ELF.h revision cecbc3d28277ff4916326311cbf87335ed05d106
1//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header contains common, non-processor-specific data structures and
11// constants for the ELF file format.
12//
13// The details of the ELF32 bits in this file are largely based on the Tool
14// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
15// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
16// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_SUPPORT_ELF_H
21#define LLVM_SUPPORT_ELF_H
22
23#include "llvm/System/DataTypes.h"
24#include <cstring>
25
26namespace llvm {
27
28namespace ELF {
29
30typedef uint32_t Elf32_Addr; // Program address
31typedef uint16_t Elf32_Half;
32typedef uint32_t Elf32_Off;  // File offset
33typedef int32_t  Elf32_Sword;
34typedef uint32_t Elf32_Word;
35
36typedef uint64_t Elf64_Addr;
37typedef uint64_t Elf64_Off;
38typedef int32_t  Elf64_Shalf;
39typedef int32_t  Elf64_Sword;
40typedef uint32_t Elf64_Word;
41typedef int64_t  Elf64_Sxword;
42typedef uint64_t Elf64_Xword;
43typedef uint32_t Elf64_Half;
44typedef uint16_t Elf64_Quarter;
45
46// Object file magic string.
47static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
48
49// e_ident size and indices.
50enum {
51  EI_MAG0       = 0,          // File identification index.
52  EI_MAG1       = 1,          // File identification index.
53  EI_MAG2       = 2,          // File identification index.
54  EI_MAG3       = 3,          // File identification index.
55  EI_CLASS      = 4,          // File class.
56  EI_DATA       = 5,          // Data encoding.
57  EI_VERSION    = 6,          // File version.
58  EI_OSABI      = 7,          // OS/ABI identification.
59  EI_ABIVERSION = 8,          // ABI version.
60  EI_PAD        = 9,          // Start of padding bytes.
61  EI_NIDENT     = 16          // Number of bytes in e_ident.
62};
63
64struct Elf32_Ehdr {
65  unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
66  Elf32_Half    e_type;      // Type of file (see ET_* below)
67  Elf32_Half    e_machine;   // Required architecture for this file (see EM_*)
68  Elf32_Word    e_version;   // Must be equal to 1
69  Elf32_Addr    e_entry;     // Address to jump to in order to start program
70  Elf32_Off     e_phoff;     // Program header table's file offset, in bytes
71  Elf32_Off     e_shoff;     // Section header table's file offset, in bytes
72  Elf32_Word    e_flags;     // Processor-specific flags
73  Elf32_Half    e_ehsize;    // Size of ELF header, in bytes
74  Elf32_Half    e_phentsize; // Size of an entry in the program header table
75  Elf32_Half    e_phnum;     // Number of entries in the program header table
76  Elf32_Half    e_shentsize; // Size of an entry in the section header table
77  Elf32_Half    e_shnum;     // Number of entries in the section header table
78  Elf32_Half    e_shstrndx;  // Sect hdr table index of sect name string table
79  bool checkMagic() const {
80    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
81  }
82  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
83  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
84};
85
86// 64-bit ELF header. Fields are the same as for ELF32, but with different
87// types (see above).
