ELF.h revision 1461520f8cba8ebbdfd832d5396079888f1ab96e
1//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header contains common, non-processor-specific data structures and
11// constants for the ELF file format.
12//
13// The details of the ELF32 bits in this file are largely based on the Tool
14// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
15// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
16// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_SUPPORT_ELF_H
21#define LLVM_SUPPORT_ELF_H
22
23#include "llvm/System/DataTypes.h"
24#include <cstring>
25
26namespace llvm {
27
28namespace ELF {
29
30typedef uint32_t Elf32_Addr; // Program address
31typedef uint16_t Elf32_Half;
32typedef uint32_t Elf32_Off;  // File offset
33typedef int32_t  Elf32_Sword;
34typedef uint32_t Elf32_Word;
35
36typedef uint64_t Elf64_Addr;
37typedef uint64_t Elf64_Off;
38typedef int32_t  Elf64_Shalf;
39typedef int32_t  Elf64_Sword;
40typedef uint32_t Elf64_Word;
41typedef int64_t  Elf64_Sxword;
42typedef uint64_t Elf64_Xword;
43typedef uint32_t Elf64_Half;
44typedef uint16_t Elf64_Quarter;
45
46// Object file magic string.
47static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
48
49// e_ident size and indices.
50enum {
51  EI_MAG0       = 0,          // File identification index.
52  EI_MAG1       = 1,          // File identification index.
53  EI_MAG2       = 2,          // File identification index.
54  EI_MAG3       = 3,          // File identification index.
55  EI_CLASS      = 4,          // File class.
56  EI_DATA       = 5,          // Data encoding.
57  EI_VERSION    = 6,          // File version.
58  EI_OSABI      = 7,          // OS/ABI identification.
59  EI_ABIVERSION = 8,          // ABI version.
60  EI_PAD        = 9,          // Start of padding bytes.
61  EI_NIDENT     = 16          // Number of bytes in e_ident.
62};
63
64struct Elf32_Ehdr {
65  unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
66  Elf32_Half    e_type;      // Type of file (see ET_* below)
67  Elf32_Half    e_machine;   // Required architecture for this file (see EM_*)
68  Elf32_Word    e_version;   // Must be equal to 1
69  Elf32_Addr    e_entry;     // Address to jump to in order to start program
70  Elf32_Off     e_phoff;     // Program header table's file offset, in bytes
71  Elf32_Off     e_shoff;     // Section header table's file offset, in bytes
72  Elf32_Word    e_flags;     // Processor-specific flags
73  Elf32_Half    e_ehsize;    // Size of ELF header, in bytes
74  Elf32_Half    e_phentsize; // Size of an entry in the program header table
75  Elf32_Half    e_phnum;     // Number of entries in the program header table
76  Elf32_Half    e_shentsize; // Size of an entry in the section header table
77  Elf32_Half    e_shnum;     // Number of entries in the section header table
78  Elf32_Half    e_shstrndx;  // Sect hdr table index of sect name string table
79  bool checkMagic() const {
80    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
81  }
82  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
83  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
84};
85
86// 64-bit ELF header. Fields are the same as for ELF32, but with different
87// types (see above).
