
106  static bool classof(const MCFragment *O) { return true; }
107
108  void dump();
109};
110
111class MCDataFragment : public MCFragment {
112  SmallString<32> Contents;
113
114  /// Fixups - The list of fixups in this fragment.
115  std::vector<MCFixup> Fixups;
116
117public:
118  typedef std::vector<MCFixup>::const_iterator const_fixup_iterator;
119  typedef std::vector<MCFixup>::iterator fixup_iterator;
120
121public:
122  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
123
124  /// @name Accessors
125  /// @{
126
127  SmallString<32> &getContents() { return Contents; }
128  const SmallString<32> &getContents() const { return Contents; }
129
130  /// @}
131  /// @name Fixup Access
132  /// @{
133
134  void addFixup(MCFixup Fixup) {
135    // Enforce invariant that fixups are in offset order.
136    assert((Fixups.empty() || Fixup.getOffset() > Fixups.back().getOffset()) &&
137           "Fixups must be added in order!");
138    Fixups.push_back(Fixup);
139  }
140
141  std::vector<MCFixup> &getFixups() { return Fixups; }
142  const std::vector<MCFixup> &getFixups() const { return Fixups; }
143
144  fixup_iterator fixup_begin() { return Fixups.begin(); }
145  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
146
147  fixup_iterator fixup_end() {return Fixups.end();}
148  const_fixup_iterator fixup_end() const {return Fixups.end();}
149
150  size_t fixup_size() const { return Fixups.size(); }
151
152  /// @}
153
154  static bool classof(const MCFragment *F) {
155    return F->getKind() == MCFragment::FT_Data;
156  }
157  static bool classof(const MCDataFragment *) { return true; }
158};
159
160// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
161// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
162// with this approach (as opposed to making MCInstFragment a very light weight
163// object with just the MCInst and a code size, then we should just change
164// MCDataFragment to have an optional MCInst at its end.
165class MCInstFragment : public MCFragment {
166  /// Inst - The instruction this is a fragment for.
167  MCInst Inst;
168
169  /// Code - Binary data for the currently encoded instruction.
170  SmallString<8> Code;
171
172  /// Fixups - The list of fixups in this fragment.
173  SmallVector<MCFixup, 1> Fixups;
174
175public:
176  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
177  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
178
179public:
180  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
181    : MCFragment(FT_Inst, SD), Inst(_Inst) {
182  }
183
184  /// @name Accessors
185  /// @{
186
187  SmallVectorImpl<char> &getCode() { return Code; }
188  const SmallVectorImpl<char> &getCode() const { return Code; }
189
190  unsigned getInstSize() const { return Code.size(); }
191
192  MCInst &getInst() { return Inst; }
193  const MCInst &getInst() const { return Inst; }
194
195  void setInst(MCInst Value) { Inst = Value; }
196
197  /// @}
198  /// @name Fixup Access
199  /// @{
200
201  SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
202  const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
203
204  fixup_iterator fixup_begin() { return Fixups.begin(); }
205  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
206
207  fixup_iterator fixup_end() {return Fixups.end();}
208  const_fixup_iterator fixup_end() const {return Fixups.end();}
209
210  size_t fixup_size() const { return Fixups.size(); }
211
212  /// @}
213
214  static bool classof(const MCFragment *F) {
215    return F->getKind() == MCFragment::FT_Inst;
216  }
217  static bool classof(const MCInstFragment *) { return true; }
218};
219
220class MCAlignFragment : public MCFragment {
221  /// Alignment - The alignment to ensure, in bytes.
222  unsigned Alignment;
223
224  /// Value - Value to use for filling padding bytes.
225  int64_t Value;
226
227  /// ValueSize - The size of the integer (in bytes) of \arg Value.
228  unsigned ValueSize;
229
230  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
231  /// cannot be satisfied in this width then this fragment is ignored.
232  unsigned MaxBytesToEmit;
233
234  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
235  /// of using the provided value. The exact interpretation of this flag is
236  /// target dependent.
