MCAssembler.h revision f476b00f51c98d12dda1f3a7c8455f8d74812c6d
1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallString.h"
15#include "llvm/ADT/ilist.h"
16#include "llvm/ADT/ilist_node.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/System/DataTypes.h"
21#include <vector> // FIXME: Shouldn't be needed.
22
23namespace llvm {
24class raw_ostream;
25class MCAsmLayout;
26class MCAssembler;
27class MCContext;
28class MCCodeEmitter;
29class MCExpr;
30class MCFragment;
31class MCObjectWriter;
32class MCSection;
33class MCSectionData;
34class MCSymbol;
35class MCValue;
36class TargetAsmBackend;
37
38/// MCAsmFixup - Represent a fixed size region of bytes inside some fragment
39/// which needs to be rewritten. This region will either be rewritten by the
40/// assembler or cause a relocation entry to be generated.
41//
42// FIXME: This should probably just be merged with MCFixup.
43class MCAsmFixup {
44public:
45  /// Offset - The offset inside the fragment which needs to be rewritten.
46  uint64_t Offset;
47
48  /// Value - The expression to eventually write into the fragment.
49  const MCExpr *Value;
50
51  /// Kind - The fixup kind.
52  MCFixupKind Kind;
53
54public:
55  MCAsmFixup(uint64_t _Offset, const MCExpr &_Value, MCFixupKind _Kind)
56    : Offset(_Offset), Value(&_Value), Kind(_Kind) {}
57};
58
59class MCFragment : public ilist_node<MCFragment> {
60  friend class MCAsmLayout;
61
62  MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
63  void operator=(const MCFragment&); // DO NOT IMPLEMENT
64
65public:
66  enum FragmentType {
67    FT_Align,
68    FT_Data,
69    FT_Fill,
70    FT_Inst,
71    FT_Org,
72    FT_ZeroFill
73  };
74
75private:
76  FragmentType Kind;
77
78  /// Parent - The data for the section this fragment is in.
79  MCSectionData *Parent;
80
81  /// @name Assembler Backend Data
82  /// @{
83  //
84  // FIXME: This could all be kept private to the assembler implementation.
85
86  /// Offset - The offset of this fragment in its section. This is ~0 until
87  /// initialized.
88  uint64_t Offset;
89
90  /// EffectiveSize - The compute size of this section. This is ~0 until
91  /// initialized.
92  uint64_t EffectiveSize;
93
94  /// Ordinal - The global index of this fragment. This is the index across all
95  /// sections, not just the parent section.
96  unsigned Ordinal;
97
98  /// @}
99
100protected:
101  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
102
103public:
104  // Only for sentinel.
105  MCFragment();
106  virtual ~MCFragment();
107
108  FragmentType getKind() const { return Kind; }
109
110  MCSectionData *getParent() const { return Parent; }
111  void setParent(MCSectionData *Value) { Parent = Value; }
112
113  unsigned getOrdinal() const { return Ordinal; }
114  void setOrdinal(unsigned Value) { Ordinal = Value; }
115
116  static bool classof(const MCFragment *O) { return true; }
117
118  virtual void dump();
119};
120
121class MCDataFragment : public MCFragment {
122  SmallString<32> Contents;
123
124  /// Fixups - The list of fixups in this fragment.
125  std::vector<MCAsmFixup> Fixups;
126
127public:
128  typedef std::vector<MCAsmFixup>::const_iterator const_fixup_iterator;
129  typedef std::vector<MCAsmFixup>::iterator fixup_iterator;
130
131public:
132  MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
133
134  /// @name Accessors
135  /// @{
136
137  SmallString<32> &getContents() { return Contents; }
138  const SmallString<32> &getContents() const { return Contents; }
139
140  /// @}
141  /// @name Fixup Access
142  /// @{
143
144  void addFixup(MCAsmFixup Fixup) {
145    // Enforce invariant that fixups are in offset order.