88struct Elf64_Ehdr {
89  unsigned char e_ident[EI_NIDENT];
90  Elf64_Quarter e_type;
91  Elf64_Quarter e_machine;
92  Elf64_Half    e_version;
93  Elf64_Addr    e_entry;
94  Elf64_Off     e_phoff;
95  Elf64_Off     e_shoff;
96  Elf64_Half    e_flags;
97  Elf64_Quarter e_ehsize;
98  Elf64_Quarter e_phentsize;
99  Elf64_Quarter e_phnum;
100  Elf64_Quarter e_shentsize;
101  Elf64_Quarter e_shnum;
102  Elf64_Quarter e_shstrndx;
103  bool checkMagic() const {
104    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
105  }
106  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
107  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
108};
109
110// File types
111enum {
112  ET_NONE   = 0,      // No file type
113  ET_REL    = 1,      // Relocatable file
114  ET_EXEC   = 2,      // Executable file
115  ET_DYN    = 3,      // Shared object file
116  ET_CORE   = 4,      // Core file
117  ET_LOPROC = 0xff00, // Beginning of processor-specific codes
118  ET_HIPROC = 0xffff  // Processor-specific
119};
120
121// Versioning
122enum {
123  EV_NONE = 0,
124  EV_CURRENT = 1
125};
126
127// Machine architectures
128enum {
129  EM_NONE = 0,  // No machine
130  EM_M32 = 1,   // AT&T WE 32100
131  EM_SPARC = 2, // SPARC
132  EM_386 = 3,   // Intel 386
133  EM_68K = 4,   // Motorola 68000
134  EM_88K = 5,   // Motorola 88000
135  EM_486 = 6,   // Intel 486 (deprecated)
136  EM_860 = 7,   // Intel 80860
137  EM_MIPS = 8,     // MIPS R3000
138  EM_PPC = 20,     // PowerPC
139  EM_PPC64 = 21,   // PowerPC64
140  EM_ARM = 40,     // ARM
141  EM_ALPHA = 41,   // DEC Alpha
142  EM_SPARCV9 = 43, // SPARC V9
143  EM_X86_64 = 62   // AMD64
144};
145
146// Object file classes.
147enum {
148  ELFCLASS32 = 1, // 32-bit object file
149  ELFCLASS64 = 2  // 64-bit object file
150};
151
152// Object file byte orderings.
153enum {
154  ELFDATANONE = 0, // Invalid data encoding.
155  ELFDATA2LSB = 1, // Little-endian object file
156  ELFDATA2MSB = 2  // Big-endian object file
157};
158
159// OS ABI identification.
160enum {
161  ELFOSABI_NONE = 0,          // UNIX System V ABI
162  ELFOSABI_HPUX = 1,          // HP-UX operating system
163  ELFOSABI_NETBSD = 2,        // NetBSD
164  ELFOSABI_LINUX = 3,         // GNU/Linux
165  ELFOSABI_HURD = 4,          // GNU/Hurd
166  ELFOSABI_SOLARIS = 6,       // Solaris
167  ELFOSABI_AIX = 7,           // AIX
168  ELFOSABI_IRIX = 8,          // IRIX
169  ELFOSABI_FREEBSD = 9,       // FreeBSD
170  ELFOSABI_TRU64 = 10,        // TRU64 UNIX
171  ELFOSABI_MODESTO = 11,      // Novell Modesto
172  ELFOSABI_OPENBSD = 12,      // OpenBSD
173  ELFOSABI_OPENVMS = 13,      // OpenVMS
174  ELFOSABI_NSK = 14,          // Hewlett-Packard Non-Stop Kernel
175  ELFOSABI_AROS = 15,         // AROS
176  ELFOSABI_FENIXOS = 16,      // FenixOS
177  ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
178  ELFOSABI_C6000_LINUX = 65,  // Linux TMS320C6000
179  ELFOSABI_ARM = 97,          // ARM
180  ELFOSABI_STANDALONE = 255   // Standalone (embedded) application
181};
182
183// X86_64 relocations.