88struct Elf64_Ehdr {
89  unsigned char e_ident[EI_NIDENT];
90  Elf64_Quarter e_type;
91  Elf64_Quarter e_machine;
92  Elf64_Half    e_version;
93  Elf64_Addr    e_entry;
94  Elf64_Off     e_phoff;
95  Elf64_Off     e_shoff;
96  Elf64_Half    e_flags;
97  Elf64_Quarter e_ehsize;
98  Elf64_Quarter e_phentsize;
99  Elf64_Quarter e_phnum;
100  Elf64_Quarter e_shentsize;
101  Elf64_Quarter e_shnum;
102  Elf64_Quarter e_shstrndx;
103  bool checkMagic() const {
104    return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
105  }
106  unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
107  unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
108};
109
110// File types
111enum {
112  ET_NONE   = 0,      // No file type
113  ET_REL    = 1,      // Relocatable file
114  ET_EXEC   = 2,      // Executable file
115  ET_DYN    = 3,      // Shared object file
116  ET_CORE   = 4,      // Core file
117  ET_LOPROC = 0xff00, // Beginning of processor-specific codes
118  ET_HIPROC = 0xffff  // Processor-specific
119};
120
121// Versioning
122enum {
123  EV_NONE = 0,
124  EV_CURRENT = 1
125};
126
127// Machine architectures
128enum {
129  EM_NONE = 0,      // No machine
130  EM_M32 = 1,       // AT&T WE 32100
131  EM_SPARC = 2,     // SPARC
132  EM_386 = 3,       // Intel 386
133  EM_68K = 4,       // Motorola 68000
134  EM_88K = 5,       // Motorola 88000
135  EM_486 = 6,       // Intel 486 (deprecated)
136  EM_860 = 7,       // Intel 80860
137  EM_MIPS = 8,      // MIPS R3000
138  EM_PPC = 20,      // PowerPC
139  EM_PPC64 = 21,    // PowerPC64
140  EM_ARM = 40,      // ARM
141  EM_ALPHA = 41,    // DEC Alpha
142  EM_SPARCV9 = 43,  // SPARC V9
143  EM_X86_64 = 62,   // AMD64
144  EM_MBLAZE = 47787 // Xilinx MicroBlaze
145};
146
147// Object file classes.
148enum {
149  ELFCLASS32 = 1, // 32-bit object file
150  ELFCLASS64 = 2  // 64-bit object file
151};
152
153// Object file byte orderings.
154enum {
155  ELFDATANONE = 0, // Invalid data encoding.
156  ELFDATA2LSB = 1, // Little-endian object file
157  ELFDATA2MSB = 2  // Big-endian object file
158};
159
160// OS ABI identification.
161enum {
162  ELFOSABI_NONE = 0,          // UNIX System V ABI
163  ELFOSABI_HPUX = 1,          // HP-UX operating system
164  ELFOSABI_NETBSD = 2,        // NetBSD
165  ELFOSABI_LINUX = 3,         // GNU/Linux
166  ELFOSABI_HURD = 4,          // GNU/Hurd
167  ELFOSABI_SOLARIS = 6,       // Solaris
168  ELFOSABI_AIX = 7,           // AIX
169  ELFOSABI_IRIX = 8,          // IRIX
170  ELFOSABI_FREEBSD = 9,       // FreeBSD
171  ELFOSABI_TRU64 = 10,        // TRU64 UNIX
172  ELFOSABI_MODESTO = 11,      // Novell Modesto
173  ELFOSABI_OPENBSD = 12,      // OpenBSD
174  ELFOSABI_OPENVMS = 13,      // OpenVMS
175  ELFOSABI_NSK = 14,          // Hewlett-Packard Non-Stop Kernel
176  ELFOSABI_AROS = 15,         // AROS
177  ELFOSABI_FENIXOS = 16,      // FenixOS
178  ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
179  ELFOSABI_C6000_LINUX = 65,  // Linux TMS320C6000
180  ELFOSABI_ARM = 97,          // ARM
181  ELFOSABI_STANDALONE = 255   // Standalone (embedded) application
182};
183
184// X86_64 relocations.
185enum {
186  R_X86_64_NONE       = 0,
187  R_X86_64_64         = 1,
188  R_X86_64_PC32       = 2,
189  R_X86_64_GOT32      = 3,
190  R_X86_64_PLT32      = 4,
191  R_X86_64_COPY       = 5,
192  R_X86_64_GLOB_DAT   = 6,
193  R_X86_64_JUMP_SLOT  = 7,
194  R_X86_64_RELATIVE   = 8,
195  R_X86_64_GOTPCREL   = 9,
196  R_X86_64_32         = 10,
197  R_X86_64_32S        = 11,
198  R_X86_64_16         = 12,
199  R_X86_64_PC16       = 13,
200  R_X86_64_8          = 14,
201  R_X86_64_PC8        = 15,
202  R_X86_64_DTPMOD64   = 16,
203  R_X86_64_DTPOFF64   = 17,
204  R_X86_64_TPOFF64    = 18,
205  R_X86_64_TLSGD      = 19,
206  R_X86_64_TLSLD      = 20,
207  R_X86_64_DTPOFF32   = 21,
208  R_X86_64_GOTTPOFF   = 22,
209  R_X86_64_TPOFF32    = 23,
210  R_X86_64_PC64       = 24,
211  R_X86_64_GOTOFF64   = 25,
212  R_X86_64_GOTPC32    = 26,
213  R_X86_64_SIZE32     = 32,
214  R_X86_64_SIZE64     = 33,
215  R_X86_64_GOTPC32_TLSDESC = 34,
216  R_X86_64_TLSDESC_CALL    = 35,
217  R_X86_64_TLSDESC    = 36
218};
219
220// i386 relocations.