146    assert((Fixups.empty() || Fixup.Offset > Fixups.back().Offset) &&
147           "Fixups must be added in order!");
148    Fixups.push_back(Fixup);
149  }
150
151  std::vector<MCAsmFixup> &getFixups() { return Fixups; }
152  const std::vector<MCAsmFixup> &getFixups() const { return Fixups; }
153
154  fixup_iterator fixup_begin() { return Fixups.begin(); }
155  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
156
157  fixup_iterator fixup_end() {return Fixups.end();}
158  const_fixup_iterator fixup_end() const {return Fixups.end();}
159
160  size_t fixup_size() const { return Fixups.size(); }
161
162  /// @}
163
164  static bool classof(const MCFragment *F) {
165    return F->getKind() == MCFragment::FT_Data;
166  }
167  static bool classof(const MCDataFragment *) { return true; }
168
169  virtual void dump();
170};
171
172// FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
173// it is almost entirely a duplicate of MCDataFragment. If we decide to stick
174// with this approach (as opposed to making MCInstFragment a very light weight
175// object with just the MCInst and a code size, then we should just change
176// MCDataFragment to have an optional MCInst at its end.
177class MCInstFragment : public MCFragment {
178  /// Inst - The instruction this is a fragment for.
179  MCInst Inst;
180
181  /// InstSize - The size of the currently encoded instruction.
182  SmallString<8> Code;
183
184  /// Fixups - The list of fixups in this fragment.
185  SmallVector<MCAsmFixup, 1> Fixups;
186
187public:
188  typedef SmallVectorImpl<MCAsmFixup>::const_iterator const_fixup_iterator;
189  typedef SmallVectorImpl<MCAsmFixup>::iterator fixup_iterator;
190
191public:
192  MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
193    : MCFragment(FT_Inst, SD), Inst(_Inst) {
194  }
195
196  /// @name Accessors
197  /// @{
198
199  SmallVectorImpl<char> &getCode() { return Code; }
200  const SmallVectorImpl<char> &getCode() const { return Code; }
201
202  unsigned getInstSize() const { return Code.size(); }
203
204  MCInst &getInst() { return Inst; }
205  const MCInst &getInst() const { return Inst; }
206
207  void setInst(MCInst Value) { Inst = Value; }
208
209  /// @}
210  /// @name Fixup Access
211  /// @{
212
213  SmallVectorImpl<MCAsmFixup> &getFixups() { return Fixups; }
214  const SmallVectorImpl<MCAsmFixup> &getFixups() const { return Fixups; }
215
216  fixup_iterator fixup_begin() { return Fixups.begin(); }
217  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
218
219  fixup_iterator fixup_end() {return Fixups.end();}
220  const_fixup_iterator fixup_end() const {return Fixups.end();}
221
222  size_t fixup_size() const { return Fixups.size(); }
223
224  /// @}
225
226  static bool classof(const MCFragment *F) {
227    return F->getKind() == MCFragment::FT_Inst;
228  }
229  static bool classof(const MCInstFragment *) { return true; }
230
231  virtual void dump();
232};
233
234class MCAlignFragment : public MCFragment {
235  /// Alignment - The alignment to ensure, in bytes.
236  unsigned Alignment;
237
238  /// Value - Value to use for filling padding bytes.
239  int64_t Value;
240
241  /// ValueSize - The size of the integer (in bytes) of \arg Value.
242  unsigned ValueSize;
243
244  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
245  /// cannot be satisfied in this width then this fragment is ignored.
246  unsigned MaxBytesToEmit;
247
248  /// EmitNops - true when aligning code and optimal nops to be used for
249  /// filling.
250  bool EmitNops;
251
252public:
253  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
254                  unsigned _MaxBytesToEmit, bool _EmitNops,
255		  MCSectionData *SD = 0)
256    : MCFragment(FT_Align, SD), Alignment(_Alignment),
257      Value(_Value),ValueSize(_ValueSize),
258      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(_EmitNops) {}
259
260  /// @name Accessors
261  /// @{
262
263  unsigned getAlignment() const { return Alignment; }
264
265  int64_t getValue() const { return Value; }
266
267  unsigned getValueSize() const { return ValueSize; }
268
269  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
270
271  unsigned getEmitNops() const { return EmitNops; }
272
273  /// @}
274
275  static bool classof(const MCFragment *F) {
276    return F->getKind() == MCFragment::FT_Align;
277  }
278  static bool classof(const MCAlignFragment *) { return true; }
279
280  virtual void dump();
281};
282
283class MCFillFragment : public MCFragment {
284  /// Value - Value to use for filling bytes.
285  int64_t Value;
286
287  /// ValueSize - The size (in bytes) of \arg Value to use when filling.
288  unsigned ValueSize;
289
290  /// Count - The number of copies of \arg Value to insert.
