MCAssembler.h revision e73d49eda2cb4fc30b52c4a241acf69c8af98302
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallString.h"
15#include "llvm/ADT/ilist.h"
16#include "llvm/ADT/ilist_node.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/System/DataTypes.h"
21#include <vector> // FIXME: Shouldn't be needed.
22
23namespace llvm {
24class raw_ostream;
25class MCAsmLayout;
26class MCAssembler;
27class MCContext;
28class MCCodeEmitter;
29class MCExpr;
30class MCFragment;
31class MCObjectWriter;
32class MCSection;
33class MCSectionData;
34class MCSymbol;
35class MCSymbolData;
36class MCValue;
37class TargetAsmBackend;
38
39/// MCAsmFixup - Represent a fixed size region of bytes inside some fragment
40/// which needs to be rewritten. This region will either be rewritten by the
41/// assembler or cause a relocation entry to be generated.
42//
43// FIXME: This should probably just be merged with MCFixup.
44class MCAsmFixup {
45public:
46  /// Offset - The offset inside the fragment which needs to be rewritten.
47  uint64_t Offset;
48
49  /// Value - The expression to eventually write into the fragment.
50  const MCExpr *Value;
51
52  /// Kind - The fixup kind.
53  MCFixupKind Kind;
54
55public:
56  MCAsmFixup(uint64_t _Offset, const MCExpr &_Value, MCFixupKind _Kind)
57    : Offset(_Offset), Value(&_Value), Kind(_Kind) {}
58};
59
60class MCFragment : public ilist_node<MCFragment> {
61  friend class MCAsmLayout;
62
63  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
64  void operator=(const MCFragment&); // DO NOT IMPLEMENT
65
66public:
67  enum FragmentType {
68    FT_Align,
69    FT_Data,
70    FT_Fill,
71    FT_Inst,
72    FT_Org,
73    FT_ZeroFill
74  };
75
76private:
77  FragmentType Kind;
78
79  /// Parent - The data for the section this fragment is in.
80  MCSectionData *Parent;
81
82  /// Atom - The atom this fragment is in, as represented by it's defining
83  /// symbol. Atom's are only used by backends which set
84  /// \see MCAsmBackend::hasReliableSymbolDifference().
85  MCSymbolData *Atom;
86
87  /// @name Assembler Backend Data
88  /// @{
89  //
90  // FIXME: This could all be kept private to the assembler implementation.
91
92  /// Offset - The offset of this fragment in its section. This is ~0 until
93  /// initialized.
94  uint64_t Offset;
95
96  /// EffectiveSize - The compute size of this section. This is ~0 until
97  /// initialized.
98  uint64_t EffectiveSize;
99
100  /// Ordinal - The global index of this fragment. This is the index across all
101  /// sections, not just the parent section.
102  unsigned Ordinal;
103
104  /// @}
105
106protected:
107  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
108
109public:
110  // Only for sentinel.
111  MCFragment();
112  virtual ~MCFragment();
113
114  FragmentType getKind() const { return Kind; }
115
116  MCSectionData *getParent() const { return Parent; }
117  void setParent(MCSectionData *Value) { Parent = Value; }
118
119  MCSymbolData *getAtom() const { return Atom; }
120  void setAtom(MCSymbolData *Value) { Atom = Value; }
121
122  unsigned getOrdinal() const { return Ordinal; }
123  void setOrdinal(unsigned Value) { Ordinal = Value; }
124
125  static bool classof(const MCFragment *O) { return true; }
126
127  virtual void dump();
128};
129
130class MCDataFragment : public MCFragment {
131  SmallString<32> Contents;
132
133  /// Fixups - The list of fixups in this fragment.
134  std::vector<MCAsmFixup> Fixups;
135
136public:
137  typedef std::vector<MCAsmFixup>::const_iterator const_fixup_iterator;
138  typedef std::vector<MCAsmFixup>::iterator fixup_iterator;
139
140public:
141  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
142
143  /// @name Accessors
144  /// @{
145
146  SmallString<32> &getContents() { return Contents; }
147  const SmallString<32> &getContents() const { return Contents; }
148
149  /// @}
150  /// @name Fixup Access
151  /// @{
152
153  void addFixup(MCAsmFixup Fixup) {
154    // Enforce invariant that fixups are in offset order.