221// TODO: this is just a subset
222enum {
223  R_386_NONE          = 0,
224  R_386_32            = 1,
225  R_386_PC32          = 2,
226  R_386_GOT32         = 3,
227  R_386_PLT32         = 4,
228  R_386_COPY          = 5,
229  R_386_GLOB_DAT      = 6,
230  R_386_JUMP_SLOT     = 7,
231  R_386_RELATIVE      = 8,
232  R_386_GOTOFF        = 9,
233  R_386_GOTPC         = 10,
234  R_386_32PLT         = 11,
235  R_386_16            = 20,
236  R_386_PC16          = 21,
237  R_386_8             = 22,
238  R_386_PC8           = 23
239};
240
241// Section header.
242struct Elf32_Shdr {
243  Elf32_Word sh_name;      // Section name (index into string table)
244  Elf32_Word sh_type;      // Section type (SHT_*)
245  Elf32_Word sh_flags;     // Section flags (SHF_*)
246  Elf32_Addr sh_addr;      // Address where section is to be loaded
247  Elf32_Off  sh_offset;    // File offset of section data, in bytes
248  Elf32_Word sh_size;      // Size of section, in bytes
249  Elf32_Word sh_link;      // Section type-specific header table index link
250  Elf32_Word sh_info;      // Section type-specific extra information
251  Elf32_Word sh_addralign; // Section address alignment
252  Elf32_Word sh_entsize;   // Size of records contained within the section
253};
254
255// Section header for ELF64 - same fields as ELF32, different types.
256struct Elf64_Shdr {
257  Elf64_Half  sh_name;
258  Elf64_Half  sh_type;
259  Elf64_Xword sh_flags;
260  Elf64_Addr  sh_addr;
261  Elf64_Off   sh_offset;
262  Elf64_Xword sh_size;
263  Elf64_Half  sh_link;
264  Elf64_Half  sh_info;
265  Elf64_Xword sh_addralign;
266  Elf64_Xword sh_entsize;
267};
268
269// Special section indices.
270enum {
271  SHN_UNDEF     = 0,      // Undefined, missing, irrelevant, or meaningless
272  SHN_LORESERVE = 0xff00, // Lowest reserved index
273  SHN_LOPROC    = 0xff00, // Lowest processor-specific index
274  SHN_HIPROC    = 0xff1f, // Highest processor-specific index
275  SHN_ABS       = 0xfff1, // Symbol has absolute value; does not need relocation
276  SHN_COMMON    = 0xfff2, // FORTRAN COMMON or C external global variables
277  SHN_HIRESERVE = 0xffff  // Highest reserved index
278};
279
280// Section types.
281enum {
282  SHT_NULL          = 0,  // No associated section (inactive entry).
283  SHT_PROGBITS      = 1,  // Program-defined contents.
284  SHT_SYMTAB        = 2,  // Symbol table.
285  SHT_STRTAB        = 3,  // String table.
286  SHT_RELA          = 4,  // Relocation entries; explicit addends.
287  SHT_HASH          = 5,  // Symbol hash table.
288  SHT_DYNAMIC       = 6,  // Information for dynamic linking.
289  SHT_NOTE          = 7,  // Information about the file.
290  SHT_NOBITS        = 8,  // Data occupies no space in the file.
291  SHT_REL           = 9,  // Relocation entries; no explicit addends.
292  SHT_SHLIB         = 10, // Reserved.
293  SHT_DYNSYM        = 11, // Symbol table.
294  SHT_INIT_ARRAY    = 14, // Pointers to initialisation functions.
295  SHT_FINI_ARRAY    = 15, // Pointers to termination functions.
296  SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
297  SHT_GROUP         = 17, // Section group.
298  SHT_SYMTAB_SHNDX  = 18, // Indicies for SHN_XINDEX entries.
299  SHT_LOOS          = 0x60000000, // Lowest operating system-specific type.
300  SHT_HIOS          = 0x6fffffff, // Highest operating system-specific type.
301  SHT_LOPROC        = 0x70000000, // Lowest processor architecture-specific type.
302  // Fixme: All this is duplicated in MCSectionELF. Why??
