MathExtras.h revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some functions that are useful for math stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MATHEXTRAS_H
15#define LLVM_SUPPORT_MATHEXTRAS_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/SwapByteOrder.h"
19#include <cassert>
20#include <cstring>
21#include <type_traits>
22
23#ifdef _MSC_VER
24#include <intrin.h>
25#include <limits>
26#endif
27
28namespace llvm {
29/// \brief The behavior an operation has on an input of 0.
30enum ZeroBehavior {
31  /// \brief The returned value is undefined.
32  ZB_Undefined,
33  /// \brief The returned value is numeric_limits<T>::max()
34  ZB_Max,
35  /// \brief The returned value is numeric_limits<T>::digits
36  ZB_Width
37};
38
39/// \brief Count number of 0's from the least significant bit to the most
40///   stopping at the first 1.
41///
42/// Only unsigned integral types are allowed.
43///
44/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
45///   valid arguments.
46template <typename T>
47typename std::enable_if<std::numeric_limits<T>::is_integer &&
48                        !std::numeric_limits<T>::is_signed, std::size_t>::type
49countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
50  (void)ZB;
51
52  if (!Val)
53    return std::numeric_limits<T>::digits;
54  if (Val & 0x1)
55    return 0;
56
57  // Bisection method.
58  std::size_t ZeroBits = 0;
59  T Shift = std::numeric_limits<T>::digits >> 1;
60  T Mask = std::numeric_limits<T>::max() >> Shift;
61  while (Shift) {
62    if ((Val & Mask) == 0) {
63      Val >>= Shift;
64      ZeroBits |= Shift;
65    }
66    Shift >>= 1;
67    Mask >>= Shift;
68  }
69  return ZeroBits;
70}
71
72// Disable signed.
73template <typename T>
74typename std::enable_if<std::numeric_limits<T>::is_integer &&
75                        std::numeric_limits<T>::is_signed, std::size_t>::type
76countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
77
78#if __GNUC__ >= 4 || _MSC_VER
79template <>
80inline std::size_t countTrailingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
81  if (ZB != ZB_Undefined && Val == 0)
82    return 32;
83
84#if __has_builtin(__builtin_ctz) || __GNUC_PREREQ(4, 0)
85  return __builtin_ctz(Val);
86#elif _MSC_VER
87  unsigned long Index;
88  _BitScanForward(&Index, Val);
89  return Index;
90#endif
91}
92
93#if !defined(_MSC_VER) || defined(_M_X64)
94template <>
95inline std::size_t countTrailingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
96  if (ZB != ZB_Undefined && Val == 0)
97    return 64;
98
99#if __has_builtin(__builtin_ctzll) || __GNUC_PREREQ(4, 0)
100  return __builtin_ctzll(Val);
101#elif _MSC_VER
102  unsigned long Index;
103  _BitScanForward64(&Index, Val);
104  return Index;
105#endif
106}
107#endif
108#endif
109
110/// \brief Count number of 0's from the most significant bit to the least
111///   stopping at the first 1.
112///
113/// Only unsigned integral types are allowed.
114///
115/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
116///   valid arguments.
117template <typename T>
118typename std::enable_if<std::numeric_limits<T>::is_integer &&
119                        !std::numeric_limits<T>::is_signed, std::size_t>::type
120countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
121  (void)ZB;
122
123  if (!Val)
124    return std::numeric_limits<T>::digits;
125
126  // Bisection method.
127  std::size_t ZeroBits = 0;
128  for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
129    T Tmp = Val >> Shift;
130    if (Tmp)
131      Val = Tmp;
132    else
133      ZeroBits |= Shift;
134  }
135  return ZeroBits;
136}
137
138// Disable signed.