155    assert((Fixups.empty() || Fixup.Offset > Fixups.back().Offset) &&
156           "Fixups must be added in order!");
157    Fixups.push_back(Fixup);
158  }
159
160  std::vector<MCAsmFixup> &getFixups() { return Fixups; }
161  const std::vector<MCAsmFixup> &getFixups() const { return Fixups; }
162
163  fixup_iterator fixup_begin() { return Fixups.begin(); }
164  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
165
166  fixup_iterator fixup_end() {return Fixups.end();}
167  const_fixup_iterator fixup_end() const {return Fixups.end();}
168
169  size_t fixup_size() const { return Fixups.size(); }
170
171  /// @}
172
173  static bool classof(const MCFragment *F) {
174    return F->getKind() == MCFragment::FT_Data;
175  }
176  static bool classof(const MCDataFragment *) { return true; }
177
178  virtual void dump();
179};
180
181// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
182// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
183// with this approach (as opposed to making MCInstFragment a very light weight
184// object with just the MCInst and a code size, then we should just change
185// MCDataFragment to have an optional MCInst at its end.
186class MCInstFragment : public MCFragment {
187  /// Inst - The instruction this is a fragment for.
188  MCInst Inst;
189
190  /// InstSize - The size of the currently encoded instruction.
191  SmallString<8> Code;
192
193  /// Fixups - The list of fixups in this fragment.
194  SmallVector<MCAsmFixup, 1> Fixups;
195
196public:
197  typedef SmallVectorImpl<MCAsmFixup>::const_iterator const_fixup_iterator;
198  typedef SmallVectorImpl<MCAsmFixup>::iterator fixup_iterator;
199
200public:
201  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
202    : MCFragment(FT_Inst, SD), Inst(_Inst) {
203  }
204
205  /// @name Accessors
206  /// @{
207
208  SmallVectorImpl<char> &getCode() { return Code; }
209  const SmallVectorImpl<char> &getCode() const { return Code; }
210
211  unsigned getInstSize() const { return Code.size(); }
212
213  MCInst &getInst() { return Inst; }
214  const MCInst &getInst() const { return Inst; }
215
216  void setInst(MCInst Value) { Inst = Value; }
217
218  /// @}
219  /// @name Fixup Access
220  /// @{
221
222  SmallVectorImpl<MCAsmFixup> &getFixups() { return Fixups; }
223  const SmallVectorImpl<MCAsmFixup> &getFixups() const { return Fixups; }
224
225  fixup_iterator fixup_begin() { return Fixups.begin(); }
226  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
227
228  fixup_iterator fixup_end() {return Fixups.end();}
229  const_fixup_iterator fixup_end() const {return Fixups.end();}
230
231  size_t fixup_size() const { return Fixups.size(); }
232
233  /// @}
234
235  static bool classof(const MCFragment *F) {
236    return F->getKind() == MCFragment::FT_Inst;
237  }
238  static bool classof(const MCInstFragment *) { return true; }
239
240  virtual void dump();
241};
242
243class MCAlignFragment : public MCFragment {
244  /// Alignment - The alignment to ensure, in bytes.
245  unsigned Alignment;
246
247  /// Value - Value to use for filling padding bytes.
248  int64_t Value;
249
250  /// ValueSize - The size of the integer (in bytes) of \arg Value.
251  unsigned ValueSize;
252
253  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
254  /// cannot be satisfied in this width then this fragment is ignored.
255  unsigned MaxBytesToEmit;
256
257  /// EmitNops - true when aligning code and optimal nops to be used for
258  /// filling.
259  bool EmitNops;
260
261public:
262  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
263                  unsigned _MaxBytesToEmit, bool _EmitNops,
264		  MCSectionData *SD = 0)
265    : MCFragment(FT_Align, SD), Alignment(_Alignment),
266      Value(_Value),ValueSize(_ValueSize),
267      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(_EmitNops) {}
268
269  /// @name Accessors
270  /// @{
271
272  unsigned getAlignment() const { return Alignment; }
273
274  int64_t getValue() const { return Value; }
275
276  unsigned getValueSize() const { return ValueSize; }
277
278  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
279
280  unsigned getEmitNops() const { return EmitNops; }
281
282  /// @}
283
284  static bool classof(const MCFragment *F) {
285    return F->getKind() == MCFragment::FT_Align;
286  }
287  static bool classof(const MCAlignFragment *) { return true; }
288
289  virtual void dump();
290};
291
292class MCFillFragment : public MCFragment {
293  /// Value - Value to use for filling bytes.
