1//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains functions (and a class) useful for working with scaled
11// numbers -- in particular, pairs of integers where one represents digits and
12// another represents a scale.  The functions are helpers and live in the
13// namespace ScaledNumbers.  The class ScaledNumber is useful for modelling
14// certain cost metrics that need simple, integer-like semantics that are easy
15// to reason about.
16//
17// These might remind you of soft-floats.  If you want one of those, you're in
18// the wrong place.  Look at include/llvm/ADT/APFloat.h instead.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
23#define LLVM_SUPPORT_SCALEDNUMBER_H
24
25#include "llvm/Support/MathExtras.h"
26
27#include <algorithm>
28#include <cstdint>
29#include <limits>
30#include <string>
31#include <tuple>
32#include <utility>
33
34namespace llvm {
35namespace ScaledNumbers {
36
37/// \brief Maximum scale; same as APFloat for easy debug printing.
38const int32_t MaxScale = 16383;
39
40/// \brief Maximum scale; same as APFloat for easy debug printing.
41const int32_t MinScale = -16382;
42
43/// \brief Get the width of a number.
44template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
45
46/// \brief Conditionally round up a scaled number.
47///
48/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
49/// Always returns \c Scale unless there's an overflow, in which case it
50/// returns \c 1+Scale.
51///
52/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
53template <class DigitsT>
54inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
55                                              bool ShouldRound) {
56  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
57
58  if (ShouldRound)
59    if (!++Digits)
60      // Overflow.
61      return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
62  return std::make_pair(Digits, Scale);
63}
64
65/// \brief Convenience helper for 32-bit rounding.
66inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
67                                                 bool ShouldRound) {
68  return getRounded(Digits, Scale, ShouldRound);
69}
70
71/// \brief Convenience helper for 64-bit rounding.
72inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
73                                                 bool ShouldRound) {
74  return getRounded(Digits, Scale, ShouldRound);
75}
76
77/// \brief Adjust a 64-bit scaled number down to the appropriate width.
78///
79/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
80template <class DigitsT>
81inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
82                                               int16_t Scale = 0) {
83  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
84
85  const int Width = getWidth<DigitsT>();
86  if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
87    return std::make_pair(Digits, Scale);
88
89  // Shift right and round.
90  int Shift = 64 - Width - countLeadingZeros(Digits);
91  return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
92                             Digits & (UINT64_C(1) << (Shift - 1)));
93}
94
95/// \brief Convenience helper for adjusting to 32 bits.
96inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
97                                                  int16_t Scale = 0) {
98  return getAdjusted<uint32_t>(Digits, Scale);
99}
100
101/// \brief Convenience helper for adjusting to 64 bits.
102inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
103                                                  int16_t Scale = 0) {
104  return getAdjusted<uint64_t>(Digits, Scale);
105}
106
107/// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
108///
109/// Implemented with four 64-bit integer multiplies.
110std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
111
112/// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
113///
114/// Implemented with one 64-bit integer multiply.
115template <class DigitsT>
116inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
117  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
118
119  if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
120    return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
121
122  return multiply64(LHS, RHS);
123}
124
125/// \brief Convenience helper for 32-bit product.
126inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
127  return getProduct(LHS, RHS);
128}
129
130/// \brief Convenience helper for 64-bit product.
131inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
132  return getProduct(LHS, RHS);
133}
134
135/// \brief Divide two 64-bit integers to create a 64-bit scaled number.
136///
137/// Implemented with long division.
138///
139/// \pre \c Dividend and \c Divisor are non-zero.
140std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
141
142/// \brief Divide two 32-bit integers to create a 32-bit scaled number.
143///
144/// Implemented with one 64-bit integer divide/remainder pair.
145///
146/// \pre \c Dividend and \c Divisor are non-zero.
147std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
148
149/// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
150///
151/// Implemented with one 64-bit integer divide/remainder pair.
152///
153/// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
154template <class DigitsT>
155std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
156  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
157  static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
158                "expected 32-bit or 64-bit digits");
159
160  // Check for zero.