303  // Exception Index table
304  SHT_ARM_EXIDX           = 0x70000001U,
305  // BPABI DLL dynamic linking pre-emption map
306  SHT_ARM_PREEMPTMAP      = 0x70000002U,
307  //  Object file compatibility attributes
308  SHT_ARM_ATTRIBUTES      = 0x70000003U,
309  SHT_ARM_DEBUGOVERLAY    = 0x70000004U,
310  SHT_ARM_OVERLAYSECTION  = 0x70000005U,
311
312  SHT_HIPROC        = 0x7fffffff, // Highest processor architecture-specific type.
313  SHT_LOUSER        = 0x80000000, // Lowest type reserved for applications.
314  SHT_HIUSER        = 0xffffffff  // Highest type reserved for applications.
315};
316
317// Section flags.
318enum {
319  SHF_WRITE     = 0x1, // Section data should be writable during execution.
320  SHF_ALLOC     = 0x2, // Section occupies memory during program execution.
321  SHF_EXECINSTR = 0x4, // Section contains executable machine instructions.
322  SHF_MASKPROC  = 0xf0000000 // Bits indicating processor-specific flags.
323};
324
325// Symbol table entries for ELF32.
326struct Elf32_Sym {
327  Elf32_Word    st_name;  // Symbol name (index into string table)
328  Elf32_Addr    st_value; // Value or address associated with the symbol
329  Elf32_Word    st_size;  // Size of the symbol
330  unsigned char st_info;  // Symbol's type and binding attributes
331  unsigned char st_other; // Must be zero; reserved
332  Elf32_Half    st_shndx; // Which section (header table index) it's defined in
333
334  // These accessors and mutators correspond to the ELF32_ST_BIND,
335  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
336  unsigned char getBinding() const { return st_info >> 4; }
337  unsigned char getType() const { return st_info & 0x0f; }
338  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
339  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
340  void setBindingAndType(unsigned char b, unsigned char t) {
341    st_info = (b << 4) + (t & 0x0f);
342  }
343};
344
345// Symbol table entries for ELF64.
346struct Elf64_Sym {
347  Elf64_Word      st_name;  // Symbol name (index into string table)
348  unsigned char   st_info;  // Symbol's type and binding attributes
349  unsigned char   st_other; // Must be zero; reserved
350  Elf64_Half      st_shndx; // Which section (header table index) it's defined in
351  Elf64_Addr      st_value; // Value or address associated with the symbol
352  Elf64_Xword     st_size;  // Size of the symbol
353
354  // These accessors and mutators are identical to those defined for ELF32
355  // symbol table entries.
356  unsigned char getBinding() const { return st_info >> 4; }
357  unsigned char getType() const { return st_info & 0x0f; }
358  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
359  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
360  void setBindingAndType(unsigned char b, unsigned char t) {
361    st_info = (b << 4) + (t & 0x0f);
362  }
363};
364
365// The size (in bytes) of symbol table entries.
366enum {
367  SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
368  SYMENTRY_SIZE64 = 24  // 64-bit symbol entry size.
369};
370
371// Symbol bindings.
372enum {
373  STB_LOCAL = 0,   // Local symbol, not visible outside obj file containing def
374  STB_GLOBAL = 1,  // Global symbol, visible to all object files being combined
375  STB_WEAK = 2,    // Weak symbol, like global but lower-precedence
376  STB_LOPROC = 13, // Lowest processor-specific binding type
377  STB_HIPROC = 15  // Highest processor-specific binding type
378};
379
380// Symbol types.