184enum {
185  R_X86_64_NONE       = 0,
186  R_X86_64_64         = 1,
187  R_X86_64_PC32       = 2,
188  R_X86_64_GOT32      = 3,
189  R_X86_64_PLT32      = 4,
190  R_X86_64_COPY       = 5,
191  R_X86_64_GLOB_DAT   = 6,
192  R_X86_64_JUMP_SLOT  = 7,
193  R_X86_64_RELATIVE   = 8,
194  R_X86_64_GOTPCREL   = 9,
195  R_X86_64_32         = 10,
196  R_X86_64_32S        = 11,
197  R_X86_64_16         = 12,
198  R_X86_64_PC16       = 13,
199  R_X86_64_8          = 14,
200  R_X86_64_PC8        = 15,
201  R_X86_64_DTPMOD64   = 16,
202  R_X86_64_DTPOFF64   = 17,
203  R_X86_64_TPOFF64    = 18,
204  R_X86_64_TLSGD      = 19,
205  R_X86_64_TLSLD      = 20,
206  R_X86_64_DTPOFF32   = 21,
207  R_X86_64_GOTTPOFF   = 22,
208  R_X86_64_TPOFF32    = 23,
209  R_X86_64_PC64       = 24,
210  R_X86_64_GOTOFF64   = 25,
211  R_X86_64_GOTPC32    = 26,
212  R_X86_64_SIZE32     = 32,
213  R_X86_64_SIZE64     = 33,
214  R_X86_64_GOTPC32_TLSDESC = 34,
215  R_X86_64_TLSDESC_CALL    = 35,
216  R_X86_64_TLSDESC    = 36
217};
218
219// Section header.
220struct Elf32_Shdr {
221  Elf32_Word sh_name;      // Section name (index into string table)
222  Elf32_Word sh_type;      // Section type (SHT_*)
223  Elf32_Word sh_flags;     // Section flags (SHF_*)
224  Elf32_Addr sh_addr;      // Address where section is to be loaded
225  Elf32_Off  sh_offset;    // File offset of section data, in bytes
226  Elf32_Word sh_size;      // Size of section, in bytes
227  Elf32_Word sh_link;      // Section type-specific header table index link
228  Elf32_Word sh_info;      // Section type-specific extra information
229  Elf32_Word sh_addralign; // Section address alignment
230  Elf32_Word sh_entsize;   // Size of records contained within the section
231};
232
233// Section header for ELF64 - same fields as ELF32, different types.
234struct Elf64_Shdr {
235  Elf64_Half  sh_name;
236  Elf64_Half  sh_type;
237  Elf64_Xword sh_flags;
238  Elf64_Addr  sh_addr;
239  Elf64_Off   sh_offset;
240  Elf64_Xword sh_size;
241  Elf64_Half  sh_link;
242  Elf64_Half  sh_info;
243  Elf64_Xword sh_addralign;
244  Elf64_Xword sh_entsize;
245};
246
247// Special section indices.
248enum {
249  SHN_UNDEF     = 0,      // Undefined, missing, irrelevant, or meaningless
250  SHN_LORESERVE = 0xff00, // Lowest reserved index
251  SHN_LOPROC    = 0xff00, // Lowest processor-specific index
252  SHN_HIPROC    = 0xff1f, // Highest processor-specific index
253  SHN_ABS       = 0xfff1, // Symbol has absolute value; does not need relocation
254  SHN_COMMON    = 0xfff2, // FORTRAN COMMON or C external global variables
255  SHN_HIRESERVE = 0xffff  // Highest reserved index
256};
257
258// Section types.
259enum {
260  SHT_NULL     = 0,  // No associated section (inactive entry).
261  SHT_PROGBITS = 1,  // Program-defined contents.
262  SHT_SYMTAB   = 2,  // Symbol table.
263  SHT_STRTAB   = 3,  // String table.
264  SHT_RELA     = 4,  // Relocation entries; explicit addends.
265  SHT_HASH     = 5,  // Symbol hash table.
266  SHT_DYNAMIC  = 6,  // Information for dynamic linking.
267  SHT_NOTE     = 7,  // Information about the file.
268  SHT_NOBITS   = 8,  // Data occupies no space in the file.
269  SHT_REL      = 9,  // Relocation entries; no explicit addends.
270  SHT_SHLIB    = 10, // Reserved.
271  SHT_DYNSYM   = 11, // Symbol table.
272  SHT_LOPROC   = 0x70000000, // Lowest processor architecture-specific type.
273  SHT_HIPROC   = 0x7fffffff, // Highest processor architecture-specific type.
274  SHT_LOUSER   = 0x80000000, // Lowest type reserved for applications.
275  SHT_HIUSER   = 0xffffffff  // Highest type reserved for applications.
276};
277
278// Section flags.
