Pass.h revision cde53d3c1e9d6a2add5de847b44818fbb1d69c20
1//===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a base class that indicates that a specified class is a
11// transformation pass implementation.
12//
13// Passes are designed this way so that it is possible to run passes in a cache
14// and organizationally optimal order without having to specify it at the front
15// end.  This allows arbitrary passes to be strung together and have them
16// executed as effeciently as possible.
17//
18// Passes should extend one of the classes below, depending on the guarantees
19// that it can make about what will be modified as it is run.  For example, most
20// global optimizations should derive from FunctionPass, because they do not add
21// or delete functions, they operate on the internals of the function.
22//
23// Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24// bottom), so the APIs exposed by these files are also automatically available
25// to all users of this file.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_PASS_H
30#define LLVM_PASS_H
31
32#include "llvm/Support/Streams.h"
33#include <vector>
34#include <map>
35#include <iosfwd>
36#include <typeinfo>
37#include <cassert>
38
39namespace llvm {
40
41class Value;
42class BasicBlock;
43class Function;
44class Module;
45class AnalysisUsage;
46class PassInfo;
47class ImmutablePass;
48template<class Trait> class PassManagerT;
49class BasicBlockPassManager;
50class FunctionPassManagerT;
51class ModulePassManager;
52class AnalysisResolver;
53
54// AnalysisID - Use the PassInfo to identify a pass...
55typedef const PassInfo* AnalysisID;
56
57//===----------------------------------------------------------------------===//
58/// Pass interface - Implemented by all 'passes'.  Subclass this if you are an
59/// interprocedural optimization or you do not fit into any of the more
60/// constrained passes described below.
61///
62class Pass {
63  AnalysisResolver *Resolver;  // Used to resolve analysis
64  const PassInfo *PassInfoCache;
65
66  // AnalysisImpls - This keeps track of which passes implement the interfaces
67  // that are required by the current pass (to implement getAnalysis()).
68  //
69  std::vector<std::pair<const PassInfo*, Pass*> > AnalysisImpls;
70
71  void operator=(const Pass&);  // DO NOT IMPLEMENT
72  Pass(const Pass &);           // DO NOT IMPLEMENT
73public:
74  Pass() : Resolver(0), PassInfoCache(0) {}
75  virtual ~Pass() {} // Destructor is virtual so we can be subclassed
76
77  /// getPassName - Return a nice clean name for a pass.  This usually
78  /// implemented in terms of the name that is registered by one of the
79  /// Registration templates, but can be overloaded directly, and if nothing
80  /// else is available, C++ RTTI will be consulted to get a SOMEWHAT
81  /// intelligible name for the pass.
82  ///
83  virtual const char *getPassName() const;
84
85  /// getPassInfo - Return the PassInfo data structure that corresponds to this
86  /// pass...  If the pass has not been registered, this will return null.
87  ///
88  const PassInfo *getPassInfo() const;
89
90  /// runPass - Run this pass, returning true if a modification was made to the
91  /// module argument.  This should be implemented by all concrete subclasses.
92  ///
93  virtual bool runPass(Module &M) { return false; }
94  virtual bool runPass(BasicBlock&) { return false; }
95
96  /// print - Print out the internal state of the pass.  This is called by
97  /// Analyze to print out the contents of an analysis.  Otherwise it is not
98  /// necessary to implement this method.  Beware that the module pointer MAY be
99  /// null.  This automatically forwards to a virtual function that does not
100  /// provide the Module* in case the analysis doesn't need it it can just be
101  /// ignored.
102  ///
103  virtual void print(std::ostream &O, const Module *M) const;
104  void print(std::ostream *O, const Module *M) const { if (O) print(*O, M); }
105  void dump() const; // dump - call print(std::cerr, 0);
106
107  // Access AnalysisResolver
108  inline void setResolver(AnalysisResolver *AR) { Resolver = AR; }
109  inline AnalysisResolver *getResolver() { return Resolver; }
110
111  /// getAnalysisUsage - This function should be overriden by passes that need
112  /// analysis information to do their job.  If a pass specifies that it uses a
113  /// particular analysis result to this function, it can then use the
114  /// getAnalysis<AnalysisType>() function, below.
