MCInstrDesc.h revision e837dead3c8dc3445ef6a0e2322179c57e264a13
1//===-- llvm/Mc/McInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the McOperandInfo and McInstrDesc classes, which
11// are used to describe target instructions and their operands.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_MC_MCINSTRDESC_H
16#define LLVM_MC_MCINSTRDESC_H
17
18#include "llvm/Support/DataTypes.h"
19
20namespace llvm {
21
22//===----------------------------------------------------------------------===//
23// Machine Operand Flags and Description
24//===----------------------------------------------------------------------===//
25
26namespace MCOI {
27  // Operand constraints
28  enum OperandConstraint {
29    TIED_TO = 0,    // Must be allocated the same register as.
30    EARLY_CLOBBER   // Operand is an early clobber register operand
31  };
32
33  /// OperandFlags - These are flags set on operands, but should be considered
34  /// private, all access should go through the MCOperandInfo accessors.
35  /// See the accessors for a description of what these are.
36  enum OperandFlags {
37    LookupPtrRegClass = 0,
38    Predicate,
39    OptionalDef
40  };
41}
42
43/// MCOperandInfo - This holds information about one operand of a machine
44/// instruction, indicating the register class for register operands, etc.
45///
46class MCOperandInfo {
47public:
48  /// RegClass - This specifies the register class enumeration of the operand
49  /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
50  /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
51  /// get a dynamic register class.
52  short RegClass;
53
54  /// Flags - These are flags from the MCOI::OperandFlags enum.
55  unsigned short Flags;
56
57  /// Lower 16 bits are used to specify which constraints are set. The higher 16
58  /// bits are used to specify the value of constraints (4 bits each).
59  unsigned Constraints;
60  /// Currently no other information.
61
62  /// isLookupPtrRegClass - Set if this operand is a pointer value and it
63  /// requires a callback to look up its register class.
64  bool isLookupPtrRegClass() const { return Flags&(1 <<MCOI::LookupPtrRegClass);}
65
66  /// isPredicate - Set if this is one of the operands that made up of
67  /// the predicate operand that controls an isPredicable() instruction.
68  bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
69
70  /// isOptionalDef - Set if this operand is a optional def.
71  ///
72  bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
73};
74
75
76//===----------------------------------------------------------------------===//
77// Machine Instruction Flags and Description
78//===----------------------------------------------------------------------===//
79
80/// MCInstrDesc flags - These should be considered private to the
81/// implementation of the MCInstrDesc class.  Clients should use the predicate
82/// methods on MCInstrDesc, not use these directly.  These all correspond to
83/// bitfields in the MCInstrDesc::Flags field.
84namespace MCID {
85  enum {
86    Variadic = 0,
87    HasOptionalDef,
88    Return,
89    Call,
90    Barrier,
91    Terminator,
92    Branch,
93    IndirectBranch,
94    Compare,
95    MoveImm,
96    Bitcast,
97    DelaySlot,
98    FoldableAsLoad,
99    MayLoad,
100    MayStore,
101    Predicable,
102    NotDuplicable,
103    UnmodeledSideEffects,
104    Commutable,
105    ConvertibleTo3Addr,
106    UsesCustomInserter,
107    Rematerializable,
108    CheapAsAMove,
109    ExtraSrcRegAllocReq,
110    ExtraDefRegAllocReq
111  };
112}
113
114/// MCInstrDesc - Describe properties that are true of each instruction in the
115/// target description file.  This captures information about side effects,
116/// register use and many other things.  There is one instance of this struct
117/// for each target instruction class, and the MachineInstr class points to
118/// this struct directly to describe itself.
119class MCInstrDesc {
120public:
121  unsigned short  Opcode;        // The opcode number
122  unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
123  unsigned short  NumDefs;       // Num of args that are definitions
124  unsigned short  SchedClass;    // enum identifying instr sched class
125  const char *    Name;          // Name of the instruction record in td file
126  unsigned        Flags;         // Flags identifying machine instr class
127  uint64_t        TSFlags;       // Target Specific Flag values
128  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
129  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
130  const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
131
132  /// getOperandConstraint - Returns the value of the specific constraint if
133  /// it is set. Returns -1 if it is not set.
134  int getOperandConstraint(unsigned OpNum,
135                           MCOI::OperandConstraint Constraint) const {
136    if (OpNum < NumOperands &&
137        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
138      unsigned Pos = 16 + Constraint * 4;
139      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
140    }
141    return -1;
142  }
143
144  /// getOpcode - Return the opcode number for this descriptor.