237  bool EmitNops : 1;
238
239public:
240  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
241                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
242    : MCFragment(FT_Align, SD), Alignment(_Alignment),
243      Value(_Value),ValueSize(_ValueSize),
244      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
245
246  /// @name Accessors
247  /// @{
248
249  unsigned getAlignment() const { return Alignment; }
250
251  int64_t getValue() const { return Value; }
252
253  unsigned getValueSize() const { return ValueSize; }
254
255  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
256
257  bool hasEmitNops() const { return EmitNops; }
258  void setEmitNops(bool Value) { EmitNops = Value; }
259
260  /// @}
261
262  static bool classof(const MCFragment *F) {
263    return F->getKind() == MCFragment::FT_Align;
264  }
265  static bool classof(const MCAlignFragment *) { return true; }
266};
267
268class MCFillFragment : public MCFragment {
269  /// Value - Value to use for filling bytes.
270  int64_t Value;
271
272  /// ValueSize - The size (in bytes) of \arg Value to use when filling, or 0 if
273  /// this is a virtual fill fragment.
274  unsigned ValueSize;
275
276  /// Size - The number of bytes to insert.
277  uint64_t Size;
278
279public:
280  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
281                 MCSectionData *SD = 0)
282    : MCFragment(FT_Fill, SD),
283      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
284    assert((!ValueSize || (Size % ValueSize) == 0) &&
285           "Fill size must be a multiple of the value size!");
286  }
287
288  /// @name Accessors
289  /// @{
290
291  int64_t getValue() const { return Value; }
292
293  unsigned getValueSize() const { return ValueSize; }
294
295  uint64_t getSize() const { return Size; }
296
297  /// @}
298
299  static bool classof(const MCFragment *F) {
300    return F->getKind() == MCFragment::FT_Fill;
301  }
302  static bool classof(const MCFillFragment *) { return true; }
303};
304
305class MCOrgFragment : public MCFragment {
306  /// Offset - The offset this fragment should start at.
307  const MCExpr *Offset;
308
309  /// Value - Value to use for filling bytes.
310  int8_t Value;
311
312  /// Size - The current estimate of the size.
313  unsigned Size;
314
315public:
316  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
317    : MCFragment(FT_Org, SD),
318      Offset(&_Offset), Value(_Value), Size(0) {}
319
320  /// @name Accessors
321  /// @{
322
323  const MCExpr &getOffset() const { return *Offset; }
324
325  uint8_t getValue() const { return Value; }
326
327  unsigned getSize() const { return Size; }
328
329  void setSize(unsigned Size_) { Size = Size_; }
330  /// @}
331
332  static bool classof(const MCFragment *F) {
333    return F->getKind() == MCFragment::FT_Org;
334  }
335  static bool classof(const MCOrgFragment *) { return true; }
336};
337
338class MCLEBFragment : public MCFragment {
339  /// Value - The value this fragment should contain.
340  const MCExpr *Value;
341
342  /// IsSigned - True if this is a sleb128, false if uleb128.
343  bool IsSigned;
344
345  SmallString<8> Contents;
346public:
347  MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
348    : MCFragment(FT_LEB, SD),
349      Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
350
351  /// @name Accessors
352  /// @{
353
354  const MCExpr &getValue() const { return *Value; }
355
356  bool isSigned() const { return IsSigned; }
357
358  SmallString<8> &getContents() { return Contents; }
359  const SmallString<8> &getContents() const { return Contents; }
360
361  /// @}
362
363  static bool classof(const MCFragment *F) {
364    return F->getKind() == MCFragment::FT_LEB;
365  }
366  static bool classof(const MCLEBFragment *) { return true; }
367};
368
369class MCDwarfLineAddrFragment : public MCFragment {
370  /// LineDelta - the value of the difference between the two line numbers
371  /// between two .loc dwarf directives.
372  int64_t LineDelta;
373
374  /// AddrDelta - The expression for the difference of the two symbols that
375  /// make up the address delta between two .loc dwarf directives.