139template <typename T>
140typename std::enable_if<std::numeric_limits<T>::is_integer &&
141                        std::numeric_limits<T>::is_signed, std::size_t>::type
142countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
143
144#if __GNUC__ >= 4 || _MSC_VER
145template <>
146inline std::size_t countLeadingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
147  if (ZB != ZB_Undefined && Val == 0)
148    return 32;
149
150#if __has_builtin(__builtin_clz) || __GNUC_PREREQ(4, 0)
151  return __builtin_clz(Val);
152#elif _MSC_VER
153  unsigned long Index;
154  _BitScanReverse(&Index, Val);
155  return Index ^ 31;
156#endif
157}
158
159#if !defined(_MSC_VER) || defined(_M_X64)
160template <>
161inline std::size_t countLeadingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
162  if (ZB != ZB_Undefined && Val == 0)
163    return 64;
164
165#if __has_builtin(__builtin_clzll) || __GNUC_PREREQ(4, 0)
166  return __builtin_clzll(Val);
167#elif _MSC_VER
168  unsigned long Index;
169  _BitScanReverse64(&Index, Val);
170  return Index ^ 63;
171#endif
172}
173#endif
174#endif
175
176/// \brief Get the index of the first set bit starting from the least
177///   significant bit.
178///
179/// Only unsigned integral types are allowed.
180///
181/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
182///   valid arguments.
183template <typename T>
184typename std::enable_if<std::numeric_limits<T>::is_integer &&
185                       !std::numeric_limits<T>::is_signed, T>::type
186findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
187  if (ZB == ZB_Max && Val == 0)
188    return std::numeric_limits<T>::max();
189
190  return countTrailingZeros(Val, ZB_Undefined);
191}
192
193// Disable signed.
194template <typename T>
195typename std::enable_if<std::numeric_limits<T>::is_integer &&
196                        std::numeric_limits<T>::is_signed, T>::type
197findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
198
199/// \brief Get the index of the last set bit starting from the least
200///   significant bit.
201///
202/// Only unsigned integral types are allowed.
203///
204/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
205///   valid arguments.
206template <typename T>
207typename std::enable_if<std::numeric_limits<T>::is_integer &&
208                        !std::numeric_limits<T>::is_signed, T>::type
209findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
210  if (ZB == ZB_Max && Val == 0)
211    return std::numeric_limits<T>::max();
212
213  // Use ^ instead of - because both gcc and llvm can remove the associated ^
214  // in the __builtin_clz intrinsic on x86.
215  return countLeadingZeros(Val, ZB_Undefined) ^
216         (std::numeric_limits<T>::digits - 1);
217}
218
219// Disable signed.
220template <typename T>
221typename std::enable_if<std::numeric_limits<T>::is_integer &&
222                        std::numeric_limits<T>::is_signed, T>::type
223findLastSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
224
225/// \brief Macro compressed bit reversal table for 256 bits.
226///
227/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
228static const unsigned char BitReverseTable256[256] = {
229#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
230#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
231#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
232  R6(0), R6(2), R6(1), R6(3)
233#undef R2
234#undef R4
235#undef R6
236};
237
238/// \brief Reverse the bits in \p Val.
239template <typename T>
240T reverseBits(T Val) {
241  unsigned char in[sizeof(Val)];
242  unsigned char out[sizeof(Val)];
243  std::memcpy(in, &Val, sizeof(Val));
244  for (unsigned i = 0; i < sizeof(Val); ++i)
245    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
246  std::memcpy(&Val, out, sizeof(Val));
247  return Val;
248}
249
250// NOTE: The following support functions use the _32/_64 extensions instead of
251// type overloading so that signed and unsigned integers can be used without
252// ambiguity.
253
254/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
255inline uint32_t Hi_32(uint64_t Value) {
256  return static_cast<uint32_t>(Value >> 32);
257}
258
259/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
260inline uint32_t Lo_32(uint64_t Value) {
261  return static_cast<uint32_t>(Value);
262}
263
264/// Make_64 - This functions makes a 64-bit integer from a high / low pair of
265///           32-bit integers.
266inline uint64_t Make_64(uint32_t High, uint32_t Low) {
267  return ((uint64_t)High << 32) | (uint64_t)Low;
268}
269
270/// isInt - Checks if an integer fits into the given bit width.
271template<unsigned N>
272inline bool isInt(int64_t x) {
273  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
274}
275// Template specializations to get better code for common cases.
276template<>
277inline bool isInt<8>(int64_t x) {
278  return static_cast<int8_t>(x) == x;
279}
280template<>
281inline bool isInt<16>(int64_t x) {
282  return static_cast<int16_t>(x) == x;
283}
284template<>
285inline bool isInt<32>(int64_t x) {
286  return static_cast<int32_t>(x) == x;
287}
288
289/// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
290///                     left by S.