115  ///
116  virtual void getAnalysisUsage(AnalysisUsage &Info) const {
117    // By default, no analysis results are used, all are invalidated.
118  }
119
120  /// releaseMemory() - This member can be implemented by a pass if it wants to
121  /// be able to release its memory when it is no longer needed.  The default
122  /// behavior of passes is to hold onto memory for the entire duration of their
123  /// lifetime (which is the entire compile time).  For pipelined passes, this
124  /// is not a big deal because that memory gets recycled every time the pass is
125  /// invoked on another program unit.  For IP passes, it is more important to
126  /// free memory when it is unused.
127  ///
128  /// Optionally implement this function to release pass memory when it is no
129  /// longer used.
130  ///
131  virtual void releaseMemory() {}
132
133  // dumpPassStructure - Implement the -debug-passes=PassStructure option
134  virtual void dumpPassStructure(unsigned Offset = 0);
135
136
137  // getPassInfo - Static method to get the pass information from a class name.
138  template<typename AnalysisClass>
139  static const PassInfo *getClassPassInfo() {
140    return lookupPassInfo(typeid(AnalysisClass));
141  }
142
143  // lookupPassInfo - Return the pass info object for the specified pass class,
144  // or null if it is not known.
145  static const PassInfo *lookupPassInfo(const std::type_info &TI);
146
147  /// getAnalysisToUpdate<AnalysisType>() - This function is used by subclasses
148  /// to get to the analysis information that might be around that needs to be
149  /// updated.  This is different than getAnalysis in that it can fail (ie the
150  /// analysis results haven't been computed), so should only be used if you
151  /// provide the capability to update an analysis that exists.  This method is
152  /// often used by transformation APIs to update analysis results for a pass
153  /// automatically as the transform is performed.
154  ///
155  template<typename AnalysisType>
156  AnalysisType *getAnalysisToUpdate() const; // Defined in PassAnalysisSupport.h
157
158  /// mustPreserveAnalysisID - This method serves the same function as
159  /// getAnalysisToUpdate, but works if you just have an AnalysisID.  This
160  /// obviously cannot give you a properly typed instance of the class if you
161  /// don't have the class name available (use getAnalysisToUpdate if you do),
162  /// but it can tell you if you need to preserve the pass at least.
163  ///
164  bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
165
166  /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
167  /// to the analysis information that they claim to use by overriding the
168  /// getAnalysisUsage function.
169  ///
170  template<typename AnalysisType>
171  AnalysisType &getAnalysis() const; // Defined in PassAnalysisSupport.h
172
173  template<typename AnalysisType>
174  AnalysisType &getAnalysisID(const PassInfo *PI) const;
175
176private:
177  template<typename Trait> friend class PassManagerT;
178  friend class ModulePassManager;
179  friend class FunctionPassManagerT;
180  friend class BasicBlockPassManager;
181};
182
183inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
184  P.print(OS, 0); return OS;
185}
186
187//===----------------------------------------------------------------------===//
188/// ModulePass class - This class is used to implement unstructured
189/// interprocedural optimizations and analyses.  ModulePasses may do anything
190/// they want to the program.
191///
192class ModulePass : public Pass {
193public:
194  /// runOnModule - Virtual method overriden by subclasses to process the module
195  /// being operated on.
196  virtual bool runOnModule(Module &M) = 0;
197
198  virtual bool runPass(Module &M) { return runOnModule(M); }
199  virtual bool runPass(BasicBlock&) { return false; }
200
201  // Force out-of-line virtual method.
202  virtual ~ModulePass();
203};
204
205
206//===----------------------------------------------------------------------===//
207/// ImmutablePass class - This class is used to provide information that does
208/// not need to be run.  This is useful for things like target information and
209/// "basic" versions of AnalysisGroups.