376  const MCExpr *AddrDelta;
377
378  SmallString<8> Contents;
379
380public:
381  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
382                      MCSectionData *SD = 0)
383    : MCFragment(FT_Dwarf, SD),
384      LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
385
386  /// @name Accessors
387  /// @{
388
389  int64_t getLineDelta() const { return LineDelta; }
390
391  const MCExpr &getAddrDelta() const { return *AddrDelta; }
392
393  SmallString<8> &getContents() { return Contents; }
394  const SmallString<8> &getContents() const { return Contents; }
395
396  /// @}
397
398  static bool classof(const MCFragment *F) {
399    return F->getKind() == MCFragment::FT_Dwarf;
400  }
401  static bool classof(const MCDwarfLineAddrFragment *) { return true; }
402};
403
404// FIXME: Should this be a separate class, or just merged into MCSection? Since
405// we anticipate the fast path being through an MCAssembler, the only reason to
406// keep it out is for API abstraction.
407class MCSectionData : public ilist_node<MCSectionData> {
408  friend class MCAsmLayout;
409
410  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
411  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
412
413public:
414  typedef iplist<MCFragment> FragmentListType;
415
416  typedef FragmentListType::const_iterator const_iterator;
417  typedef FragmentListType::iterator iterator;
418
419  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
420  typedef FragmentListType::reverse_iterator reverse_iterator;
421
422private:
423  FragmentListType Fragments;
424  const MCSection *Section;
425
426  /// Ordinal - The section index in the assemblers section list.
427  unsigned Ordinal;
428
429  /// LayoutOrder - The index of this section in the layout order.
430  unsigned LayoutOrder;
431
432  /// Alignment - The maximum alignment seen in this section.
433  unsigned Alignment;
434
435  /// @name Assembler Backend Data
436  /// @{
437  //
438  // FIXME: This could all be kept private to the assembler implementation.
439
440  /// HasInstructions - Whether this section has had instructions emitted into
441  /// it.
442  unsigned HasInstructions : 1;
443
444  /// @}
445
446public:
447  // Only for use as sentinel.
448  MCSectionData();
449  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
450
451  const MCSection &getSection() const { return *Section; }
452
453  unsigned getAlignment() const { return Alignment; }
454  void setAlignment(unsigned Value) { Alignment = Value; }
455
456  bool hasInstructions() const { return HasInstructions; }
457  void setHasInstructions(bool Value) { HasInstructions = Value; }
458
459  unsigned getOrdinal() const { return Ordinal; }
460  void setOrdinal(unsigned Value) { Ordinal = Value; }
461
462  unsigned getLayoutOrder() const { return LayoutOrder; }
463  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
464
465  /// @name Fragment Access
466  /// @{
467
468  const FragmentListType &getFragmentList() const { return Fragments; }
469  FragmentListType &getFragmentList() { return Fragments; }
470
471  iterator begin() { return Fragments.begin(); }
472  const_iterator begin() const { return Fragments.begin(); }
473
474  iterator end() { return Fragments.end(); }
475  const_iterator end() const { return Fragments.end(); }
476
477  reverse_iterator rbegin() { return Fragments.rbegin(); }
478  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
479
480  reverse_iterator rend() { return Fragments.rend(); }
481  const_reverse_iterator rend() const { return Fragments.rend(); }
482
483  size_t size() const { return Fragments.size(); }
484
485  bool empty() const { return Fragments.empty(); }
486
487  void dump();
488
489  /// @}
490};
491
492// FIXME: Same concerns as with SectionData.
493class MCSymbolData : public ilist_node<MCSymbolData> {
494public:
495  const MCSymbol *Symbol;
496
497  /// Fragment - The fragment this symbol's value is relative to, if any.
498  MCFragment *Fragment;
499
500  /// Offset - The offset to apply to the fragment address to form this symbol's
501  /// value.
502  uint64_t Offset;
503
504  /// IsExternal - True if this symbol is visible outside this translation
505  /// unit.
506  unsigned IsExternal : 1;
507
508  /// IsPrivateExtern - True if this symbol is private extern.
509  unsigned IsPrivateExtern : 1;
510
511  /// CommonSize - The size of the symbol, if it is 'common', or 0.
512  //
513  // FIXME: Pack this in with other fields? We could put it in offset, since a
514  // common symbol can never get a definition.