145  unsigned getOpcode() const {
146    return Opcode;
147  }
148
149  /// getName - Return the name of the record in the .td file for this
150  /// instruction, for example "ADD8ri".
151  const char *getName() const {
152    return Name;
153  }
154
155  /// getNumOperands - Return the number of declared MachineOperands for this
156  /// MachineInstruction.  Note that variadic (isVariadic() returns true)
157  /// instructions may have additional operands at the end of the list, and note
158  /// that the machine instruction may include implicit register def/uses as
159  /// well.
160  unsigned getNumOperands() const {
161    return NumOperands;
162  }
163
164  /// getNumDefs - Return the number of MachineOperands that are register
165  /// definitions.  Register definitions always occur at the start of the
166  /// machine operand list.  This is the number of "outs" in the .td file,
167  /// and does not include implicit defs.
168  unsigned getNumDefs() const {
169    return NumDefs;
170  }
171
172  /// isVariadic - Return true if this instruction can have a variable number of
173  /// operands.  In this case, the variable operands will be after the normal
174  /// operands but before the implicit definitions and uses (if any are
175  /// present).
176  bool isVariadic() const {
177    return Flags & (1 << MCID::Variadic);
178  }
179
180  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
181  /// ARM instructions which can set condition code if 's' bit is set.
182  bool hasOptionalDef() const {
183    return Flags & (1 << MCID::HasOptionalDef);
184  }
185
186  /// getImplicitUses - Return a list of registers that are potentially
187  /// read by any instance of this machine instruction.  For example, on X86,
188  /// the "adc" instruction adds two register operands and adds the carry bit in
189  /// from the flags register.  In this case, the instruction is marked as
190  /// implicitly reading the flags.  Likewise, the variable shift instruction on
191  /// X86 is marked as implicitly reading the 'CL' register, which it always
192  /// does.
193  ///
194  /// This method returns null if the instruction has no implicit uses.
195  const unsigned *getImplicitUses() const {
196    return ImplicitUses;
197  }
198
199  /// getNumImplicitUses - Return the number of implicit uses this instruction
200  /// has.
201  unsigned getNumImplicitUses() const {
202    if (ImplicitUses == 0) return 0;
203    unsigned i = 0;
204    for (; ImplicitUses[i]; ++i) /*empty*/;
205    return i;
206  }
207
208  /// getImplicitDefs - Return a list of registers that are potentially
209  /// written by any instance of this machine instruction.  For example, on X86,
210  /// many instructions implicitly set the flags register.  In this case, they
211  /// are marked as setting the FLAGS.  Likewise, many instructions always
212  /// deposit their result in a physical register.  For example, the X86 divide
213  /// instruction always deposits the quotient and remainder in the EAX/EDX
214  /// registers.  For that instruction, this will return a list containing the
215  /// EAX/EDX/EFLAGS registers.
216  ///
217  /// This method returns null if the instruction has no implicit defs.
218  const unsigned *getImplicitDefs() const {
219    return ImplicitDefs;
220  }
221
222  /// getNumImplicitDefs - Return the number of implicit defs this instruction
223  /// has.
224  unsigned getNumImplicitDefs() const {
225    if (ImplicitDefs == 0) return 0;
226    unsigned i = 0;
227    for (; ImplicitDefs[i]; ++i) /*empty*/;
228    return i;
229  }
230
231  /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
232  /// uses the specified physical register.
233  bool hasImplicitUseOfPhysReg(unsigned Reg) const {
234    if (const unsigned *ImpUses = ImplicitUses)
235      for (; *ImpUses; ++ImpUses)
236        if (*ImpUses == Reg) return true;
237    return false;
238  }
239
240  /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
241  /// defines the specified physical register.
242  bool hasImplicitDefOfPhysReg(unsigned Reg) const {
243    if (const unsigned *ImpDefs = ImplicitDefs)
244      for (; *ImpDefs; ++ImpDefs)
245        if (*ImpDefs == Reg) return true;
246    return false;
247  }
248
249  /// getSchedClass - Return the scheduling class for this instruction.  The
250  /// scheduling class is an index into the InstrItineraryData table.  This
251  /// returns zero if there is no known scheduling information for the
252  /// instruction.
