ELF.h revision 9a9ad77847c1be4ffc5ba6304e33ccecbf72e43f
124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//
324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//                     The LLVM Compiler Infrastructure
424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//
524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// This file is distributed under the University of Illinois Open Source
624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// License. See LICENSE.TXT for details.
724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//
824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//===----------------------------------------------------------------------===//
924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//
1024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// This header contains common, non-processor-specific data structures and
1198f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice// constants for the ELF file format.
1224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//
137826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice// The details of the ELF32 bits in this file are largely based on the Tool
1498f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
151501a967735469f0e21950905cc64ca24d305fa0Eli Friedman// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
1624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
1724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//
1824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner//===----------------------------------------------------------------------===//
1924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
2024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner#ifndef LLVM_SUPPORT_ELF_H
2124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner#define LLVM_SUPPORT_ELF_H
2263094e0bb161580564954dee512955c1c79d3476Greg Clayton
2324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner#include "llvm/System/DataTypes.h"
2424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner#include <cstring>
2524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
2624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnernamespace llvm {
2763094e0bb161580564954dee512955c1c79d3476Greg Clayton
2824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnernamespace ELF {
2924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
3063094e0bb161580564954dee512955c1c79d3476Greg Claytontypedef uint32_t Elf32_Addr; // Program address
3124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint16_t Elf32_Half;
3224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint32_t Elf32_Off;  // File offset
3324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef int32_t  Elf32_Sword;
3424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint32_t Elf32_Word;
3524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
3624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint64_t Elf64_Addr;
3724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint64_t Elf64_Off;
3824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef int32_t  Elf64_Shalf;
3924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef int32_t  Elf64_Sword;
4024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint32_t Elf64_Word;
4124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef int64_t  Elf64_Sxword;
4224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnertypedef uint64_t Elf64_Xword;
4363094e0bb161580564954dee512955c1c79d3476Greg Claytontypedef uint32_t Elf64_Half;
4463094e0bb161580564954dee512955c1c79d3476Greg Claytontypedef uint16_t Elf64_Quarter;
4524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
4663094e0bb161580564954dee512955c1c79d3476Greg Clayton// Object file magic string.
4724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerstatic const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
4824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
4963094e0bb161580564954dee512955c1c79d3476Greg Clayton// e_ident size and indices.
507826c8894803dc729f29789ebc038956a94d3e7aCaroline Ticeenum {
5124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_MAG0       = 0,          // File identification index.
5224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_MAG1       = 1,          // File identification index.
5324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_MAG2       = 2,          // File identification index.
5424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_MAG3       = 3,          // File identification index.
5524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_CLASS      = 4,          // File class.
5624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_DATA       = 5,          // Data encoding.
5724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_VERSION    = 6,          // File version.
5863094e0bb161580564954dee512955c1c79d3476Greg Clayton  EI_OSABI      = 7,          // OS/ABI identification.
5963094e0bb161580564954dee512955c1c79d3476Greg Clayton  EI_ABIVERSION = 8,          // ABI version.
6024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_PAD        = 9,          // Start of padding bytes.
6124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EI_NIDENT     = 16          // Number of bytes in e_ident.