515  uint64_t CommonSize;
516
517  /// SymbolSize - An expression describing how to calculate the size of
518  /// a symbol. If a symbol has no size this field will be NULL.
519  const MCExpr *SymbolSize;
520
521  /// CommonAlign - The alignment of the symbol, if it is 'common'.
522  //
523  // FIXME: Pack this in with other fields?
524  unsigned CommonAlign;
525
526  /// Flags - The Flags field is used by object file implementations to store
527  /// additional per symbol information which is not easily classified.
528  uint32_t Flags;
529
530  /// Index - Index field, for use by the object file implementation.
531  uint64_t Index;
532
533public:
534  // Only for use as sentinel.
535  MCSymbolData();
536  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
537               MCAssembler *A = 0);
538
539  /// @name Accessors
540  /// @{
541
542  const MCSymbol &getSymbol() const { return *Symbol; }
543
544  MCFragment *getFragment() const { return Fragment; }
545  void setFragment(MCFragment *Value) { Fragment = Value; }
546
547  uint64_t getOffset() const { return Offset; }
548  void setOffset(uint64_t Value) { Offset = Value; }
549
550  /// @}
551  /// @name Symbol Attributes
552  /// @{
553
554  bool isExternal() const { return IsExternal; }
555  void setExternal(bool Value) { IsExternal = Value; }
556
557  bool isPrivateExtern() const { return IsPrivateExtern; }
558  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
559
560  /// isCommon - Is this a 'common' symbol.
561  bool isCommon() const { return CommonSize != 0; }
562
563  /// setCommon - Mark this symbol as being 'common'.
564  ///
565  /// \param Size - The size of the symbol.
566  /// \param Align - The alignment of the symbol.
567  void setCommon(uint64_t Size, unsigned Align) {
568    CommonSize = Size;
569    CommonAlign = Align;
570  }
571
572  /// getCommonSize - Return the size of a 'common' symbol.
573  uint64_t getCommonSize() const {
574    assert(isCommon() && "Not a 'common' symbol!");
575    return CommonSize;
576  }
577
578  void setSize(const MCExpr *SS) {
579    SymbolSize = SS;
580  }
581
582  const MCExpr *getSize() const {
583    return SymbolSize;
584  }
585
586
587  /// getCommonAlignment - Return the alignment of a 'common' symbol.
588  unsigned getCommonAlignment() const {
589    assert(isCommon() && "Not a 'common' symbol!");
590    return CommonAlign;
591  }
592
593  /// getFlags - Get the (implementation defined) symbol flags.
594  uint32_t getFlags() const { return Flags; }
595
596  /// setFlags - Set the (implementation defined) symbol flags.
597  void setFlags(uint32_t Value) { Flags = Value; }
598
599  /// modifyFlags - Modify the flags via a mask
600  void modifyFlags(uint32_t Value, uint32_t Mask) {
601    Flags = (Flags & ~Mask) | Value;
602  }
603
604  /// getIndex - Get the (implementation defined) index.
605  uint64_t getIndex() const { return Index; }
606
607  /// setIndex - Set the (implementation defined) index.
608  void setIndex(uint64_t Value) { Index = Value; }
609
610  /// @}
611
612  void dump();
613};
614
615// FIXME: This really doesn't belong here. See comments below.
616struct IndirectSymbolData {
617  MCSymbol *Symbol;
618  MCSectionData *SectionData;
619};
620
621class MCAssembler {
622  friend class MCAsmLayout;
623
624public:
625  typedef iplist<MCSectionData> SectionDataListType;
626  typedef iplist<MCSymbolData> SymbolDataListType;
627
628  typedef SectionDataListType::const_iterator const_iterator;
629  typedef SectionDataListType::iterator iterator;
630
631  typedef SymbolDataListType::const_iterator const_symbol_iterator;
632  typedef SymbolDataListType::iterator symbol_iterator;
633
634  typedef std::vector<IndirectSymbolData>::const_iterator
635    const_indirect_symbol_iterator;
636  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
637
638private:
639  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
640  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
641
642  MCContext &Context;
643
644  TargetAsmBackend &Backend;
645
646  MCCodeEmitter &Emitter;
647
648  raw_ostream &OS;
649
650  iplist<MCSectionData> Sections;
651
652  iplist<MCSymbolData> Symbols;
653
654  /// The map of sections to their associated assembler backend data.