253  ///
254  unsigned getSchedClass() const {
255    return SchedClass;
256  }
257
258  bool isReturn() const {
259    return Flags & (1 << MCID::Return);
260  }
261
262  bool isCall() const {
263    return Flags & (1 << MCID::Call);
264  }
265
266  /// isBarrier - Returns true if the specified instruction stops control flow
267  /// from executing the instruction immediately following it.  Examples include
268  /// unconditional branches and return instructions.
269  bool isBarrier() const {
270    return Flags & (1 << MCID::Barrier);
271  }
272
273  /// isTerminator - Returns true if this instruction part of the terminator for
274  /// a basic block.  Typically this is things like return and branch
275  /// instructions.
276  ///
277  /// Various passes use this to insert code into the bottom of a basic block,
278  /// but before control flow occurs.
279  bool isTerminator() const {
280    return Flags & (1 << MCID::Terminator);
281  }
282
283  /// isBranch - Returns true if this is a conditional, unconditional, or
284  /// indirect branch.  Predicates below can be used to discriminate between
285  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
286  /// get more information.
287  bool isBranch() const {
288    return Flags & (1 << MCID::Branch);
289  }
290
291  /// isIndirectBranch - Return true if this is an indirect branch, such as a
292  /// branch through a register.
293  bool isIndirectBranch() const {
294    return Flags & (1 << MCID::IndirectBranch);
295  }
296
297  /// isConditionalBranch - Return true if this is a branch which may fall
298  /// through to the next instruction or may transfer control flow to some other
299  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
300  /// information about this branch.
301  bool isConditionalBranch() const {
302    return isBranch() & !isBarrier() & !isIndirectBranch();
303  }
304
305  /// isUnconditionalBranch - Return true if this is a branch which always
306  /// transfers control flow to some other block.  The
307  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
308  /// about this branch.
309  bool isUnconditionalBranch() const {
310    return isBranch() & isBarrier() & !isIndirectBranch();
311  }
312
313  // isPredicable - Return true if this instruction has a predicate operand that
314  // controls execution.  It may be set to 'always', or may be set to other
315  /// values.   There are various methods in TargetInstrInfo that can be used to
316  /// control and modify the predicate in this instruction.
317  bool isPredicable() const {
318    return Flags & (1 << MCID::Predicable);
319  }
320
321  /// isCompare - Return true if this instruction is a comparison.
322  bool isCompare() const {
323    return Flags & (1 << MCID::Compare);
324  }
325
326  /// isMoveImmediate - Return true if this instruction is a move immediate
327  /// (including conditional moves) instruction.
328  bool isMoveImmediate() const {
329    return Flags & (1 << MCID::MoveImm);
330  }
331
332  /// isBitcast - Return true if this instruction is a bitcast instruction.
333  ///
334  bool isBitcast() const {
335    return Flags & (1 << MCID::Bitcast);
336  }
337
338  /// isNotDuplicable - Return true if this instruction cannot be safely
339  /// duplicated.  For example, if the instruction has a unique labels attached
340  /// to it, duplicating it would cause multiple definition errors.
341  bool isNotDuplicable() const {
342    return Flags & (1 << MCID::NotDuplicable);
343  }
344
345  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
346  /// which must be filled by the code generator.
347  bool hasDelaySlot() const {
348    return Flags & (1 << MCID::DelaySlot);
349  }
350
351  /// canFoldAsLoad - Return true for instructions that can be folded as
352  /// memory operands in other instructions. The most common use for this
353  /// is instructions that are simple loads from memory that don't modify
354  /// the loaded value in any way, but it can also be used for instructions
355  /// that can be expressed as constant-pool loads, such as V_SETALLONES
356  /// on x86, to allow them to be folded when it is beneficial.
357  /// This should only be set on instructions that return a value in their
358  /// only virtual register definition.
359  bool canFoldAsLoad() const {
360    return Flags & (1 << MCID::FoldableAsLoad);
361  }
362
363  //===--------------------------------------------------------------------===//
364  // Side Effect Analysis
365  //===--------------------------------------------------------------------===//
366
367  /// mayLoad - Return true if this instruction could possibly read memory.
368  /// Instructions with this flag set are not necessarily simple load
369  /// instructions, they may load a value and modify it, for example.
370  bool mayLoad() const {
371    return Flags & (1 << MCID::MayLoad);
372  }
373
374
375  /// mayStore - Return true if this instruction could possibly modify memory.
376  /// Instructions with this flag set are not necessarily simple store
377  /// instructions, they may store a modified value based on their operands, or
378  /// may not actually modify anything, for example.