291  uint64_t Count;
292
293public:
294  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Count,
295                 MCSectionData *SD = 0)
296    : MCFragment(FT_Fill, SD),
297      Value(_Value), ValueSize(_ValueSize), Count(_Count) {}
298
299  /// @name Accessors
300  /// @{
301
302  int64_t getValue() const { return Value; }
303
304  unsigned getValueSize() const { return ValueSize; }
305
306  uint64_t getCount() const { return Count; }
307
308  /// @}
309
310  static bool classof(const MCFragment *F) {
311    return F->getKind() == MCFragment::FT_Fill;
312  }
313  static bool classof(const MCFillFragment *) { return true; }
314
315  virtual void dump();
316};
317
318class MCOrgFragment : public MCFragment {
319  /// Offset - The offset this fragment should start at.
320  const MCExpr *Offset;
321
322  /// Value - Value to use for filling bytes.
323  int8_t Value;
324
325public:
326  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
327    : MCFragment(FT_Org, SD),
328      Offset(&_Offset), Value(_Value) {}
329
330  /// @name Accessors
331  /// @{
332
333  const MCExpr &getOffset() const { return *Offset; }
334
335  uint8_t getValue() const { return Value; }
336
337  /// @}
338
339  static bool classof(const MCFragment *F) {
340    return F->getKind() == MCFragment::FT_Org;
341  }
342  static bool classof(const MCOrgFragment *) { return true; }
343
344  virtual void dump();
345};
346
347/// MCZeroFillFragment - Represent data which has a fixed size and alignment,
348/// but requires no physical space in the object file.
349class MCZeroFillFragment : public MCFragment {
350  /// Size - The size of this fragment.
351  uint64_t Size;
352
353  /// Alignment - The alignment for this fragment.
354  unsigned Alignment;
355
356public:
357  MCZeroFillFragment(uint64_t _Size, unsigned _Alignment, MCSectionData *SD = 0)
358    : MCFragment(FT_ZeroFill, SD),
359      Size(_Size), Alignment(_Alignment) {}
360
361  /// @name Accessors
362  /// @{
363
364  uint64_t getSize() const { return Size; }
365
366  unsigned getAlignment() const { return Alignment; }
367
368  /// @}
369
370  static bool classof(const MCFragment *F) {
371    return F->getKind() == MCFragment::FT_ZeroFill;
372  }
373  static bool classof(const MCZeroFillFragment *) { return true; }
374
375  virtual void dump();
376};
377
378// FIXME: Should this be a separate class, or just merged into MCSection? Since
379// we anticipate the fast path being through an MCAssembler, the only reason to
380// keep it out is for API abstraction.
381class MCSectionData : public ilist_node<MCSectionData> {
382  friend class MCAsmLayout;
383
384  MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
385  void operator=(const MCSectionData&); // DO NOT IMPLEMENT
386
387public:
388  typedef iplist<MCFragment> FragmentListType;
389
390  typedef FragmentListType::const_iterator const_iterator;
391  typedef FragmentListType::iterator iterator;
392
393  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
394  typedef FragmentListType::reverse_iterator reverse_iterator;
395
396private:
397  iplist<MCFragment> Fragments;
398  const MCSection *Section;
399
400  /// Ordinal - The section index in the assemblers section list.
401  unsigned Ordinal;
402
403  /// Alignment - The maximum alignment seen in this section.
404  unsigned Alignment;
405
406  /// @name Assembler Backend Data
407  /// @{
408  //
409  // FIXME: This could all be kept private to the assembler implementation.
410
411  /// Address - The computed address of this section. This is ~0 until
412  /// initialized.
413  uint64_t Address;
414
415  /// Size - The content size of this section. This is ~0 until initialized.
416  uint64_t Size;
417
418  /// FileSize - The size of this section in the object file. This is ~0 until
419  /// initialized.
420  uint64_t FileSize;
421
422  /// HasInstructions - Whether this section has had instructions emitted into
423  /// it.
424  unsigned HasInstructions : 1;
425
426  /// @}
427
428public:
429  // Only for use as sentinel.