294  int64_t Value;
295
296  /// ValueSize - The size (in bytes) of \arg Value to use when filling.
297  unsigned ValueSize;
298
299  /// Count - The number of copies of \arg Value to insert.
300  uint64_t Count;
301
302public:
303  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Count,
304                 MCSectionData *SD = 0)
305    : MCFragment(FT_Fill, SD),
306      Value(_Value), ValueSize(_ValueSize), Count(_Count) {}
307
308  /// @name Accessors
309  /// @{
310
311  int64_t getValue() const { return Value; }
312
313  unsigned getValueSize() const { return ValueSize; }
314
315  uint64_t getCount() const { return Count; }
316
317  /// @}
318
319  static bool classof(const MCFragment *F) {
320    return F->getKind() == MCFragment::FT_Fill;
321  }
322  static bool classof(const MCFillFragment *) { return true; }
323
324  virtual void dump();
325};
326
327class MCOrgFragment : public MCFragment {
328  /// Offset - The offset this fragment should start at.
329  const MCExpr *Offset;
330
331  /// Value - Value to use for filling bytes.
332  int8_t Value;
333
334public:
335  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
336    : MCFragment(FT_Org, SD),
337      Offset(&_Offset), Value(_Value) {}
338
339  /// @name Accessors
340  /// @{
341
342  const MCExpr &getOffset() const { return *Offset; }
343
344  uint8_t getValue() const { return Value; }
345
346  /// @}
347
348  static bool classof(const MCFragment *F) {
349    return F->getKind() == MCFragment::FT_Org;
350  }
351  static bool classof(const MCOrgFragment *) { return true; }
352
353  virtual void dump();
354};
355
356/// MCZeroFillFragment - Represent data which has a fixed size and alignment,
357/// but requires no physical space in the object file.
358class MCZeroFillFragment : public MCFragment {
359  /// Size - The size of this fragment.
360  uint64_t Size;
361
362public:
363  MCZeroFillFragment(uint64_t _Size, MCSectionData *SD = 0)
364    : MCFragment(FT_ZeroFill, SD), Size(_Size) {}
365
366  /// @name Accessors
367  /// @{
368
369  uint64_t getSize() const { return Size; }
370
371  /// @}
372
373  static bool classof(const MCFragment *F) {
374    return F->getKind() == MCFragment::FT_ZeroFill;
375  }
376  static bool classof(const MCZeroFillFragment *) { return true; }
377
378  virtual void dump();
379};
380
381// FIXME: Should this be a separate class, or just merged into MCSection? Since
382// we anticipate the fast path being through an MCAssembler, the only reason to
383// keep it out is for API abstraction.
384class MCSectionData : public ilist_node<MCSectionData> {
385  friend class MCAsmLayout;
386
387  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
388  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
389
390public:
391  typedef iplist<MCFragment> FragmentListType;
392
393  typedef FragmentListType::const_iterator const_iterator;
394  typedef FragmentListType::iterator iterator;
395
396  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
397  typedef FragmentListType::reverse_iterator reverse_iterator;
398
399private:
400  iplist<MCFragment> Fragments;
401  const MCSection *Section;
402
403  /// Ordinal - The section index in the assemblers section list.
404  unsigned Ordinal;
405
406  /// Alignment - The maximum alignment seen in this section.
407  unsigned Alignment;
408
409  /// @name Assembler Backend Data
410  /// @{
411  //
412  // FIXME: This could all be kept private to the assembler implementation.
413
414  /// Address - The computed address of this section. This is ~0 until
415  /// initialized.
416  uint64_t Address;
417
418  /// Size - The content size of this section. This is ~0 until initialized.
419  uint64_t Size;
420
421  /// FileSize - The size of this section in the object file. This is ~0 until
422  /// initialized.
423  uint64_t FileSize;
424
425  /// HasInstructions - Whether this section has had instructions emitted into
426  /// it.
427  unsigned HasInstructions : 1;
428
429  /// @}
430
431public:
432  // Only for use as sentinel.