161  if (!Dividend)
162    return std::make_pair(0, 0);
163  if (!Divisor)
164    return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
165
166  if (getWidth<DigitsT>() == 64)
167    return divide64(Dividend, Divisor);
168  return divide32(Dividend, Divisor);
169}
170
171/// \brief Convenience helper for 32-bit quotient.
172inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
173                                                  uint32_t Divisor) {
174  return getQuotient(Dividend, Divisor);
175}
176
177/// \brief Convenience helper for 64-bit quotient.
178inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
179                                                  uint64_t Divisor) {
180  return getQuotient(Dividend, Divisor);
181}
182
183/// \brief Implementation of getLg() and friends.
184///
185/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
186/// this was rounded up (1), down (-1), or exact (0).
187///
188/// Returns \c INT32_MIN when \c Digits is zero.
189template <class DigitsT>
190inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
191  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
192
193  if (!Digits)
194    return std::make_pair(INT32_MIN, 0);
195
196  // Get the floor of the lg of Digits.
197  int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
198
199  // Get the actual floor.
200  int32_t Floor = Scale + LocalFloor;
201  if (Digits == UINT64_C(1) << LocalFloor)
202    return std::make_pair(Floor, 0);
203
204  // Round based on the next digit.
205  assert(LocalFloor >= 1);
206  bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
207  return std::make_pair(Floor + Round, Round ? 1 : -1);
208}
209
210/// \brief Get the lg (rounded) of a scaled number.
211///
212/// Get the lg of \c Digits*2^Scale.
213///
214/// Returns \c INT32_MIN when \c Digits is zero.
215template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
216  return getLgImpl(Digits, Scale).first;
217}
218
219/// \brief Get the lg floor of a scaled number.
220///
221/// Get the floor of the lg of \c Digits*2^Scale.
222///
223/// Returns \c INT32_MIN when \c Digits is zero.
224template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
225  auto Lg = getLgImpl(Digits, Scale);
226  return Lg.first - (Lg.second > 0);
227}
228
229/// \brief Get the lg ceiling of a scaled number.
230///
231/// Get the ceiling of the lg of \c Digits*2^Scale.
232///
233/// Returns \c INT32_MIN when \c Digits is zero.
234template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
235  auto Lg = getLgImpl(Digits, Scale);
236  return Lg.first + (Lg.second < 0);
237}
238
239/// \brief Implementation for comparing scaled numbers.
240///
241/// Compare two 64-bit numbers with different scales.  Given that the scale of
242/// \c L is higher than that of \c R by \c ScaleDiff, compare them.  Return -1,
243/// 1, and 0 for less than, greater than, and equal, respectively.
244///
245/// \pre 0 <= ScaleDiff < 64.
246int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
247
248/// \brief Compare two scaled numbers.
249///
250/// Compare two scaled numbers.  Returns 0 for equal, -1 for less than, and 1
251/// for greater than.
252template <class DigitsT>
253int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
254  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
255
256  // Check for zero.
257  if (!LDigits)
258    return RDigits ? -1 : 0;
259  if (!RDigits)
260    return 1;
261
262  // Check for the scale.  Use getLgFloor to be sure that the scale difference
263  // is always lower than 64.
264  int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
265  if (lgL != lgR)
266    return lgL < lgR ? -1 : 1;
267
268  // Compare digits.
269  if (LScale < RScale)
270    return compareImpl(LDigits, RDigits, RScale - LScale);
271
272  return -compareImpl(RDigits, LDigits, LScale - RScale);
273}
274
275/// \brief Match scales of two numbers.
276///
277/// Given two scaled numbers, match up their scales.  Change the digits and
278/// scales in place.  Shift the digits as necessary to form equivalent numbers,
279/// losing precision only when necessary.
280///
281/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
282/// \c LScale (\c RScale) is unspecified.
283///
284/// As a convenience, returns the matching scale.  If the output value of one
285/// number is zero, returns the scale of the other.  If both are zero, which
286/// scale is returned is unspecifed.
287template <class DigitsT>
288int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
289                    int16_t &RScale) {
290  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
291
292  if (LScale < RScale)
293    // Swap arguments.
294    return matchScales(RDigits, RScale, LDigits, LScale);
295  if (!LDigits)
296    return RScale;
297  if (!RDigits || LScale == RScale)
298    return LScale;
299
300  // Now LScale > RScale.  Get the difference.