381enum {
382  STT_NOTYPE  = 0,   // Symbol's type is not specified
383  STT_OBJECT  = 1,   // Symbol is a data object (variable, array, etc.)
384  STT_FUNC    = 2,   // Symbol is executable code (function, etc.)
385  STT_SECTION = 3,   // Symbol refers to a section
386  STT_FILE    = 4,   // Local, absolute symbol that refers to a file
387  STT_COMMON  = 5,   // An uninitialised common block
388  STT_TLS     = 6,   // Thread local data object
389  STT_LOPROC  = 13,  // Lowest processor-specific symbol type
390  STT_HIPROC  = 15   // Highest processor-specific symbol type
391};
392
393enum {
394  STV_DEFAULT   = 0,  // Visibility is specified by binding type
395  STV_INTERNAL  = 1,  // Defined by processor supplements
396  STV_HIDDEN    = 2,  // Not visible to other components
397  STV_PROTECTED = 3   // Visible in other components but not preemptable
398};
399
400// Relocation entry, without explicit addend.
401struct Elf32_Rel {
402  Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
403  Elf32_Word r_info;   // Symbol table index and type of relocation to apply
404
405  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
406  // and ELF32_R_INFO macros defined in the ELF specification:
407  Elf32_Word getSymbol() const { return (r_info >> 8); }
408  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
409  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
410  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
411  void setSymbolAndType(Elf32_Word s, unsigned char t) {
412    r_info = (s << 8) + t;
413  }
414};
415
416// Relocation entry with explicit addend.
417struct Elf32_Rela {
418  Elf32_Addr  r_offset; // Location (file byte offset, or program virtual addr)
419  Elf32_Word  r_info;   // Symbol table index and type of relocation to apply
420  Elf32_Sword r_addend; // Compute value for relocatable field by adding this
421
422  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
423  // and ELF32_R_INFO macros defined in the ELF specification:
424  Elf32_Word getSymbol() const { return (r_info >> 8); }
425  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
426  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
427  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
428  void setSymbolAndType(Elf32_Word s, unsigned char t) {
429    r_info = (s << 8) + t;
430  }
431};
432
433// Relocation entry, without explicit addend.
434struct Elf64_Rel {
435  Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
436  Elf64_Xword r_info;   // Symbol table index and type of relocation to apply.
437
438  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
439  // and ELF64_R_INFO macros defined in the ELF specification:
440  Elf64_Xword getSymbol() const { return (r_info >> 32); }
441  unsigned char getType() const {
442    return (unsigned char) (r_info & 0xffffffffL);
443  }
444  void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
445  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
446  void setSymbolAndType(Elf64_Xword s, unsigned char t) {
447    r_info = (s << 32) + (t&0xffffffffL);
448  }
449};
450
451// Relocation entry with explicit addend.
452struct Elf64_Rela {
453  Elf64_Addr  r_offset; // Location (file byte offset, or program virtual addr).
454  Elf64_Xword  r_info;   // Symbol table index and type of relocation to apply.
455  Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
456
457  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
458  // and ELF64_R_INFO macros defined in the ELF specification:
459  Elf64_Xword getSymbol() const { return (r_info >> 32); }
460  unsigned char getType() const {
461    return (unsigned char) (r_info & 0xffffffffL);
462  }
463  void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); }
464  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
465  void setSymbolAndType(Elf64_Xword s, unsigned char t) {
466    r_info = (s << 32) + (t&0xffffffffL);
467  }
468};
469
470// Program header for ELF32.
471struct Elf32_Phdr {
472  Elf32_Word p_type;   // Type of segment
473  Elf32_Off  p_offset; // File offset where segment is located, in bytes
474  Elf32_Addr p_vaddr;  // Virtual address of beginning of segment
475  Elf32_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
476  Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
477  Elf32_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
478  Elf32_Word p_flags;  // Segment flags
479  Elf32_Word p_align;  // Segment alignment constraint
480};
481
482// Program header for ELF64.
483struct Elf64_Phdr {
484  Elf64_Word   p_type;   // Type of segment
485  Elf64_Word   p_flags;  // Segment flags
486  Elf64_Off    p_offset; // File offset where segment is located, in bytes
487  Elf64_Addr   p_vaddr;  // Virtual address of beginning of segment
488  Elf64_Addr   p_paddr;  // Physical address of beginning of segment (OS-specific)
489  Elf64_Xword  p_filesz; // Num. of bytes in file image of segment (may be zero)
490  Elf64_Xword  p_memsz;  // Num. of bytes in mem image of segment (may be zero)
491  Elf64_Xword  p_align;  // Segment alignment constraint
492};
493
494// Segment types.