430  MCSectionData();
431  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
432
433  const MCSection &getSection() const { return *Section; }
434
435  unsigned getAlignment() const { return Alignment; }
436  void setAlignment(unsigned Value) { Alignment = Value; }
437
438  bool hasInstructions() const { return HasInstructions; }
439  void setHasInstructions(bool Value) { HasInstructions = Value; }
440
441  unsigned getOrdinal() const { return Ordinal; }
442  void setOrdinal(unsigned Value) { Ordinal = Value; }
443
444  /// @name Fragment Access
445  /// @{
446
447  const FragmentListType &getFragmentList() const { return Fragments; }
448  FragmentListType &getFragmentList() { return Fragments; }
449
450  iterator begin() { return Fragments.begin(); }
451  const_iterator begin() const { return Fragments.begin(); }
452
453  iterator end() { return Fragments.end(); }
454  const_iterator end() const { return Fragments.end(); }
455
456  reverse_iterator rbegin() { return Fragments.rbegin(); }
457  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
458
459  reverse_iterator rend() { return Fragments.rend(); }
460  const_reverse_iterator rend() const { return Fragments.rend(); }
461
462  size_t size() const { return Fragments.size(); }
463
464  bool empty() const { return Fragments.empty(); }
465
466  void dump();
467
468  /// @}
469};
470
471// FIXME: Same concerns as with SectionData.
472class MCSymbolData : public ilist_node<MCSymbolData> {
473public:
474  const MCSymbol *Symbol;
475
476  /// Fragment - The fragment this symbol's value is relative to, if any.
477  MCFragment *Fragment;
478
479  /// Offset - The offset to apply to the fragment address to form this symbol's
480  /// value.
481  uint64_t Offset;
482
483  /// IsExternal - True if this symbol is visible outside this translation
484  /// unit.
485  unsigned IsExternal : 1;
486
487  /// IsPrivateExtern - True if this symbol is private extern.
488  unsigned IsPrivateExtern : 1;
489
490  /// CommonSize - The size of the symbol, if it is 'common', or 0.
491  //
492  // FIXME: Pack this in with other fields? We could put it in offset, since a
493  // common symbol can never get a definition.
494  uint64_t CommonSize;
495
496  /// CommonAlign - The alignment of the symbol, if it is 'common'.
497  //
498  // FIXME: Pack this in with other fields?
499  unsigned CommonAlign;
500
501  /// Flags - The Flags field is used by object file implementations to store
502  /// additional per symbol information which is not easily classified.
503  uint32_t Flags;
504
505  /// Index - Index field, for use by the object file implementation.
506  uint64_t Index;
507
508public:
509  // Only for use as sentinel.
510  MCSymbolData();
511  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
512               MCAssembler *A = 0);
513
514  /// @name Accessors
515  /// @{
516
517  const MCSymbol &getSymbol() const { return *Symbol; }
518
519  MCFragment *getFragment() const { return Fragment; }
520  void setFragment(MCFragment *Value) { Fragment = Value; }
521
522  uint64_t getOffset() const { return Offset; }
523  void setOffset(uint64_t Value) { Offset = Value; }
524
525  /// @}
526  /// @name Symbol Attributes
527  /// @{
528
529  bool isExternal() const { return IsExternal; }
530  void setExternal(bool Value) { IsExternal = Value; }
531
532  bool isPrivateExtern() const { return IsPrivateExtern; }
533  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
534
535  /// isCommon - Is this a 'common' symbol.
536  bool isCommon() const { return CommonSize != 0; }
537
538  /// setCommon - Mark this symbol as being 'common'.
539  ///
540  /// \param Size - The size of the symbol.
541  /// \param Align - The alignment of the symbol.
542  void setCommon(uint64_t Size, unsigned Align) {
543    CommonSize = Size;
544    CommonAlign = Align;
545  }
546
547  /// getCommonSize - Return the size of a 'common' symbol.
548  uint64_t getCommonSize() const {
549    assert(isCommon() && "Not a 'common' symbol!");
550    return CommonSize;
551  }
552
553  /// getCommonAlignment - Return the alignment of a 'common' symbol.
554  unsigned getCommonAlignment() const {
555    assert(isCommon() && "Not a 'common' symbol!");
556    return CommonAlign;
557  }
558
559  /// getFlags - Get the (implementation defined) symbol flags.
560  uint32_t getFlags() const { return Flags; }
561
562  /// setFlags - Set the (implementation defined) symbol flags.
563  void setFlags(uint32_t Value) { Flags = Value; }
564
565  /// getIndex - Get the (implementation defined) index.
566  uint64_t getIndex() const { return Index; }
567
568  /// setIndex - Set the (implementation defined) index.