433  MCSectionData();
434  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
435
436  const MCSection &getSection() const { return *Section; }
437
438  unsigned getAlignment() const { return Alignment; }
439  void setAlignment(unsigned Value) { Alignment = Value; }
440
441  bool hasInstructions() const { return HasInstructions; }
442  void setHasInstructions(bool Value) { HasInstructions = Value; }
443
444  unsigned getOrdinal() const { return Ordinal; }
445  void setOrdinal(unsigned Value) { Ordinal = Value; }
446
447  /// @name Fragment Access
448  /// @{
449
450  const FragmentListType &getFragmentList() const { return Fragments; }
451  FragmentListType &getFragmentList() { return Fragments; }
452
453  iterator begin() { return Fragments.begin(); }
454  const_iterator begin() const { return Fragments.begin(); }
455
456  iterator end() { return Fragments.end(); }
457  const_iterator end() const { return Fragments.end(); }
458
459  reverse_iterator rbegin() { return Fragments.rbegin(); }
460  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
461
462  reverse_iterator rend() { return Fragments.rend(); }
463  const_reverse_iterator rend() const { return Fragments.rend(); }
464
465  size_t size() const { return Fragments.size(); }
466
467  bool empty() const { return Fragments.empty(); }
468
469  void dump();
470
471  /// @}
472};
473
474// FIXME: Same concerns as with SectionData.
475class MCSymbolData : public ilist_node<MCSymbolData> {
476public:
477  const MCSymbol *Symbol;
478
479  /// Fragment - The fragment this symbol's value is relative to, if any.
480  MCFragment *Fragment;
481
482  /// Offset - The offset to apply to the fragment address to form this symbol's
483  /// value.
484  uint64_t Offset;
485
486  /// IsExternal - True if this symbol is visible outside this translation
487  /// unit.
488  unsigned IsExternal : 1;
489
490  /// IsPrivateExtern - True if this symbol is private extern.
491  unsigned IsPrivateExtern : 1;
492
493  /// CommonSize - The size of the symbol, if it is 'common', or 0.
494  //
495  // FIXME: Pack this in with other fields? We could put it in offset, since a
496  // common symbol can never get a definition.
497  uint64_t CommonSize;
498
499  /// CommonAlign - The alignment of the symbol, if it is 'common'.
500  //
501  // FIXME: Pack this in with other fields?
502  unsigned CommonAlign;
503
504  /// Flags - The Flags field is used by object file implementations to store
505  /// additional per symbol information which is not easily classified.
506  uint32_t Flags;
507
508  /// Index - Index field, for use by the object file implementation.
509  uint64_t Index;
510
511public:
512  // Only for use as sentinel.
513  MCSymbolData();
514  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
515               MCAssembler *A = 0);
516
517  /// @name Accessors
518  /// @{
519
520  const MCSymbol &getSymbol() const { return *Symbol; }
521
522  MCFragment *getFragment() const { return Fragment; }
523  void setFragment(MCFragment *Value) { Fragment = Value; }
524
525  uint64_t getOffset() const { return Offset; }
526  void setOffset(uint64_t Value) { Offset = Value; }
527
528  /// @}
529  /// @name Symbol Attributes
530  /// @{
531
532  bool isExternal() const { return IsExternal; }
533  void setExternal(bool Value) { IsExternal = Value; }
534
535  bool isPrivateExtern() const { return IsPrivateExtern; }
536  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
537
538  /// isCommon - Is this a 'common' symbol.
539  bool isCommon() const { return CommonSize != 0; }
540
541  /// setCommon - Mark this symbol as being 'common'.
542  ///
543  /// \param Size - The size of the symbol.
544  /// \param Align - The alignment of the symbol.
545  void setCommon(uint64_t Size, unsigned Align) {
546    CommonSize = Size;
547    CommonAlign = Align;
548  }
549
550  /// getCommonSize - Return the size of a 'common' symbol.
551  uint64_t getCommonSize() const {
552    assert(isCommon() && "Not a 'common' symbol!");
553    return CommonSize;
554  }
555
556  /// getCommonAlignment - Return the alignment of a 'common' symbol.
557  unsigned getCommonAlignment() const {
558    assert(isCommon() && "Not a 'common' symbol!");
559    return CommonAlign;
560  }
561
562  /// getFlags - Get the (implementation defined) symbol flags.
563  uint32_t getFlags() const { return Flags; }
564
565  /// setFlags - Set the (implementation defined) symbol flags.
566  void setFlags(uint32_t Value) { Flags = Value; }
567
568  /// modifyFlags - Modify the flags via a mask
569  void modifyFlags(uint32_t Value, uint32_t Mask) {
570    Flags = (Flags & ~Mask) | Value;
571  }
572
573  /// getIndex - Get the (implementation defined) index.