495enum {
496  PT_NULL    = 0, // Unused segment.
497  PT_LOAD    = 1, // Loadable segment.
498  PT_DYNAMIC = 2, // Dynamic linking information.
499  PT_INTERP  = 3, // Interpreter pathname.
500  PT_NOTE    = 4, // Auxiliary information.
501  PT_SHLIB   = 5, // Reserved.
502  PT_PHDR    = 6, // The program header table itself.
503  PT_LOPROC  = 0x70000000, // Lowest processor-specific program hdr entry type.
504  PT_HIPROC  = 0x7fffffff  // Highest processor-specific program hdr entry type.
505};
506
507// Segment flag bits.
508enum {
509  PF_X        = 1,         // Execute
510  PF_W        = 2,         // Write
511  PF_R        = 4,         // Read
512  PF_MASKPROC = 0xf0000000 // Unspecified
513};
514
515// Dynamic table entry for ELF32.
516struct Elf32_Dyn
517{
518  Elf32_Sword d_tag;            // Type of dynamic table entry.
519  union
520  {
521      Elf32_Word d_val;         // Integer value of entry.
522      Elf32_Addr d_ptr;         // Pointer value of entry.
523  } d_un;
524};
525
526// Dynamic table entry for ELF64.
527struct Elf64_Dyn
528{
529  Elf64_Sxword d_tag;           // Type of dynamic table entry.
530  union
531  {
532      Elf64_Xword d_val;        // Integer value of entry.
533      Elf64_Addr  d_ptr;        // Pointer value of entry.
534  } d_un;
535};
536
537// Dynamic table entry tags.
538enum {
539  DT_NULL         = 0,        // Marks end of dynamic array.
540  DT_NEEDED       = 1,        // String table offset of needed library.
541  DT_PLTRELSZ     = 2,        // Size of relocation entries in PLT.
542  DT_PLTGOT       = 3,        // Address associated with linkage table.
543  DT_HASH         = 4,        // Address of symbolic hash table.
544  DT_STRTAB       = 5,        // Address of dynamic string table.
545  DT_SYMTAB       = 6,        // Address of dynamic symbol table.
546  DT_RELA         = 7,        // Address of relocation table (Rela entries).
547  DT_RELASZ       = 8,        // Size of Rela relocation table.
548  DT_RELAENT      = 9,        // Size of a Rela relocation entry.
549  DT_STRSZ        = 10,       // Total size of the string table.
550  DT_SYMENT       = 11,       // Size of a symbol table entry.
551  DT_INIT         = 12,       // Address of initialization function.
552  DT_FINI         = 13,       // Address of termination function.
553  DT_SONAME       = 14,       // String table offset of a shared objects name.
554  DT_RPATH        = 15,       // String table offset of library search path.
555  DT_SYMBOLIC     = 16,       // Changes symbol resolution algorithm.
556  DT_REL          = 17,       // Address of relocation table (Rel entries).
557  DT_RELSZ        = 18,       // Size of Rel relocation table.
558  DT_RELENT       = 19,       // Size of a Rel relocation entry.
559  DT_PLTREL       = 20,       // Type of relocation entry used for linking.
560  DT_DEBUG        = 21,       // Reserved for debugger.
561  DT_TEXTREL      = 22,       // Relocations exist for non-writable segements.
562  DT_JMPREL       = 23,       // Address of relocations associated with PLT.
563  DT_BIND_NOW     = 24,       // Process all relocations before execution.
564  DT_INIT_ARRAY   = 25,       // Pointer to array of initialization functions.
565  DT_FINI_ARRAY   = 26,       // Pointer to array of termination functions.
566  DT_INIT_ARRAYSZ = 27,       // Size of DT_INIT_ARRAY.
567  DT_FINI_ARRAYSZ = 28,       // Size of DT_FINI_ARRAY.
568  DT_LOOS         = 0x60000000, // Start of environment specific tags.
569  DT_HIOS         = 0x6FFFFFFF, // End of environment specific tags.
570  DT_LOPROC       = 0x70000000, // Start of processor specific tags.
571  DT_HIPROC       = 0x7FFFFFFF  // End of processor specific tags.
572};
573
574} // end namespace ELF
575
576} // end namespace llvm
577
578#endif
579