291template<unsigned N, unsigned S>
292inline bool isShiftedInt(int64_t x) {
293  return isInt<N+S>(x) && (x % (1<<S) == 0);
294}
295
296/// isUInt - Checks if an unsigned integer fits into the given bit width.
297template<unsigned N>
298inline bool isUInt(uint64_t x) {
299  return N >= 64 || x < (UINT64_C(1)<<(N));
300}
301// Template specializations to get better code for common cases.
302template<>
303inline bool isUInt<8>(uint64_t x) {
304  return static_cast<uint8_t>(x) == x;
305}
306template<>
307inline bool isUInt<16>(uint64_t x) {
308  return static_cast<uint16_t>(x) == x;
309}
310template<>
311inline bool isUInt<32>(uint64_t x) {
312  return static_cast<uint32_t>(x) == x;
313}
314
315/// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
316///                     left by S.
317template<unsigned N, unsigned S>
318inline bool isShiftedUInt(uint64_t x) {
319  return isUInt<N+S>(x) && (x % (1<<S) == 0);
320}
321
322/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
323/// bit width.
324inline bool isUIntN(unsigned N, uint64_t x) {
325  return x == (x & (~0ULL >> (64 - N)));
326}
327
328/// isIntN - Checks if an signed integer fits into the given (dynamic)
329/// bit width.
330inline bool isIntN(unsigned N, int64_t x) {
331  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
332}
333
334/// isMask_32 - This function returns true if the argument is a sequence of ones
335/// starting at the least significant bit with the remainder zero (32 bit
336/// version).   Ex. isMask_32(0x0000FFFFU) == true.
337inline bool isMask_32(uint32_t Value) {
338  return Value && ((Value + 1) & Value) == 0;
339}
340
341/// isMask_64 - This function returns true if the argument is a sequence of ones
342/// starting at the least significant bit with the remainder zero (64 bit
343/// version).
344inline bool isMask_64(uint64_t Value) {
345  return Value && ((Value + 1) & Value) == 0;
346}
347
348/// isShiftedMask_32 - This function returns true if the argument contains a
349/// sequence of ones with the remainder zero (32 bit version.)
350/// Ex. isShiftedMask_32(0x0000FF00U) == true.
351inline bool isShiftedMask_32(uint32_t Value) {
352  return isMask_32((Value - 1) | Value);
353}
354
355/// isShiftedMask_64 - This function returns true if the argument contains a
356/// sequence of ones with the remainder zero (64 bit version.)
357inline bool isShiftedMask_64(uint64_t Value) {
358  return isMask_64((Value - 1) | Value);
359}
360
361/// isPowerOf2_32 - This function returns true if the argument is a power of
362/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
363inline bool isPowerOf2_32(uint32_t Value) {
364  return Value && !(Value & (Value - 1));
365}
366
367/// isPowerOf2_64 - This function returns true if the argument is a power of two
368/// > 0 (64 bit edition.)
369inline bool isPowerOf2_64(uint64_t Value) {
370  return Value && !(Value & (Value - int64_t(1L)));
371}
372
373/// ByteSwap_16 - This function returns a byte-swapped representation of the
374/// 16-bit argument, Value.
375inline uint16_t ByteSwap_16(uint16_t Value) {
376  return sys::SwapByteOrder_16(Value);
377}
378
379/// ByteSwap_32 - This function returns a byte-swapped representation of the
380/// 32-bit argument, Value.
381inline uint32_t ByteSwap_32(uint32_t Value) {
382  return sys::SwapByteOrder_32(Value);
383}
384
385/// ByteSwap_64 - This function returns a byte-swapped representation of the
386/// 64-bit argument, Value.
387inline uint64_t ByteSwap_64(uint64_t Value) {
388  return sys::SwapByteOrder_64(Value);
389}
390
391/// CountLeadingOnes_32 - this function performs the operation of
392/// counting the number of ones from the most significant bit to the first zero
393/// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
394/// Returns 32 if the word is all ones.
395inline unsigned CountLeadingOnes_32(uint32_t Value) {
396  return countLeadingZeros(~Value);
397}
398
399/// CountLeadingOnes_64 - This function performs the operation
400/// of counting the number of ones from the most significant bit to the first
401/// zero bit (64 bit edition.)