574  uint64_t getIndex() const { return Index; }
575
576  /// setIndex - Set the (implementation defined) index.
577  void setIndex(uint64_t Value) { Index = Value; }
578
579  /// @}
580
581  void dump();
582};
583
584// FIXME: This really doesn't belong here. See comments below.
585struct IndirectSymbolData {
586  MCSymbol *Symbol;
587  MCSectionData *SectionData;
588};
589
590class MCAssembler {
591  friend class MCAsmLayout;
592
593public:
594  typedef iplist<MCSectionData> SectionDataListType;
595  typedef iplist<MCSymbolData> SymbolDataListType;
596
597  typedef SectionDataListType::const_iterator const_iterator;
598  typedef SectionDataListType::iterator iterator;
599
600  typedef SymbolDataListType::const_iterator const_symbol_iterator;
601  typedef SymbolDataListType::iterator symbol_iterator;
602
603  typedef std::vector<IndirectSymbolData>::const_iterator
604    const_indirect_symbol_iterator;
605  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
606
607private:
608  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
609  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
610
611  MCContext &Context;
612
613  TargetAsmBackend &Backend;
614
615  MCCodeEmitter &Emitter;
616
617  raw_ostream &OS;
618
619  iplist<MCSectionData> Sections;
620
621  iplist<MCSymbolData> Symbols;
622
623  /// The map of sections to their associated assembler backend data.
624  //
625  // FIXME: Avoid this indirection?
626  DenseMap<const MCSection*, MCSectionData*> SectionMap;
627
628  /// The map of symbols to their associated assembler backend data.
629  //
630  // FIXME: Avoid this indirection?
631  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
632
633  std::vector<IndirectSymbolData> IndirectSymbols;
634
635  unsigned RelaxAll : 1;
636  unsigned SubsectionsViaSymbols : 1;
637
638private:
639  /// Evaluate a fixup to a relocatable expression and the value which should be
640  /// placed into the fixup.
641  ///
642  /// \param Layout The layout to use for evaluation.
643  /// \param Fixup The fixup to evaluate.
644  /// \param DF The fragment the fixup is inside.
645  /// \param Target [out] On return, the relocatable expression the fixup
646  /// evaluates to.
647  /// \param Value [out] On return, the value of the fixup as currently layed
648  /// out.
649  /// \return Whether the fixup value was fully resolved. This is true if the
650  /// \arg Value result is fixed, otherwise the value may change due to
651  /// relocation.
652  bool EvaluateFixup(const MCAsmLayout &Layout,
653                     const MCAsmFixup &Fixup, const MCFragment *DF,
654                     MCValue &Target, uint64_t &Value) const;
655
656  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
657  /// (increased in size, in order to hold its value correctly).
658  bool FixupNeedsRelaxation(const MCAsmFixup &Fixup, const MCFragment *DF,
659                            const MCAsmLayout &Layout) const;
660
661  /// Check whether the given fragment needs relaxation.
662  bool FragmentNeedsRelaxation(const MCInstFragment *IF,
663                               const MCAsmLayout &Layout) const;
664
665  /// LayoutFragment - Performs layout of the given \arg Fragment; assuming that
666  /// the previous fragment has already been layed out correctly, and the parent
667  /// section has been initialized.
668  void LayoutFragment(MCAsmLayout &Layout, MCFragment &Fragment);
669
670  /// LayoutSection - Performs layout of the section referenced by the given
671  /// \arg SectionOrderIndex. The layout assumes that the previous section has
672  /// already been layed out correctly.
673  void LayoutSection(MCAsmLayout &Layout, unsigned SectionOrderIndex);
674
675  /// LayoutOnce - Perform one layout iteration and return true if any offsets
676  /// were adjusted.
677  bool LayoutOnce(MCAsmLayout &Layout);
678
679  /// FinishLayout - Finalize a layout, including fragment lowering.
680  void FinishLayout(MCAsmLayout &Layout);
681
682public:
683  /// Find the symbol which defines the atom containing the given symbol, or
684  /// null if there is no such symbol.
685  const MCSymbolData *getAtom(const MCAsmLayout &Layout,
686                              const MCSymbolData *Symbol) const;
687
688  /// Check whether a particular symbol is visible to the linker and is required
689  /// in the symbol table, or whether it can be discarded by the assembler. This
690  /// also effects whether the assembler treats the label as potentially
691  /// defining a separate atom.