655  //
656  // FIXME: Avoid this indirection?
657  DenseMap<const MCSection*, MCSectionData*> SectionMap;
658
659  /// The map of symbols to their associated assembler backend data.
660  //
661  // FIXME: Avoid this indirection?
662  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
663
664  std::vector<IndirectSymbolData> IndirectSymbols;
665
666  unsigned RelaxAll : 1;
667  unsigned SubsectionsViaSymbols : 1;
668
669private:
670  /// Evaluate a fixup to a relocatable expression and the value which should be
671  /// placed into the fixup.
672  ///
673  /// \param Layout The layout to use for evaluation.
674  /// \param Fixup The fixup to evaluate.
675  /// \param DF The fragment the fixup is inside.
676  /// \param Target [out] On return, the relocatable expression the fixup
677  /// evaluates to.
678  /// \param Value [out] On return, the value of the fixup as currently layed
679  /// out.
680  /// \return Whether the fixup value was fully resolved. This is true if the
681  /// \arg Value result is fixed, otherwise the value may change due to
682  /// relocation.
683  bool EvaluateFixup(const MCObjectWriter &Writer, const MCAsmLayout &Layout,
684                     const MCFixup &Fixup, const MCFragment *DF,
685                     MCValue &Target, uint64_t &Value) const;
686
687  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
688  /// (increased in size, in order to hold its value correctly).
689  bool FixupNeedsRelaxation(const MCObjectWriter &Writer,
690                            const MCFixup &Fixup, const MCFragment *DF,
691                            const MCAsmLayout &Layout) const;
692
693  /// Check whether the given fragment needs relaxation.
694  bool FragmentNeedsRelaxation(const MCObjectWriter &Writer,
695                               const MCInstFragment *IF,
696                               const MCAsmLayout &Layout) const;
697
698  /// Compute the effective fragment size assuming it is layed out at the given
699  /// \arg SectionAddress and \arg FragmentOffset.
700  uint64_t ComputeFragmentSize(const MCFragment &F,
701                               uint64_t FragmentOffset) const;
702
703  /// LayoutOnce - Perform one layout iteration and return true if any offsets
704  /// were adjusted.
705  bool LayoutOnce(const MCObjectWriter &Writer, MCAsmLayout &Layout);
706
707  bool RelaxInstruction(const MCObjectWriter &Writer, MCAsmLayout &Layout,
708                        MCInstFragment &IF);
709
710  bool RelaxOrg(const MCObjectWriter &Writer, MCAsmLayout &Layout,
711                MCOrgFragment &OF);
712
713  bool RelaxLEB(const MCObjectWriter &Writer, MCAsmLayout &Layout,
714                MCLEBFragment &IF);
715
716  bool RelaxDwarfLineAddr(const MCObjectWriter &Writer, MCAsmLayout &Layout,
717			  MCDwarfLineAddrFragment &DF);
718
719  /// FinishLayout - Finalize a layout, including fragment lowering.
720  void FinishLayout(MCAsmLayout &Layout);
721
722  uint64_t HandleFixup(MCObjectWriter &Writer, const MCAsmLayout &Layout,
723                       MCFragment &F, const MCFixup &Fixup);
724
725public:
726  /// Find the symbol which defines the atom containing the given symbol, or
727  /// null if there is no such symbol.
728  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
729
730  /// Check whether a particular symbol is visible to the linker and is required
731  /// in the symbol table, or whether it can be discarded by the assembler. This
732  /// also effects whether the assembler treats the label as potentially
733  /// defining a separate atom.
734  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
735
736  /// Emit the section contents using the given object writer.
737  //
738  // FIXME: Should MCAssembler always have a reference to the object writer?
739  void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout,
740                        MCObjectWriter *OW) const;
741
742public:
743  /// Construct a new assembler instance.
744  ///
745  /// \arg OS - The stream to output to.