402/// Returns 64 if the word is all ones.
403inline unsigned CountLeadingOnes_64(uint64_t Value) {
404  return countLeadingZeros(~Value);
405}
406
407/// CountTrailingOnes_32 - this function performs the operation of
408/// counting the number of ones from the least significant bit to the first zero
409/// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
410/// Returns 32 if the word is all ones.
411inline unsigned CountTrailingOnes_32(uint32_t Value) {
412  return countTrailingZeros(~Value);
413}
414
415/// CountTrailingOnes_64 - This function performs the operation
416/// of counting the number of ones from the least significant bit to the first
417/// zero bit (64 bit edition.)
418/// Returns 64 if the word is all ones.
419inline unsigned CountTrailingOnes_64(uint64_t Value) {
420  return countTrailingZeros(~Value);
421}
422
423/// CountPopulation_32 - this function counts the number of set bits in a value.
424/// Ex. CountPopulation(0xF000F000) = 8
425/// Returns 0 if the word is zero.
426inline unsigned CountPopulation_32(uint32_t Value) {
427#if __GNUC__ >= 4
428  return __builtin_popcount(Value);
429#else
430  uint32_t v = Value - ((Value >> 1) & 0x55555555);
431  v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
432  return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
433#endif
434}
435
436/// CountPopulation_64 - this function counts the number of set bits in a value,
437/// (64 bit edition.)
438inline unsigned CountPopulation_64(uint64_t Value) {
439#if __GNUC__ >= 4
440  return __builtin_popcountll(Value);
441#else
442  uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
443  v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
444  v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
445  return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
446#endif
447}
448
449/// Log2_32 - This function returns the floor log base 2 of the specified value,
450/// -1 if the value is zero. (32 bit edition.)
451/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
452inline unsigned Log2_32(uint32_t Value) {
453  return 31 - countLeadingZeros(Value);
454}
455
456/// Log2_64 - This function returns the floor log base 2 of the specified value,
457/// -1 if the value is zero. (64 bit edition.)
458inline unsigned Log2_64(uint64_t Value) {
459  return 63 - countLeadingZeros(Value);
460}
461
462/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
463/// value, 32 if the value is zero. (32 bit edition).
464/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
465inline unsigned Log2_32_Ceil(uint32_t Value) {
466  return 32 - countLeadingZeros(Value - 1);
467}
468
469/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
470/// value, 64 if the value is zero. (64 bit edition.)
471inline unsigned Log2_64_Ceil(uint64_t Value) {
472  return 64 - countLeadingZeros(Value - 1);
473}
474
475/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
476/// values using Euclid's algorithm.
477inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
478  while (B) {
479    uint64_t T = B;
480    B = A % B;
481    A = T;
482  }
483  return A;
484}
485
486/// BitsToDouble - This function takes a 64-bit integer and returns the bit
487/// equivalent double.
488inline double BitsToDouble(uint64_t Bits) {
489  union {
490    uint64_t L;
491    double D;
492  } T;
493  T.L = Bits;
494  return T.D;
495}
496
497/// BitsToFloat - This function takes a 32-bit integer and returns the bit
498/// equivalent float.
499inline float BitsToFloat(uint32_t Bits) {
500  union {
501    uint32_t I;
502    float F;
503  } T;
504  T.I = Bits;
505  return T.F;
506}
507
508/// DoubleToBits - This function takes a double and returns the bit
509/// equivalent 64-bit integer.  Note that copying doubles around
510/// changes the bits of NaNs on some hosts, notably x86, so this
511/// routine cannot be used if these bits are needed.
512inline uint64_t DoubleToBits(double Double) {
513  union {
514    uint64_t L;
515    double D;
516  } T;
517  T.D = Double;
518  return T.L;
519}
520
521/// FloatToBits - This function takes a float and returns the bit
522/// equivalent 32-bit integer.  Note that copying floats around
523/// changes the bits of NaNs on some hosts, notably x86, so this
524/// routine cannot be used if these bits are needed.