379  bool mayStore() const {
380    return Flags & (1 << MCID::MayStore);
381  }
382
383  /// hasUnmodeledSideEffects - Return true if this instruction has side
384  /// effects that are not modeled by other flags.  This does not return true
385  /// for instructions whose effects are captured by:
386  ///
387  ///  1. Their operand list and implicit definition/use list.  Register use/def
388  ///     info is explicit for instructions.
389  ///  2. Memory accesses.  Use mayLoad/mayStore.
390  ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
391  ///
392  /// Examples of side effects would be modifying 'invisible' machine state like
393  /// a control register, flushing a cache, modifying a register invisible to
394  /// LLVM, etc.
395  ///
396  bool hasUnmodeledSideEffects() const {
397    return Flags & (1 << MCID::UnmodeledSideEffects);
398  }
399
400  //===--------------------------------------------------------------------===//
401  // Flags that indicate whether an instruction can be modified by a method.
402  //===--------------------------------------------------------------------===//
403
404  /// isCommutable - Return true if this may be a 2- or 3-address
405  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
406  /// result if Y and Z are exchanged.  If this flag is set, then the
407  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
408  /// instruction.
409  ///
410  /// Note that this flag may be set on instructions that are only commutable
411  /// sometimes.  In these cases, the call to commuteInstruction will fail.
412  /// Also note that some instructions require non-trivial modification to
413  /// commute them.
414  bool isCommutable() const {
415    return Flags & (1 << MCID::Commutable);
416  }
417
418  /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
419  /// which can be changed into a 3-address instruction if needed.  Doing this
420  /// transformation can be profitable in the register allocator, because it
421  /// means that the instruction can use a 2-address form if possible, but
422  /// degrade into a less efficient form if the source and dest register cannot
423  /// be assigned to the same register.  For example, this allows the x86
424  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
425  /// is the same speed as the shift but has bigger code size.
426  ///
427  /// If this returns true, then the target must implement the
428  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
429  /// is allowed to fail if the transformation isn't valid for this specific
430  /// instruction (e.g. shl reg, 4 on x86).
431  ///
432  bool isConvertibleTo3Addr() const {
433    return Flags & (1 << MCID::ConvertibleTo3Addr);
434  }
435
436  /// usesCustomInsertionHook - Return true if this instruction requires
437  /// custom insertion support when the DAG scheduler is inserting it into a
438  /// machine basic block.  If this is true for the instruction, it basically
439  /// means that it is a pseudo instruction used at SelectionDAG time that is
440  /// expanded out into magic code by the target when MachineInstrs are formed.
441  ///
442  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
443  /// is used to insert this into the MachineBasicBlock.
444  bool usesCustomInsertionHook() const {
445    return Flags & (1 << MCID::UsesCustomInserter);
446  }
447
448  /// isRematerializable - Returns true if this instruction is a candidate for
449  /// remat.  This flag is deprecated, please don't use it anymore.  If this
450  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
451  /// verify the instruction is really rematable.
452  bool isRematerializable() const {
453    return Flags & (1 << MCID::Rematerializable);
454  }
455
456  /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
457  /// less) than a move instruction. This is useful during certain types of
458  /// optimizations (e.g., remat during two-address conversion or machine licm)
459  /// where we would like to remat or hoist the instruction, but not if it costs
460  /// more than moving the instruction into the appropriate register. Note, we
461  /// are not marking copies from and to the same register class with this flag.
462  bool isAsCheapAsAMove() const {
463    return Flags & (1 << MCID::CheapAsAMove);
464  }
465
466  /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
467  /// have special register allocation requirements that are not captured by the
468  /// operand register classes. e.g. ARM::STRD's two source registers must be an
469  /// even / odd pair, ARM::STM registers have to be in ascending order.
470  /// Post-register allocation passes should not attempt to change allocations
471  /// for sources of instructions with this flag.
472  bool hasExtraSrcRegAllocReq() const {
473    return Flags & (1 << MCID::ExtraSrcRegAllocReq);
474  }
475
476  /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
477  /// have special register allocation requirements that are not captured by the
478  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
479  /// even / odd pair, ARM::LDM registers have to be in ascending order.
480  /// Post-register allocation passes should not attempt to change allocations
481  /// for definitions of instructions with this flag.
482  bool hasExtraDefRegAllocReq() const {
483    return Flags & (1 << MCID::ExtraDefRegAllocReq);
484  }
485};
486
487} // end namespace llvm
488
489#endif
490