6224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner};
6324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
6424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerstruct Elf32_Ehdr {
6524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
6663094e0bb161580564954dee512955c1c79d3476Greg Clayton  Elf32_Half    e_type;      // Type of file (see ET_* below)
6763094e0bb161580564954dee512955c1c79d3476Greg Clayton  Elf32_Half    e_machine;   // Required architecture for this file (see EM_*)
6824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf32_Word    e_version;   // Must be equal to 1
6924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf32_Addr    e_entry;     // Address to jump to in order to start program
7024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf32_Off     e_phoff;     // Program header table's file offset, in bytes
7124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf32_Off     e_shoff;     // Section header table's file offset, in bytes
7224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf32_Word    e_flags;     // Processor-specific flags
73952e9dc874944fcdbbb224f3ec4fc2c859376f64Greg Clayton  Elf32_Half    e_ehsize;    // Size of ELF header, in bytes
747826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  Elf32_Half    e_phentsize; // Size of an entry in the program header table
757826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  Elf32_Half    e_phnum;     // Number of entries in the program header table
7663094e0bb161580564954dee512955c1c79d3476Greg Clayton  Elf32_Half    e_shentsize; // Size of an entry in the section header table
777826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  Elf32_Half    e_shnum;     // Number of entries in the section header table
787826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  Elf32_Half    e_shstrndx;  // Sect hdr table index of sect name string table
797826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  bool checkMagic() const {
80a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
817826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  }
827826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
8324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
8424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner};
8524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
8624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// 64-bit ELF header. Fields are the same as for ELF32, but with different
8724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// types (see above).
88952e9dc874944fcdbbb224f3ec4fc2c859376f64Greg Claytonstruct Elf64_Ehdr {
89574c3d63822cc7fd52bf6f6a94b6882fec4c8ce9Jim Ingham  unsigned char e_ident[EI_NIDENT];
9063094e0bb161580564954dee512955c1c79d3476Greg Clayton  Elf64_Quarter e_type;
91a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  Elf64_Quarter e_machine;
92a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  Elf64_Half    e_version;
93a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  Elf64_Addr    e_entry;
94a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  Elf64_Off     e_phoff;
95a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  Elf64_Off     e_shoff;
96a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  Elf64_Half    e_flags;
9724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf64_Quarter e_ehsize;
9824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf64_Quarter e_phentsize;
9924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf64_Quarter e_phnum;
10024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf64_Quarter e_shentsize;
10124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  Elf64_Quarter e_shnum;
102952e9dc874944fcdbbb224f3ec4fc2c859376f64Greg Clayton  Elf64_Quarter e_shstrndx;
103a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  bool checkMagic() const {
104a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
10563094e0bb161580564954dee512955c1c79d3476Greg Clayton  }
106a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
107a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
108a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton};
109a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton
110a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton// File types
111a66ba46379fe41036d870975c56ccc2319cb6618Greg Claytonenum {
112a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  ET_NONE   = 0,      // No file type
11324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ET_REL    = 1,      // Relocatable file
11424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ET_EXEC   = 2,      // Executable file
11524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ET_DYN    = 3,      // Shared object file
11624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ET_CORE   = 4,      // Core file
11724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ET_LOPROC = 0xff00, // Beginning of processor-specific codes
118952e9dc874944fcdbbb224f3ec4fc2c859376f64Greg Clayton  ET_HIPROC = 0xffff  // Processor-specific
119a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton};
12063094e0bb161580564954dee512955c1c79d3476Greg Clayton
121a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton// Versioning
122a66ba46379fe41036d870975c56ccc2319cb6618Greg Claytonenum {
123a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  EV_NONE = 0,
124a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton  EV_CURRENT = 1
125a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton};
126a66ba46379fe41036d870975c56ccc2319cb6618Greg Clayton
12724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// Machine architectures
12824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerenum {
12924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_NONE = 0,  // No machine
13024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_M32 = 1,   // AT&T WE 32100
13124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_SPARC = 2, // SPARC
13224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_386 = 3,   // Intel 386
13363094e0bb161580564954dee512955c1c79d3476Greg Clayton  EM_68K = 4,   // Motorola 68000
13424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_88K = 5,   // Motorola 88000
13524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_486 = 6,   // Intel 486 (deprecated)
13624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_860 = 7,   // Intel 80860
13724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_MIPS = 8,     // MIPS R3000
13824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_PPC = 20,     // PowerPC
13924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_PPC64 = 21,   // PowerPC64
14063094e0bb161580564954dee512955c1c79d3476Greg Clayton  EM_ARM = 40,     // ARM
14124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_ALPHA = 41,   // DEC Alpha
14224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_SPARCV9 = 43, // SPARC V9
14324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  EM_X86_64 = 62   // AMD64
14424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner};
14524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
14624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// Object file classes.