279enum {
280  SHF_WRITE     = 0x1, // Section data should be writable during execution.
281  SHF_ALLOC     = 0x2, // Section occupies memory during program execution.
282  SHF_EXECINSTR = 0x4, // Section contains executable machine instructions.
283  SHF_MASKPROC  = 0xf0000000 // Bits indicating processor-specific flags.
284};
285
286// Symbol table entries for ELF32.
287struct Elf32_Sym {
288  Elf32_Word    st_name;  // Symbol name (index into string table)
289  Elf32_Addr    st_value; // Value or address associated with the symbol
290  Elf32_Word    st_size;  // Size of the symbol
291  unsigned char st_info;  // Symbol's type and binding attributes
292  unsigned char st_other; // Must be zero; reserved
293  Elf32_Half    st_shndx; // Which section (header table index) it's defined in
294
295  // These accessors and mutators correspond to the ELF32_ST_BIND,
296  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
297  unsigned char getBinding() const { return st_info >> 4; }
298  unsigned char getType() const { return st_info & 0x0f; }
299  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
300  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
301  void setBindingAndType(unsigned char b, unsigned char t) {
302    st_info = (b << 4) + (t & 0x0f);
303  }
304};
305
306// Symbol table entries for ELF64.
307struct Elf64_Sym {
308  Elf64_Word      st_name;  // Symbol name (index into string table)
309  unsigned char   st_info;  // Symbol's type and binding attributes
310  unsigned char   st_other; // Must be zero; reserved
311  Elf64_Half      st_shndx; // Which section (header table index) it's defined in
312  Elf64_Addr      st_value; // Value or address associated with the symbol
313  Elf64_Xword     st_size;  // Size of the symbol
314
315  // These accessors and mutators are identical to those defined for ELF32
316  // symbol table entries.
317  unsigned char getBinding() const { return st_info >> 4; }
318  unsigned char getType() const { return st_info & 0x0f; }
319  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
320  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
321  void setBindingAndType(unsigned char b, unsigned char t) {
322    st_info = (b << 4) + (t & 0x0f);
323  }
324};
325
326// Symbol bindings.
327enum {
328  STB_LOCAL = 0,   // Local symbol, not visible outside obj file containing def
329  STB_GLOBAL = 1,  // Global symbol, visible to all object files being combined
330  STB_WEAK = 2,    // Weak symbol, like global but lower-precedence
331  STB_LOPROC = 13, // Lowest processor-specific binding type
332  STB_HIPROC = 15  // Highest processor-specific binding type
333};
334
335// Symbol types.
336enum {
337  STT_NOTYPE  = 0,   // Symbol's type is not specified
338  STT_OBJECT  = 1,   // Symbol is a data object (variable, array, etc.)
339  STT_FUNC    = 2,   // Symbol is executable code (function, etc.)
340  STT_SECTION = 3,   // Symbol refers to a section
341  STT_FILE    = 4,   // Local, absolute symbol that refers to a file
342  STT_COMMON  = 5,   // An uninitialised common block
343  STT_TLS     = 6,   // Thread local data object
344  STT_LOPROC  = 13,  // Lowest processor-specific symbol type
345  STT_HIPROC  = 15   // Highest processor-specific symbol type
346};
347
348enum {
349  STV_DEFAULT   = 0,  // Visibility is specified by binding type
350  STV_INTERNAL  = 1,  // Defined by processor supplements
351  STV_HIDDEN    = 2,  // Not visible to other components
352  STV_PROTECTED = 3   // Visible in other components but not preemptable
353};
354
355// Relocation entry, without explicit addend.