569  void setIndex(uint64_t Value) { Index = Value; }
570
571  /// @}
572
573  void dump();
574};
575
576// FIXME: This really doesn't belong here. See comments below.
577struct IndirectSymbolData {
578  MCSymbol *Symbol;
579  MCSectionData *SectionData;
580};
581
582class MCAssembler {
583public:
584  typedef iplist<MCSectionData> SectionDataListType;
585  typedef iplist<MCSymbolData> SymbolDataListType;
586
587  typedef SectionDataListType::const_iterator const_iterator;
588  typedef SectionDataListType::iterator iterator;
589
590  typedef SymbolDataListType::const_iterator const_symbol_iterator;
591  typedef SymbolDataListType::iterator symbol_iterator;
592
593  typedef std::vector<IndirectSymbolData>::const_iterator
594    const_indirect_symbol_iterator;
595  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
596
597private:
598  MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
599  void operator=(const MCAssembler&); // DO NOT IMPLEMENT
600
601  MCContext &Context;
602
603  TargetAsmBackend &Backend;
604
605  MCCodeEmitter &Emitter;
606
607  raw_ostream &OS;
608
609  iplist<MCSectionData> Sections;
610
611  iplist<MCSymbolData> Symbols;
612
613  /// The map of sections to their associated assembler backend data.
614  //
615  // FIXME: Avoid this indirection?
616  DenseMap<const MCSection*, MCSectionData*> SectionMap;
617
618  /// The map of symbols to their associated assembler backend data.
619  //
620  // FIXME: Avoid this indirection?
621  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
622
623  std::vector<IndirectSymbolData> IndirectSymbols;
624
625  unsigned SubsectionsViaSymbols : 1;
626
627private:
628  /// Evaluate a fixup to a relocatable expression and the value which should be
629  /// placed into the fixup.
630  ///
631  /// \param Layout The layout to use for evaluation.
632  /// \param Fixup The fixup to evaluate.
633  /// \param DF The fragment the fixup is inside.
634  /// \param Target [out] On return, the relocatable expression the fixup
635  /// evaluates to.
636  /// \param Value [out] On return, the value of the fixup as currently layed
637  /// out.
638  /// \return Whether the fixup value was fully resolved. This is true if the
639  /// \arg Value result is fixed, otherwise the value may change due to
640  /// relocation.
641  bool EvaluateFixup(const MCAsmLayout &Layout,
642                     const MCAsmFixup &Fixup, const MCFragment *DF,
643                     MCValue &Target, uint64_t &Value) const;
644
645  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
646  /// (increased in size, in order to hold its value correctly).
647  bool FixupNeedsRelaxation(const MCAsmFixup &Fixup, const MCFragment *DF,
648                            const MCAsmLayout &Layout) const;
649
650  /// Check whether the given fragment needs relaxation.
651  bool FragmentNeedsRelaxation(const MCInstFragment *IF,
652                               const MCAsmLayout &Layout) const;
653
654  /// LayoutSection - Assign the section the given \arg StartAddress, and then
655  /// assign offsets and sizes to the fragments in the section \arg SD, and
656  /// update the section size.
657  ///
658  /// \return The address at the end of the section, for use in laying out the
659  /// succeeding section.
660  uint64_t LayoutSection(MCSectionData &SD, MCAsmLayout &Layout,
661                         uint64_t StartAddress);
662
663  /// LayoutOnce - Perform one layout iteration and return true if any offsets
664  /// were adjusted.
665  bool LayoutOnce(MCAsmLayout &Layout);
666
667  /// FinishLayout - Finalize a layout, including fragment lowering.
668  void FinishLayout(MCAsmLayout &Layout);
669
670public:
671  /// Find the symbol which defines the atom containing given address, inside
672  /// the given section, or null if there is no such symbol.
673  //
674  // FIXME-PERF: Eliminate this, it is very slow.
675  const MCSymbolData *getAtomForAddress(const MCAsmLayout &Layout,
676                                        const MCSectionData *Section,
677                                        uint64_t Address) const;
678
679  /// Find the symbol which defines the atom containing the given symbol, or
680  /// null if there is no such symbol.
681  //
682  // FIXME-PERF: Eliminate this, it is very slow.
683  const MCSymbolData *getAtom(const MCAsmLayout &Layout,
684                              const MCSymbolData *Symbol) const;
685
686  /// Check whether a particular symbol is visible to the linker and is required
687  /// in the symbol table, or whether it can be discarded by the assembler. This
688  /// also effects whether the assembler treats the label as potentially
689  /// defining a separate atom.