210///
211class ImmutablePass : public ModulePass {
212public:
213  /// initializePass - This method may be overriden by immutable passes to allow
214  /// them to perform various initialization actions they require.  This is
215  /// primarily because an ImmutablePass can "require" another ImmutablePass,
216  /// and if it does, the overloaded version of initializePass may get access to
217  /// these passes with getAnalysis<>.
218  ///
219  virtual void initializePass() {}
220
221  /// ImmutablePasses are never run.
222  ///
223  virtual bool runOnModule(Module &M) { return false; }
224
225  // Force out-of-line virtual method.
226  virtual ~ImmutablePass();
227};
228
229//===----------------------------------------------------------------------===//
230/// FunctionPass class - This class is used to implement most global
231/// optimizations.  Optimizations should subclass this class if they meet the
232/// following constraints:
233///
234///  1. Optimizations are organized globally, i.e., a function at a time
235///  2. Optimizing a function does not cause the addition or removal of any
236///     functions in the module
237///
238class FunctionPass : public ModulePass {
239public:
240  /// doInitialization - Virtual method overridden by subclasses to do
241  /// any necessary per-module initialization.
242  ///
243  virtual bool doInitialization(Module &M) { return false; }
244
245  /// runOnFunction - Virtual method overriden by subclasses to do the
246  /// per-function processing of the pass.
247  ///
248  virtual bool runOnFunction(Function &F) = 0;
249
250  /// doFinalization - Virtual method overriden by subclasses to do any post
251  /// processing needed after all passes have run.
252  ///
253  virtual bool doFinalization(Module &M) { return false; }
254
255  /// runOnModule - On a module, we run this pass by initializing,
256  /// ronOnFunction'ing once for every function in the module, then by
257  /// finalizing.
258  ///
259  virtual bool runOnModule(Module &M);
260
261  /// run - On a function, we simply initialize, run the function, then
262  /// finalize.
263  ///
264  bool run(Function &F);
265
266};
267
268
269
270//===----------------------------------------------------------------------===//
271/// BasicBlockPass class - This class is used to implement most local
272/// optimizations.  Optimizations should subclass this class if they
273/// meet the following constraints:
274///   1. Optimizations are local, operating on either a basic block or
275///      instruction at a time.
276///   2. Optimizations do not modify the CFG of the contained function, or any
277///      other basic block in the function.
278///   3. Optimizations conform to all of the constraints of FunctionPasses.
279///
280class BasicBlockPass : public FunctionPass {
281public:
282  /// doInitialization - Virtual method overridden by subclasses to do
283  /// any necessary per-module initialization.
284  ///
285  virtual bool doInitialization(Module &M) { return false; }
286
287  /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
288  /// to do any necessary per-function initialization.
289  ///
290  virtual bool doInitialization(Function &F) { return false; }
291
292  /// runOnBasicBlock - Virtual method overriden by subclasses to do the
293  /// per-basicblock processing of the pass.
294  ///
295  virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
296
297  /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
298  /// do any post processing needed after all passes have run.
299  ///
300  virtual bool doFinalization(Function &F) { return false; }
301
302  /// doFinalization - Virtual method overriden by subclasses to do any post
303  /// processing needed after all passes have run.
304  ///
305  virtual bool doFinalization(Module &M) { return false; }
306
307
308  // To run this pass on a function, we simply call runOnBasicBlock once for
309  // each function.
310  //
311  bool runOnFunction(Function &F);
312
313  /// To run directly on the basic block, we initialize, runOnBasicBlock, then
314  /// finalize.
315  ///
316  virtual bool runPass(Module &M) { return false; }
317  virtual bool runPass(BasicBlock &BB);
318
319};
320
321/// If the user specifies the -time-passes argument on an LLVM tool command line
322/// then the value of this boolean will be true, otherwise false.
323/// @brief This is the storage for the -time-passes option.
324extern bool TimePassesIsEnabled;
325
326} // End llvm namespace
327
328// Include support files that contain important APIs commonly used by Passes,
329// but that we want to separate out to make it easier to read the header files.
330//
331#include "llvm/PassSupport.h"
332#include "llvm/PassAnalysisSupport.h"
333
334#endif
335