356struct Elf32_Rel {
357  Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
358  Elf32_Word r_info;   // Symbol table index and type of relocation to apply
359
360  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
361  // and ELF32_R_INFO macros defined in the ELF specification:
362  Elf32_Word getSymbol() const { return (r_info >> 8); }
363  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
364  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
365  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
366  void setSymbolAndType(Elf32_Word s, unsigned char t) {
367    r_info = (s << 8) + t;
368  }
369};
370
371// Relocation entry with explicit addend.
372struct Elf32_Rela {
373  Elf32_Addr  r_offset; // Location (file byte offset, or program virtual addr)
374  Elf32_Word  r_info;   // Symbol table index and type of relocation to apply
375  Elf32_Sword r_addend; // Compute value for relocatable field by adding this
376
377  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
378  // and ELF32_R_INFO macros defined in the ELF specification:
379  Elf32_Word getSymbol() const { return (r_info >> 8); }
380  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
381  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
382  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
383  void setSymbolAndType(Elf32_Word s, unsigned char t) {
384    r_info = (s << 8) + t;
385  }
386};
387
388// Relocation entry, without explicit addend.
389struct Elf64_Rel {
390  Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
391  Elf64_Xword r_info;   // Symbol table index and type of relocation to apply.
392
393  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
394  // and ELF64_R_INFO macros defined in the ELF specification:
395  Elf64_Xword getSymbol() const { return (r_info >> 32); }
396  unsigned char getType() const {
397    return (unsigned char) (r_info & 0xffffffffL);
398  }
399  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
400  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
401  void setSymbolAndType(Elf64_Xword s, unsigned char t) {
402    r_info = (s << 32) + (t&0xffffffffL);
403  }
404};
405
406// Relocation entry with explicit addend.
407struct Elf64_Rela {
408  Elf64_Addr  r_offset; // Location (file byte offset, or program virtual addr).
409  Elf64_Xword  r_info;   // Symbol table index and type of relocation to apply.
410  Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
411
412  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
413  // and ELF64_R_INFO macros defined in the ELF specification:
414  Elf64_Xword getSymbol() const { return (r_info >> 32); }
415  unsigned char getType() const {
416    return (unsigned char) (r_info & 0xffffffffL);
417  }
418  void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); }
419  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
420  void setSymbolAndType(Elf64_Xword s, unsigned char t) {
421    r_info = (s << 32) + (t&0xffffffffL);
422  }
423};
424
425// Program header for ELF32.
426struct Elf32_Phdr {
427  Elf32_Word p_type;   // Type of segment
428  Elf32_Off  p_offset; // File offset where segment is located, in bytes
429  Elf32_Addr p_vaddr;  // Virtual address of beginning of segment
430  Elf32_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
431  Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
432  Elf32_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
433  Elf32_Word p_flags;  // Segment flags
434  Elf32_Word p_align;  // Segment alignment constraint
435};
436
437// Program header for ELF64.
438struct Elf64_Phdr {
439  Elf64_Word   p_type;   // Type of segment
440  Elf64_Word   p_flags;  // Segment flags
441  Elf64_Off    p_offset; // File offset where segment is located, in bytes
442  Elf64_Addr   p_vaddr;  // Virtual address of beginning of segment
443  Elf64_Addr   p_paddr;  // Physical address of beginning of segment (OS-specific)
444  Elf64_Xword  p_filesz; // Num. of bytes in file image of segment (may be zero)
445  Elf64_Xword  p_memsz;  // Num. of bytes in mem image of segment (may be zero)
446  Elf64_Xword  p_align;  // Segment alignment constraint
447};
448
449// Segment types.
450enum {
451  PT_NULL    = 0, // Unused segment.
452  PT_LOAD    = 1, // Loadable segment.
453  PT_DYNAMIC = 2, // Dynamic linking information.
454  PT_INTERP  = 3, // Interpreter pathname.
455  PT_NOTE    = 4, // Auxiliary information.
456  PT_SHLIB   = 5, // Reserved.
457  PT_PHDR    = 6, // The program header table itself.
458  PT_LOPROC  = 0x70000000, // Lowest processor-specific program hdr entry type.
459  PT_HIPROC  = 0x7fffffff  // Highest processor-specific program hdr entry type.
460};
461
462// Segment flag bits.