301  int32_t ScaleDiff = int32_t(LScale) - RScale;
302  if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
303    // Don't bother shifting.  RDigits will get zero-ed out anyway.
304    RDigits = 0;
305    return LScale;
306  }
307
308  // Shift LDigits left as much as possible, then shift RDigits right.
309  int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
310  assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
311
312  int32_t ShiftR = ScaleDiff - ShiftL;
313  if (ShiftR >= getWidth<DigitsT>()) {
314    // Don't bother shifting.  RDigits will get zero-ed out anyway.
315    RDigits = 0;
316    return LScale;
317  }
318
319  LDigits <<= ShiftL;
320  RDigits >>= ShiftR;
321
322  LScale -= ShiftL;
323  RScale += ShiftR;
324  assert(LScale == RScale && "scales should match");
325  return LScale;
326}
327
328/// \brief Get the sum of two scaled numbers.
329///
330/// Get the sum of two scaled numbers with as much precision as possible.
331///
332/// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
333template <class DigitsT>
334std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
335                                   DigitsT RDigits, int16_t RScale) {
336  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
337
338  // Check inputs up front.  This is only relevent if addition overflows, but
339  // testing here should catch more bugs.
340  assert(LScale < INT16_MAX && "scale too large");
341  assert(RScale < INT16_MAX && "scale too large");
342
343  // Normalize digits to match scales.
344  int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
345
346  // Compute sum.
347  DigitsT Sum = LDigits + RDigits;
348  if (Sum >= RDigits)
349    return std::make_pair(Sum, Scale);
350
351  // Adjust sum after arithmetic overflow.
352  DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
353  return std::make_pair(HighBit | Sum >> 1, Scale + 1);
354}
355
356/// \brief Convenience helper for 32-bit sum.
357inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
358                                             uint32_t RDigits, int16_t RScale) {
359  return getSum(LDigits, LScale, RDigits, RScale);
360}
361
362/// \brief Convenience helper for 64-bit sum.
363inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
364                                             uint64_t RDigits, int16_t RScale) {
365  return getSum(LDigits, LScale, RDigits, RScale);
366}
367
368/// \brief Get the difference of two scaled numbers.
369///
370/// Get LHS minus RHS with as much precision as possible.
371///
372/// Returns \c (0, 0) if the RHS is larger than the LHS.
373template <class DigitsT>
374std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
375                                          DigitsT RDigits, int16_t RScale) {
376  static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
377
378  // Normalize digits to match scales.
379  const DigitsT SavedRDigits = RDigits;
380  const int16_t SavedRScale = RScale;
381  matchScales(LDigits, LScale, RDigits, RScale);
382
383  // Compute difference.
384  if (LDigits <= RDigits)
385    return std::make_pair(0, 0);
386  if (RDigits || !SavedRDigits)
387    return std::make_pair(LDigits - RDigits, LScale);
388
389  // Check if RDigits just barely lost its last bit.  E.g., for 32-bit:
390  //
391  //   1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
392  const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
393  if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
394    return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
395
396  return std::make_pair(LDigits, LScale);
397}
398
399/// \brief Convenience helper for 32-bit difference.
400inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
401                                                    int16_t LScale,
402                                                    uint32_t RDigits,
403                                                    int16_t RScale) {
404  return getDifference(LDigits, LScale, RDigits, RScale);
405}
406
407/// \brief Convenience helper for 64-bit difference.
408inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
409                                                    int16_t LScale,
410                                                    uint64_t RDigits,
411                                                    int16_t RScale) {
412  return getDifference(LDigits, LScale, RDigits, RScale);
413}
414
415} // end namespace ScaledNumbers
416} // end namespace llvm
417
418namespace llvm {
419
420class raw_ostream;
421class ScaledNumberBase {
422public:
423  static const int DefaultPrecision = 10;
424
425  static void dump(uint64_t D, int16_t E, int Width);
426  static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
427                            unsigned Precision);
428  static std::string toString(uint64_t D, int16_t E, int Width,
429                              unsigned Precision);
430  static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
431  static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
432  static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
433
434  static std::pair<uint64_t, bool> splitSigned(int64_t N) {
435    if (N >= 0)
436      return std::make_pair(N, false);
437    uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
438    return std::make_pair(Unsigned, true);
439  }
440  static int64_t joinSigned(uint64_t U, bool IsNeg) {
441    if (U > uint64_t(INT64_MAX))
442      return IsNeg ? INT64_MIN : INT64_MAX;
443    return IsNeg ? -int64_t(U) : int64_t(U);
444  }
445};
446
447/// \brief Simple representation of a scaled number.