746  //
747  // FIXME: How are we going to parameterize this? Two obvious options are stay
748  // concrete and require clients to pass in a target like object. The other
749  // option is to make this abstract, and have targets provide concrete
750  // implementations as we do with AsmParser.
751  MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
752              MCCodeEmitter &_Emitter, raw_ostream &OS);
753  ~MCAssembler();
754
755  MCContext &getContext() const { return Context; }
756
757  TargetAsmBackend &getBackend() const { return Backend; }
758
759  MCCodeEmitter &getEmitter() const { return Emitter; }
760
761  /// Finish - Do final processing and write the object to the output stream.
762  /// \arg Writer is used for custom object writer (as the MCJIT does),
763  /// if not specified it is automatically created from backend.
764  void Finish(MCObjectWriter *Writer = 0);
765
766  // FIXME: This does not belong here.
767  bool getSubsectionsViaSymbols() const {
768    return SubsectionsViaSymbols;
769  }
770  void setSubsectionsViaSymbols(bool Value) {
771    SubsectionsViaSymbols = Value;
772  }
773
774  bool getRelaxAll() const { return RelaxAll; }
775  void setRelaxAll(bool Value) { RelaxAll = Value; }
776
777  /// @name Section List Access
778  /// @{
779
780  const SectionDataListType &getSectionList() const { return Sections; }
781  SectionDataListType &getSectionList() { return Sections; }
782
783  iterator begin() { return Sections.begin(); }
784  const_iterator begin() const { return Sections.begin(); }
785
786  iterator end() { return Sections.end(); }
787  const_iterator end() const { return Sections.end(); }
788
789  size_t size() const { return Sections.size(); }
790
791  /// @}
792  /// @name Symbol List Access
793  /// @{
794
795  const SymbolDataListType &getSymbolList() const { return Symbols; }
796  SymbolDataListType &getSymbolList() { return Symbols; }
797
798  symbol_iterator symbol_begin() { return Symbols.begin(); }
799  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
800
801  symbol_iterator symbol_end() { return Symbols.end(); }
802  const_symbol_iterator symbol_end() const { return Symbols.end(); }
803
804  size_t symbol_size() const { return Symbols.size(); }
805
806  /// @}
807  /// @name Indirect Symbol List Access
808  /// @{
809
810  // FIXME: This is a total hack, this should not be here. Once things are
811  // factored so that the streamer has direct access to the .o writer, it can
812  // disappear.
813  std::vector<IndirectSymbolData> &getIndirectSymbols() {
814    return IndirectSymbols;
815  }
816
817  indirect_symbol_iterator indirect_symbol_begin() {
818    return IndirectSymbols.begin();
819  }
820  const_indirect_symbol_iterator indirect_symbol_begin() const {
821    return IndirectSymbols.begin();
822  }
823
824  indirect_symbol_iterator indirect_symbol_end() {
825    return IndirectSymbols.end();
826  }
827  const_indirect_symbol_iterator indirect_symbol_end() const {
828    return IndirectSymbols.end();
829  }
830
831  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
832
833  /// @}
834  /// @name Backend Data Access
835  /// @{
836
837  MCSectionData &getSectionData(const MCSection &Section) const {
838    MCSectionData *Entry = SectionMap.lookup(&Section);
839    assert(Entry && "Missing section data!");
840    return *Entry;
841  }
842
843  MCSectionData &getOrCreateSectionData(const MCSection &Section,
844                                        bool *Created = 0) {
845    MCSectionData *&Entry = SectionMap[&Section];
846
847    if (Created) *Created = !Entry;
848    if (!Entry)
849      Entry = new MCSectionData(Section, this);
850
851    return *Entry;
852  }
853
854  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
855    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
856    assert(Entry && "Missing symbol data!");
857    return *Entry;
858  }
859
860  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
861                                      bool *Created = 0) {
862    MCSymbolData *&Entry = SymbolMap[&Symbol];
863
864    if (Created) *Created = !Entry;
865    if (!Entry)
866      Entry = new MCSymbolData(Symbol, 0, 0, this);
867
868    return *Entry;
869  }
870
871  /// @}
872
873  void dump();
874};
875
876} // end namespace llvm
877
878#endif
879