14724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerenum {
14863094e0bb161580564954dee512955c1c79d3476Greg Clayton  ELFCLASS32 = 1, // 32-bit object file
14924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFCLASS64 = 2  // 64-bit object file
15024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner};
15124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
15224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// Object file byte orderings.
15324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerenum {
15424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFDATANONE = 0, // Invalid data encoding.
15563094e0bb161580564954dee512955c1c79d3476Greg Clayton  ELFDATA2LSB = 1, // Little-endian object file
15624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFDATA2MSB = 2  // Big-endian object file
15724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner};
15824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
15924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// OS ABI identification.
16024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerenum {
16124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_NONE = 0,          // UNIX System V ABI
16263094e0bb161580564954dee512955c1c79d3476Greg Clayton  ELFOSABI_HPUX = 1,          // HP-UX operating system
16324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_NETBSD = 2,        // NetBSD
16424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_LINUX = 3,         // GNU/Linux
16524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_HURD = 4,          // GNU/Hurd
16624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_SOLARIS = 6,       // Solaris
16724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_AIX = 7,           // AIX
16824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_IRIX = 8,          // IRIX
16924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_FREEBSD = 9,       // FreeBSD
17024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_TRU64 = 10,        // TRU64 UNIX
17163094e0bb161580564954dee512955c1c79d3476Greg Clayton  ELFOSABI_MODESTO = 11,      // Novell Modesto
17224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_OPENBSD = 12,      // OpenBSD
17324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_OPENVMS = 13,      // OpenVMS
17424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_NSK = 14,          // Hewlett-Packard Non-Stop Kernel
17524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_AROS = 15,         // AROS
17624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_FENIXOS = 16,      // FenixOS
17724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
17824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_C6000_LINUX = 65,  // Linux TMS320C6000
17963094e0bb161580564954dee512955c1c79d3476Greg Clayton  ELFOSABI_ARM = 97,          // ARM
18024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  ELFOSABI_STANDALONE = 255   // Standalone (embedded) application
18124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner};
18224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner
18324943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner// X86_64 relocations.
18424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattnerenum {
18563094e0bb161580564954dee512955c1c79d3476Greg Clayton  R_X86_64_NONE       = 0,
18663094e0bb161580564954dee512955c1c79d3476Greg Clayton  R_X86_64_64         = 1,
18724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_PC32       = 2,
18824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_GOT32      = 3,
18924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_PLT32      = 4,
19024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_COPY       = 5,
19124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_GLOB_DAT   = 6,
19224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_JUMP_SLOT  = 7,
19363094e0bb161580564954dee512955c1c79d3476Greg Clayton  R_X86_64_RELATIVE   = 8,
19424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_GOTPCREL   = 9,
19524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_32         = 10,
19624943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_32S        = 11,
19724943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_16         = 12,
19824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_PC16       = 13,
19963094e0bb161580564954dee512955c1c79d3476Greg Clayton  R_X86_64_8          = 14,
20024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_PC8        = 15,
20124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_DTPMOD64   = 16,
2020baa394cd55c6dfb7a6259d215d0dea2b708067bGreg Clayton  R_X86_64_DTPOFF64   = 17,
2030baa394cd55c6dfb7a6259d215d0dea2b708067bGreg Clayton  R_X86_64_TPOFF64    = 18,
2040baa394cd55c6dfb7a6259d215d0dea2b708067bGreg Clayton  R_X86_64_TLSGD      = 19,
2050baa394cd55c6dfb7a6259d215d0dea2b708067bGreg Clayton  R_X86_64_TLSLD      = 20,
2060baa394cd55c6dfb7a6259d215d0dea2b708067bGreg Clayton  R_X86_64_DTPOFF32   = 21,
2070baa394cd55c6dfb7a6259d215d0dea2b708067bGreg Clayton  R_X86_64_GOTTPOFF   = 22,
20824943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_TPOFF32    = 23,
20924943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_PC64       = 24,
21024943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_GOTOFF64   = 25,
21124943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_GOTPC32    = 26,
21224943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_SIZE32     = 32,
21363094e0bb161580564954dee512955c1c79d3476Greg Clayton  R_X86_64_SIZE64     = 33,
21424943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_GOTPC32_TLSDESC = 34,
21524943d2ee8bfaa7cf5893e4709143924157a5c1eChris Lattner  R_X86_64_TLSDESC_CALL    = 35,
21698f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  R_X86_64_TLSDESC    = 36
21798f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice};
21898f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice
21998f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice// Section header.