525inline uint32_t FloatToBits(float Float) {
526  union {
527    uint32_t I;
528    float F;
529  } T;
530  T.F = Float;
531  return T.I;
532}
533
534/// Platform-independent wrappers for the C99 isnan() function.
535int IsNAN(float f);
536int IsNAN(double d);
537
538/// Platform-independent wrappers for the C99 isinf() function.
539int IsInf(float f);
540int IsInf(double d);
541
542/// MinAlign - A and B are either alignments or offsets.  Return the minimum
543/// alignment that may be assumed after adding the two together.
544inline uint64_t MinAlign(uint64_t A, uint64_t B) {
545  // The largest power of 2 that divides both A and B.
546  //
547  // Replace "-Value" by "1+~Value" in the following commented code to avoid
548  // MSVC warning C4146
549  //    return (A | B) & -(A | B);
550  return (A | B) & (1 + ~(A | B));
551}
552
553/// \brief Aligns \c Ptr to \c Alignment bytes, rounding up.
554///
555/// Alignment should be a power of two.  This method rounds up, so
556/// AlignPtr(7, 4) == 8 and AlignPtr(8, 4) == 8.
557inline char *alignPtr(char *Ptr, size_t Alignment) {
558  assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
559         "Alignment is not a power of two!");
560
561  return (char *)(((uintptr_t)Ptr + Alignment - 1) &
562                  ~(uintptr_t)(Alignment - 1));
563}
564
565/// NextPowerOf2 - Returns the next power of two (in 64-bits)
566/// that is strictly greater than A.  Returns zero on overflow.
567inline uint64_t NextPowerOf2(uint64_t A) {
568  A |= (A >> 1);
569  A |= (A >> 2);
570  A |= (A >> 4);
571  A |= (A >> 8);
572  A |= (A >> 16);
573  A |= (A >> 32);
574  return A + 1;
575}
576
577/// Returns the power of two which is less than or equal to the given value.
578/// Essentially, it is a floor operation across the domain of powers of two.
579inline uint64_t PowerOf2Floor(uint64_t A) {
580  if (!A) return 0;
581  return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
582}
583
584/// Returns the next integer (mod 2**64) that is greater than or equal to
585/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
586///
587/// Examples:
588/// \code
589///   RoundUpToAlignment(5, 8) = 8
590///   RoundUpToAlignment(17, 8) = 24
591///   RoundUpToAlignment(~0LL, 8) = 0
592/// \endcode
593inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
594  return ((Value + Align - 1) / Align) * Align;
595}
596
597/// Returns the offset to the next integer (mod 2**64) that is greater than
598/// or equal to \p Value and is a multiple of \p Align. \p Align must be
599/// non-zero.
600inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
601  return RoundUpToAlignment(Value, Align) - Value;
602}
603
604/// abs64 - absolute value of a 64-bit int.  Not all environments support
605/// "abs" on whatever their name for the 64-bit int type is.  The absolute
606/// value of the largest negative number is undefined, as with "abs".
607inline int64_t abs64(int64_t x) {
608  return (x < 0) ? -x : x;
609}
610
611/// SignExtend32 - Sign extend B-bit number x to 32-bit int.
612/// Usage int32_t r = SignExtend32<5>(x);
613template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
614  return int32_t(x << (32 - B)) >> (32 - B);
615}
616
617/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
618/// Requires 0 < B <= 32.
619inline int32_t SignExtend32(uint32_t X, unsigned B) {
620  return int32_t(X << (32 - B)) >> (32 - B);
621}
622
623/// SignExtend64 - Sign extend B-bit number x to 64-bit int.
624/// Usage int64_t r = SignExtend64<5>(x);
625template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
626  return int64_t(x << (64 - B)) >> (64 - B);
627}
628
629/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
630/// Requires 0 < B <= 64.
631inline int64_t SignExtend64(uint64_t X, unsigned B) {
632  return int64_t(X << (64 - B)) >> (64 - B);
633}
634
635#if defined(_MSC_VER)
636  // Visual Studio defines the HUGE_VAL class of macros using purposeful
637  // constant arithmetic overflow, which it then warns on when encountered.
638  const float huge_valf = std::numeric_limits<float>::infinity();
639#else
640  const float huge_valf = HUGE_VALF;
641#endif
642} // End llvm namespace
643
644#endif
645