690  bool isSymbolLinkerVisible(const MCSymbolData *SD) const;
691
692  /// Emit the section contents using the given object writer.
693  //
694  // FIXME: Should MCAssembler always have a reference to the object writer?
695  void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout,
696                        MCObjectWriter *OW) const;
697
698public:
699  /// Construct a new assembler instance.
700  ///
701  /// \arg OS - The stream to output to.
702  //
703  // FIXME: How are we going to parameterize this? Two obvious options are stay
704  // concrete and require clients to pass in a target like object. The other
705  // option is to make this abstract, and have targets provide concrete
706  // implementations as we do with AsmParser.
707  MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
708              MCCodeEmitter &_Emitter, raw_ostream &OS);
709  ~MCAssembler();
710
711  MCContext &getContext() const { return Context; }
712
713  TargetAsmBackend &getBackend() const { return Backend; }
714
715  MCCodeEmitter &getEmitter() const { return Emitter; }
716
717  /// Finish - Do final processing and write the object to the output stream.
718  void Finish();
719
720  // FIXME: This does not belong here.
721  bool getSubsectionsViaSymbols() const {
722    return SubsectionsViaSymbols;
723  }
724  void setSubsectionsViaSymbols(bool Value) {
725    SubsectionsViaSymbols = Value;
726  }
727
728  /// @name Section List Access
729  /// @{
730
731  const SectionDataListType &getSectionList() const { return Sections; }
732  SectionDataListType &getSectionList() { return Sections; }
733
734  iterator begin() { return Sections.begin(); }
735  const_iterator begin() const { return Sections.begin(); }
736
737  iterator end() { return Sections.end(); }
738  const_iterator end() const { return Sections.end(); }
739
740  size_t size() const { return Sections.size(); }
741
742  /// @}
743  /// @name Symbol List Access
744  /// @{
745
746  const SymbolDataListType &getSymbolList() const { return Symbols; }
747  SymbolDataListType &getSymbolList() { return Symbols; }
748
749  symbol_iterator symbol_begin() { return Symbols.begin(); }
750  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
751
752  symbol_iterator symbol_end() { return Symbols.end(); }
753  const_symbol_iterator symbol_end() const { return Symbols.end(); }
754
755  size_t symbol_size() const { return Symbols.size(); }
756
757  /// @}
758  /// @name Indirect Symbol List Access
759  /// @{
760
761  // FIXME: This is a total hack, this should not be here. Once things are
762  // factored so that the streamer has direct access to the .o writer, it can
763  // disappear.
764  std::vector<IndirectSymbolData> &getIndirectSymbols() {
765    return IndirectSymbols;
766  }
767
768  indirect_symbol_iterator indirect_symbol_begin() {
769    return IndirectSymbols.begin();
770  }
771  const_indirect_symbol_iterator indirect_symbol_begin() const {
772    return IndirectSymbols.begin();
773  }
774
775  indirect_symbol_iterator indirect_symbol_end() {
776    return IndirectSymbols.end();
777  }
778  const_indirect_symbol_iterator indirect_symbol_end() const {
779    return IndirectSymbols.end();
780  }
781
782  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
783
784  /// @}
785  /// @name Backend Data Access
786  /// @{
787
788  MCSectionData &getSectionData(const MCSection &Section) const {
789    MCSectionData *Entry = SectionMap.lookup(&Section);
790    assert(Entry && "Missing section data!");
791    return *Entry;
792  }
793
794  MCSectionData &getOrCreateSectionData(const MCSection &Section,
795                                        bool *Created = 0) {
796    MCSectionData *&Entry = SectionMap[&Section];
797
798    if (Created) *Created = !Entry;
799    if (!Entry)
800      Entry = new MCSectionData(Section, this);
801
802    return *Entry;
803  }
804
805  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
806    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
807    assert(Entry && "Missing symbol data!");
808    return *Entry;
809  }
810
811  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
812                                      bool *Created = 0) {
813    MCSymbolData *&Entry = SymbolMap[&Symbol];
814
815    if (Created) *Created = !Entry;
816    if (!Entry)
817      Entry = new MCSymbolData(Symbol, 0, 0, this);
818
819    return *Entry;
820  }
821
822  /// @}
823
824  void dump();
825};
826
827} // end namespace llvm
828
829#endif
830