22098f930f429160f9777f626c3ac6aa609f4e965d2Caroline Ticestruct Elf32_Shdr {
221bafc86e11a23ad23112f67a99e42aac7b0f207d7Greg Clayton  Elf32_Word sh_name;      // Section name (index into string table)
222bafc86e11a23ad23112f67a99e42aac7b0f207d7Greg Clayton  Elf32_Word sh_type;      // Section type (SHT_*)
22398f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  Elf32_Word sh_flags;     // Section flags (SHF_*)
22498f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  Elf32_Addr sh_addr;      // Address where section is to be loaded
22598f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  Elf32_Off  sh_offset;    // File offset of section data, in bytes
226bafc86e11a23ad23112f67a99e42aac7b0f207d7Greg Clayton  Elf32_Word sh_size;      // Size of section, in bytes
22798f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  Elf32_Word sh_link;      // Section type-specific header table index link
22898f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  Elf32_Word sh_info;      // Section type-specific extra information
22998f930f429160f9777f626c3ac6aa609f4e965d2Caroline Tice  Elf32_Word sh_addralign; // Section address alignment
230bafc86e11a23ad23112f67a99e42aac7b0f207d7Greg Clayton  Elf32_Word sh_entsize;   // Size of records contained within the section
2317826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice};
2327826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice
2337826c8894803dc729f29789ebc038956a94d3e7aCaroline Tice// Section header for ELF64 - same fields as ELF32, different types.
234struct Elf64_Shdr {
235  Elf64_Half  sh_name;
236  Elf64_Half  sh_type;
237  Elf64_Xword sh_flags;
238  Elf64_Addr  sh_addr;
239  Elf64_Off   sh_offset;
240  Elf64_Xword sh_size;
241  Elf64_Half  sh_link;
242  Elf64_Half  sh_info;
243  Elf64_Xword sh_addralign;
244  Elf64_Xword sh_entsize;
245};
246
247// Special section indices.
248enum {
249  SHN_UNDEF     = 0,      // Undefined, missing, irrelevant, or meaningless
250  SHN_LORESERVE = 0xff00, // Lowest reserved index
251  SHN_LOPROC    = 0xff00, // Lowest processor-specific index
252  SHN_HIPROC    = 0xff1f, // Highest processor-specific index
253  SHN_ABS       = 0xfff1, // Symbol has absolute value; does not need relocation
254  SHN_COMMON    = 0xfff2, // FORTRAN COMMON or C external global variables
255  SHN_HIRESERVE = 0xffff  // Highest reserved index
256};
257
258// Section types.