448///
449/// ScaledNumber is a number represented by digits and a scale.  It uses simple
450/// saturation arithmetic and every operation is well-defined for every value.
451/// It's somewhat similar in behaviour to a soft-float, but is *not* a
452/// replacement for one.  If you're doing numerics, look at \a APFloat instead.
453/// Nevertheless, we've found these semantics useful for modelling certain cost
454/// metrics.
455///
456/// The number is split into a signed scale and unsigned digits.  The number
457/// represented is \c getDigits()*2^getScale().  In this way, the digits are
458/// much like the mantissa in the x87 long double, but there is no canonical
459/// form so the same number can be represented by many bit representations.
460///
461/// ScaledNumber is templated on the underlying integer type for digits, which
462/// is expected to be unsigned.
463///
464/// Unlike APFloat, ScaledNumber does not model architecture floating point
465/// behaviour -- while this might make it a little faster and easier to reason
466/// about, it certainly makes it more dangerous for general numerics.
467///
468/// ScaledNumber is totally ordered.  However, there is no canonical form, so
469/// there are multiple representations of most scalars.  E.g.:
470///
471///     ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
472///     ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
473///     ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
474///
475/// ScaledNumber implements most arithmetic operations.  Precision is kept
476/// where possible.  Uses simple saturation arithmetic, so that operations
477/// saturate to 0.0 or getLargest() rather than under or overflowing.  It has
478/// some extra arithmetic for unit inversion.  0.0/0.0 is defined to be 0.0.
479/// Any other division by 0.0 is defined to be getLargest().
480///
481/// As a convenience for modifying the exponent, left and right shifting are
482/// both implemented, and both interpret negative shifts as positive shifts in
483/// the opposite direction.
484///
485/// Scales are limited to the range accepted by x87 long double.  This makes
486/// it trivial to add functionality to convert to APFloat (this is already
487/// relied on for the implementation of printing).
488///
489/// Possible (and conflicting) future directions:
490///
491///  1. Turn this into a wrapper around \a APFloat.
492///  2. Share the algorithm implementations with \a APFloat.
493///  3. Allow \a ScaledNumber to represent a signed number.
494template <class DigitsT> class ScaledNumber : ScaledNumberBase {
495public:
496  static_assert(!std::numeric_limits<DigitsT>::is_signed,
497                "only unsigned floats supported");
498
499  typedef DigitsT DigitsType;
500
501private:
502  typedef std::numeric_limits<DigitsType> DigitsLimits;
503
504  static const int Width = sizeof(DigitsType) * 8;
505  static_assert(Width <= 64, "invalid integer width for digits");
506
507private:
508  DigitsType Digits;
509  int16_t Scale;
510
511public:
512  ScaledNumber() : Digits(0), Scale(0) {}
513
514  ScaledNumber(DigitsType Digits, int16_t Scale)
515      : Digits(Digits), Scale(Scale) {}
516
517private:
518  ScaledNumber(const std::pair<uint64_t, int16_t> &X)
519      : Digits(X.first), Scale(X.second) {}
520
521public:
522  static ScaledNumber getZero() { return ScaledNumber(0, 0); }
523  static ScaledNumber getOne() { return ScaledNumber(1, 0); }
524  static ScaledNumber getLargest() {
525    return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
526  }
527  static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
528  static ScaledNumber getInverse(uint64_t N) {
529    return get(N).invert();
530  }
531  static ScaledNumber getFraction(DigitsType N, DigitsType D) {
532    return getQuotient(N, D);
533  }
534
535  int16_t getScale() const { return Scale; }
536  DigitsType getDigits() const { return Digits; }
537
538  /// \brief Convert to the given integer type.