692  bool isSymbolLinkerVisible(const MCSymbolData *SD) const;
693
694  /// Emit the section contents using the given object writer.
695  //
696  // FIXME: Should MCAssembler always have a reference to the object writer?
697  void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout,
698                        MCObjectWriter *OW) const;
699
700public:
701  /// Construct a new assembler instance.
702  ///
703  /// \arg OS - The stream to output to.
704  //
705  // FIXME: How are we going to parameterize this? Two obvious options are stay
706  // concrete and require clients to pass in a target like object. The other
707  // option is to make this abstract, and have targets provide concrete
708  // implementations as we do with AsmParser.
709  MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
710              MCCodeEmitter &_Emitter, raw_ostream &OS);
711  ~MCAssembler();
712
713  MCContext &getContext() const { return Context; }
714
715  TargetAsmBackend &getBackend() const { return Backend; }
716
717  MCCodeEmitter &getEmitter() const { return Emitter; }
718
719  /// Finish - Do final processing and write the object to the output stream.
720  void Finish();
721
722  // FIXME: This does not belong here.
723  bool getSubsectionsViaSymbols() const {
724    return SubsectionsViaSymbols;
725  }
726  void setSubsectionsViaSymbols(bool Value) {
727    SubsectionsViaSymbols = Value;
728  }
729
730  bool getRelaxAll() const { return RelaxAll; }
731  void setRelaxAll(bool Value) { RelaxAll = Value; }
732
733  /// @name Section List Access
734  /// @{
735
736  const SectionDataListType &getSectionList() const { return Sections; }
737  SectionDataListType &getSectionList() { return Sections; }
738
739  iterator begin() { return Sections.begin(); }
740  const_iterator begin() const { return Sections.begin(); }
741
742  iterator end() { return Sections.end(); }
743  const_iterator end() const { return Sections.end(); }
744
745  size_t size() const { return Sections.size(); }
746
747  /// @}
748  /// @name Symbol List Access
749  /// @{
750
751  const SymbolDataListType &getSymbolList() const { return Symbols; }
752  SymbolDataListType &getSymbolList() { return Symbols; }
753
754  symbol_iterator symbol_begin() { return Symbols.begin(); }
755  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
756
757  symbol_iterator symbol_end() { return Symbols.end(); }
758  const_symbol_iterator symbol_end() const { return Symbols.end(); }
759
760  size_t symbol_size() const { return Symbols.size(); }
761
762  /// @}
763  /// @name Indirect Symbol List Access
764  /// @{
765
766  // FIXME: This is a total hack, this should not be here. Once things are
767  // factored so that the streamer has direct access to the .o writer, it can
768  // disappear.
769  std::vector<IndirectSymbolData> &getIndirectSymbols() {
770    return IndirectSymbols;
771  }
772
773  indirect_symbol_iterator indirect_symbol_begin() {
774    return IndirectSymbols.begin();
775  }
776  const_indirect_symbol_iterator indirect_symbol_begin() const {
777    return IndirectSymbols.begin();
778  }
779
780  indirect_symbol_iterator indirect_symbol_end() {
781    return IndirectSymbols.end();
782  }
783  const_indirect_symbol_iterator indirect_symbol_end() const {
784    return IndirectSymbols.end();
785  }
786
787  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
788
789  /// @}
790  /// @name Backend Data Access
791  /// @{
792
793  MCSectionData &getSectionData(const MCSection &Section) const {
794    MCSectionData *Entry = SectionMap.lookup(&Section);
795    assert(Entry && "Missing section data!");
796    return *Entry;
797  }
798
799  MCSectionData &getOrCreateSectionData(const MCSection &Section,
800                                        bool *Created = 0) {
801    MCSectionData *&Entry = SectionMap[&Section];
802
803    if (Created) *Created = !Entry;
804    if (!Entry)
805      Entry = new MCSectionData(Section, this);
806
807    return *Entry;
808  }
809
810  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
811    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
812    assert(Entry && "Missing symbol data!");
813    return *Entry;
814  }
815
816  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
817                                      bool *Created = 0) {
818    MCSymbolData *&Entry = SymbolMap[&Symbol];
819
820    if (Created) *Created = !Entry;
821    if (!Entry)
822      Entry = new MCSymbolData(Symbol, 0, 0, this);
823
824    return *Entry;
825  }
826
827  /// @}
828
829  void dump();
830};
831
832} // end namespace llvm
833
834#endif
835