259enum {
260  SHT_NULL     = 0,  // No associated section (inactive entry).
261  SHT_PROGBITS = 1,  // Program-defined contents.
262  SHT_SYMTAB   = 2,  // Symbol table.
263  SHT_STRTAB   = 3,  // String table.
264  SHT_RELA     = 4,  // Relocation entries; explicit addends.
265  SHT_HASH     = 5,  // Symbol hash table.
266  SHT_DYNAMIC  = 6,  // Information for dynamic linking.
267  SHT_NOTE     = 7,  // Information about the file.
268  SHT_NOBITS   = 8,  // Data occupies no space in the file.
269  SHT_REL      = 9,  // Relocation entries; no explicit addends.
270  SHT_SHLIB    = 10, // Reserved.
271  SHT_DYNSYM   = 11, // Symbol table.
272  SHT_LOPROC   = 0x70000000, // Lowest processor architecture-specific type.
273  SHT_HIPROC   = 0x7fffffff, // Highest processor architecture-specific type.
274  SHT_LOUSER   = 0x80000000, // Lowest type reserved for applications.
275  SHT_HIUSER   = 0xffffffff  // Highest type reserved for applications.
276};
277
278// Section flags.
279enum {
280  SHF_WRITE     = 0x1, // Section data should be writable during execution.
281  SHF_ALLOC     = 0x2, // Section occupies memory during program execution.
282  SHF_EXECINSTR = 0x4, // Section contains executable machine instructions.
283  SHF_MASKPROC  = 0xf0000000 // Bits indicating processor-specific flags.
284};
285
286// Symbol table entries for ELF32.
287struct Elf32_Sym {
288  Elf32_Word    st_name;  // Symbol name (index into string table)
289  Elf32_Addr    st_value; // Value or address associated with the symbol
290  Elf32_Word    st_size;  // Size of the symbol
291  unsigned char st_info;  // Symbol's type and binding attributes
292  unsigned char st_other; // Must be zero; reserved
293  Elf32_Half    st_shndx; // Which section (header table index) it's defined in
294
295  // These accessors and mutators correspond to the ELF32_ST_BIND,
296  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
297  unsigned char getBinding() const { return st_info >> 4; }
298  unsigned char getType() const { return st_info & 0x0f; }
299  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
300  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
301  void setBindingAndType(unsigned char b, unsigned char t) {
302    st_info = (b << 4) + (t & 0x0f);
303  }
304};
305
306// Symbol table entries for ELF64.
307struct Elf64_Sym {
308  Elf64_Word      st_name;  // Symbol name (index into string table)
309  unsigned char   st_info;  // Symbol's type and binding attributes
310  unsigned char   st_other; // Must be zero; reserved
311  Elf64_Half      st_shndx; // Which section (header table index) it's defined in
312  Elf64_Addr      st_value; // Value or address associated with the symbol
313  Elf64_Xword     st_size;  // Size of the symbol
314
315  // These accessors and mutators are identical to those defined for ELF32
316  // symbol table entries.
317  unsigned char getBinding() const { return st_info >> 4; }
318  unsigned char getType() const { return st_info & 0x0f; }
319  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
320  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
321  void setBindingAndType(unsigned char b, unsigned char t) {
322    st_info = (b << 4) + (t & 0x0f);
323  }
324};
325
326// Symbol bindings.
327enum {
328  STB_LOCAL = 0,   // Local symbol, not visible outside obj file containing def
329  STB_GLOBAL = 1,  // Global symbol, visible to all object files being combined
330  STB_WEAK = 2,    // Weak symbol, like global but lower-precedence
331  STB_LOPROC = 13, // Lowest processor-specific binding type
332  STB_HIPROC = 15  // Highest processor-specific binding type
333};
334
335// Symbol types.
336enum {
337  STT_NOTYPE  = 0,   // Symbol's type is not specified
338  STT_OBJECT  = 1,   // Symbol is a data object (variable, array, etc.)
339  STT_FUNC    = 2,   // Symbol is executable code (function, etc.)
340  STT_SECTION = 3,   // Symbol refers to a section
341  STT_FILE    = 4,   // Local, absolute symbol that refers to a file
342  STT_LOPROC  = 13,  // Lowest processor-specific symbol type
343  STT_HIPROC  = 15   // Highest processor-specific symbol type
344};
345
346// Relocation entry, without explicit addend.