463enum {
464  PF_X        = 1,         // Execute
465  PF_W        = 2,         // Write
466  PF_R        = 4,         // Read
467  PF_MASKPROC = 0xf0000000 // Unspecified
468};
469
470// Dynamic table entry for ELF32.
471struct Elf32_Dyn
472{
473  Elf32_Sword d_tag;            // Type of dynamic table entry.
474  union
475  {
476      Elf32_Word d_val;         // Integer value of entry.
477      Elf32_Addr d_ptr;         // Pointer value of entry.
478  } d_un;
479};
480
481// Dynamic table entry for ELF64.
482struct Elf64_Dyn
483{
484  Elf64_Sxword d_tag;           // Type of dynamic table entry.
485  union
486  {
487      Elf64_Xword d_val;        // Integer value of entry.
488      Elf64_Addr  d_ptr;        // Pointer value of entry.
489  } d_un;
490};
491
492// Dynamic table entry tags.
493enum {
494  DT_NULL         = 0,        // Marks end of dynamic array.
495  DT_NEEDED       = 1,        // String table offset of needed library.
496  DT_PLTRELSZ     = 2,        // Size of relocation entries in PLT.
497  DT_PLTGOT       = 3,        // Address associated with linkage table.
498  DT_HASH         = 4,        // Address of symbolic hash table.
499  DT_STRTAB       = 5,        // Address of dynamic string table.
500  DT_SYMTAB       = 6,        // Address of dynamic symbol table.
501  DT_RELA         = 7,        // Address of relocation table (Rela entries).
502  DT_RELASZ       = 8,        // Size of Rela relocation table.
503  DT_RELAENT      = 9,        // Size of a Rela relocation entry.
504  DT_STRSZ        = 10,       // Total size of the string table.
505  DT_SYMENT       = 11,       // Size of a symbol table entry.
506  DT_INIT         = 12,       // Address of initialization function.
507  DT_FINI         = 13,       // Address of termination function.
508  DT_SONAME       = 14,       // String table offset of a shared objects name.
509  DT_RPATH        = 15,       // String table offset of library search path.
510  DT_SYMBOLIC     = 16,       // Changes symbol resolution algorithm.
511  DT_REL          = 17,       // Address of relocation table (Rel entries).
512  DT_RELSZ        = 18,       // Size of Rel relocation table.
513  DT_RELENT       = 19,       // Size of a Rel relocation entry.
514  DT_PLTREL       = 20,       // Type of relocation entry used for linking.
515  DT_DEBUG        = 21,       // Reserved for debugger.
516  DT_TEXTREL      = 22,       // Relocations exist for non-writable segements.
517  DT_JMPREL       = 23,       // Address of relocations associated with PLT.
518  DT_BIND_NOW     = 24,       // Process all relocations before execution.
519  DT_INIT_ARRAY   = 25,       // Pointer to array of initialization functions.
520  DT_FINI_ARRAY   = 26,       // Pointer to array of termination functions.
521  DT_INIT_ARRAYSZ = 27,       // Size of DT_INIT_ARRAY.
522  DT_FINI_ARRAYSZ = 28,       // Size of DT_FINI_ARRAY.
523  DT_LOOS         = 0x60000000, // Start of environment specific tags.
524  DT_HIOS         = 0x6FFFFFFF, // End of environment specific tags.
525  DT_LOPROC       = 0x70000000, // Start of processor specific tags.
526  DT_HIPROC       = 0x7FFFFFFF  // End of processor specific tags.
527};
528
529} // end namespace ELF
530
531} // end namespace llvm
532
533#endif
534