347struct Elf32_Rel {
348  Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
349  Elf32_Word r_info;   // Symbol table index and type of relocation to apply
350
351  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
352  // and ELF32_R_INFO macros defined in the ELF specification:
353  Elf32_Word getSymbol() const { return (r_info >> 8); }
354  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
355  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
356  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
357  void setSymbolAndType(Elf32_Word s, unsigned char t) {
358    r_info = (s << 8) + t;
359  };
360};
361
362// Relocation entry with explicit addend.
363struct Elf32_Rela {
364  Elf32_Addr  r_offset; // Location (file byte offset, or program virtual addr)
365  Elf32_Word  r_info;   // Symbol table index and type of relocation to apply
366  Elf32_Sword r_addend; // Compute value for relocatable field by adding this
367
368  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
369  // and ELF32_R_INFO macros defined in the ELF specification:
370  Elf32_Word getSymbol() const { return (r_info >> 8); }
371  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
372  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
373  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
374  void setSymbolAndType(Elf32_Word s, unsigned char t) {
375    r_info = (s << 8) + t;
376  };
377};
378
379// Relocation entry, without explicit addend.
380struct Elf64_Rel {
381  Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
382  Elf64_Xword r_info;   // Symbol table index and type of relocation to apply.
383
384  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
385  // and ELF64_R_INFO macros defined in the ELF specification:
386  Elf64_Xword getSymbol() const { return (r_info >> 32); }
387  unsigned char getType() const {
388    return (unsigned char) (r_info & 0xffffffffL);
389  }
390  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
391  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
392  void setSymbolAndType(Elf64_Xword s, unsigned char t) {
393    r_info = (s << 32) + (t&0xffffffffL);
394  };
395};
396
397// Relocation entry with explicit addend.
398struct Elf64_Rela {
399  Elf64_Addr  r_offset; // Location (file byte offset, or program virtual addr).
400  Elf64_Xword  r_info;   // Symbol table index and type of relocation to apply.
401  Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
402
403  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
404  // and ELF64_R_INFO macros defined in the ELF specification:
405  Elf64_Xword getSymbol() const { return (r_info >> 32); }
406  unsigned char getType() const {
407    return (unsigned char) (r_info & 0xffffffffL);
408  }
409  void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); }
410  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
411  void setSymbolAndType(Elf64_Xword s, unsigned char t) {
412    r_info = (s << 32) + (t&0xffffffffL);
413  };
414};
415
416// Program header for ELF32.
417struct Elf32_Phdr {
418  Elf32_Word p_type;   // Type of segment
419  Elf32_Off  p_offset; // File offset where segment is located, in bytes
420  Elf32_Addr p_vaddr;  // Virtual address of beginning of segment
421  Elf32_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
422  Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
423  Elf32_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
424  Elf32_Word p_flags;  // Segment flags
425  Elf32_Word p_align;  // Segment alignment constraint
426};
427
428// Program header for ELF64.
429struct Elf64_Phdr {
430  Elf64_Word   p_type;   // Type of segment
431  Elf64_Word   p_flags;  // Segment flags
432  Elf64_Off    p_offset; // File offset where segment is located, in bytes
433  Elf64_Addr   p_vaddr;  // Virtual address of beginning of segment
434  Elf64_Addr   p_paddr;  // Physical address of beginning of segment (OS-specific)
435  Elf64_Xword  p_filesz; // Num. of bytes in file image of segment (may be zero)
436  Elf64_Xword  p_memsz;  // Num. of bytes in mem image of segment (may be zero)
437  Elf64_Xword  p_align;  // Segment alignment constraint
438};
439
440// Segment types.
441enum {
442  PT_NULL    = 0, // Unused segment.
443  PT_LOAD    = 1, // Loadable segment.
444  PT_DYNAMIC = 2, // Dynamic linking information.
445  PT_INTERP  = 3, // Interpreter pathname.
446  PT_NOTE    = 4, // Auxiliary information.
447  PT_SHLIB   = 5, // Reserved.
448  PT_PHDR    = 6, // The program header table itself.
449  PT_LOPROC  = 0x70000000, // Lowest processor-specific program hdr entry type.
450  PT_HIPROC  = 0x7fffffff  // Highest processor-specific program hdr entry type.
451};
452
453// Segment flag bits.
454enum {
455  PF_X        = 1,         // Execute
456  PF_W        = 2,         // Write
457  PF_R        = 4,         // Read
458  PF_MASKPROC = 0xf0000000 // Unspecified
459};
460
461// Dynamic table entry for ELF32.
462struct Elf32_Dyn
463{
464  Elf32_Sword d_tag;            // Type of dynamic table entry.
465  union
466  {
467      Elf32_Word d_val;         // Integer value of entry.
468      Elf32_Addr d_ptr;         // Pointer value of entry.
469  } d_un;
470};
471
472// Dynamic table entry for ELF64.
473struct Elf64_Dyn
474{
475  Elf64_Sxword d_tag;           // Type of dynamic table entry.
476  union
477  {
478      Elf64_Xword d_val;        // Integer value of entry.
479      Elf64_Addr  d_ptr;        // Pointer value of entry.
480  } d_un;
481};
482
483// Dynamic table entry tags.
484enum {
485  DT_NULL         = 0,        // Marks end of dynamic array.
486  DT_NEEDED       = 1,        // String table offset of needed library.
487  DT_PLTRELSZ     = 2,        // Size of relocation entries in PLT.
488  DT_PLTGOT       = 3,        // Address associated with linkage table.
489  DT_HASH         = 4,        // Address of symbolic hash table.
490  DT_STRTAB       = 5,        // Address of dynamic string table.
491  DT_SYMTAB       = 6,        // Address of dynamic symbol table.
492  DT_RELA         = 7,        // Address of relocation table (Rela entries).
493  DT_RELASZ       = 8,        // Size of Rela relocation table.
494  DT_RELAENT      = 9,        // Size of a Rela relocation entry.
495  DT_STRSZ        = 10,       // Total size of the string table.
496  DT_SYMENT       = 11,       // Size of a symbol table entry.
497  DT_INIT         = 12,       // Address of initialization function.
498  DT_FINI         = 13,       // Address of termination function.
499  DT_SONAME       = 14,       // String table offset of a shared objects name.
500  DT_RPATH        = 15,       // String table offset of library search path.
501  DT_SYMBOLIC     = 16,       // Changes symbol resolution algorithm.
502  DT_REL          = 17,       // Address of relocation table (Rel entries).
503  DT_RELSZ        = 18,       // Size of Rel relocation table.
504  DT_RELENT       = 19,       // Size of a Rel relocation entry.
505  DT_PLTREL       = 20,       // Type of relocation entry used for linking.
506  DT_DEBUG        = 21,       // Reserved for debugger.
507  DT_TEXTREL      = 22,       // Relocations exist for non-writable segements.
508  DT_JMPREL       = 23,       // Address of relocations associated with PLT.
509  DT_BIND_NOW     = 24,       // Process all relocations before execution.
510  DT_INIT_ARRAY   = 25,       // Pointer to array of initialization functions.
511  DT_FINI_ARRAY   = 26,       // Pointer to array of termination functions.
512  DT_INIT_ARRAYSZ = 27,       // Size of DT_INIT_ARRAY.
513  DT_FINI_ARRAYSZ = 28,       // Size of DT_FINI_ARRAY.
514  DT_LOOS         = 0x60000000, // Start of environment specific tags.
515  DT_HIOS         = 0x6FFFFFFF, // End of environment specific tags.
516  DT_LOPROC       = 0x70000000, // Start of processor specific tags.
517  DT_HIPROC       = 0x7FFFFFFF  // End of processor specific tags.
518};
519
520} // end namespace ELF
521
522} // end namespace llvm
523
524#endif
525