539  ///
540  /// Convert to \c IntT using simple saturating arithmetic, truncating if
541  /// necessary.
542  template <class IntT> IntT toInt() const;
543
544  bool isZero() const { return !Digits; }
545  bool isLargest() const { return *this == getLargest(); }
546  bool isOne() const {
547    if (Scale > 0 || Scale <= -Width)
548      return false;
549    return Digits == DigitsType(1) << -Scale;
550  }
551
552  /// \brief The log base 2, rounded.
553  ///
554  /// Get the lg of the scalar.  lg 0 is defined to be INT32_MIN.
555  int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
556
557  /// \brief The log base 2, rounded towards INT32_MIN.
558  ///
559  /// Get the lg floor.  lg 0 is defined to be INT32_MIN.
560  int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
561
562  /// \brief The log base 2, rounded towards INT32_MAX.
563  ///
564  /// Get the lg ceiling.  lg 0 is defined to be INT32_MIN.
565  int32_t lgCeiling() const {
566    return ScaledNumbers::getLgCeiling(Digits, Scale);
567  }
568
569  bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
570  bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
571  bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
572  bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
573  bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
574  bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
575
576  bool operator!() const { return isZero(); }
577
578  /// \brief Convert to a decimal representation in a string.
579  ///
580  /// Convert to a string.  Uses scientific notation for very large/small
581  /// numbers.  Scientific notation is used roughly for numbers outside of the
582  /// range 2^-64 through 2^64.
583  ///
584  /// \c Precision indicates the number of decimal digits of precision to use;
585  /// 0 requests the maximum available.
586  ///
587  /// As a special case to make debugging easier, if the number is small enough
588  /// to convert without scientific notation and has more than \c Precision
589  /// digits before the decimal place, it's printed accurately to the first
590  /// digit past zero.  E.g., assuming 10 digits of precision:
591  ///
592  ///     98765432198.7654... => 98765432198.8
593  ///      8765432198.7654... =>  8765432198.8
594  ///       765432198.7654... =>   765432198.8
595  ///        65432198.7654... =>    65432198.77
596  ///         5432198.7654... =>     5432198.765
597  std::string toString(unsigned Precision = DefaultPrecision) {
598    return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
599  }
600
601  /// \brief Print a decimal representation.
602  ///
603  /// Print a string.  See toString for documentation.
604  raw_ostream &print(raw_ostream &OS,
605                     unsigned Precision = DefaultPrecision) const {
606    return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
607  }
608  void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
609
610  ScaledNumber &operator+=(const ScaledNumber &X) {
611    std::tie(Digits, Scale) =
612        ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
613    // Check for exponent past MaxScale.
614    if (Scale > ScaledNumbers::MaxScale)
615      *this = getLargest();
616    return *this;
617  }
618  ScaledNumber &operator-=(const ScaledNumber &X) {
619    std::tie(Digits, Scale) =
620        ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
621    return *this;
622  }
623  ScaledNumber &operator*=(const ScaledNumber &X);
624  ScaledNumber &operator/=(const ScaledNumber &X);
625  ScaledNumber &operator<<=(int16_t Shift) {
626    shiftLeft(Shift);
627    return *this;
628  }
629  ScaledNumber &operator>>=(int16_t Shift) {
630    shiftRight(Shift);
631    return *this;
632  }
633
634private:
635  void shiftLeft(int32_t Shift);
636  void shiftRight(int32_t Shift);
637
638  /// \brief Adjust two floats to have matching exponents.
639  ///
640  /// Adjust \c this and \c X to have matching exponents.  Returns the new \c X
641  /// by value.  Does nothing if \a isZero() for either.
642  ///
643  /// The value that compares smaller will lose precision, and possibly become
644  /// \a isZero().
645  ScaledNumber matchScales(ScaledNumber X) {
646    ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
647    return X;
648  }
649
650public:
651  /// \brief Scale a large number accurately.
652  ///
653  /// Scale N (multiply it by this).  Uses full precision multiplication, even
654  /// if Width is smaller than 64, so information is not lost.
655  uint64_t scale(uint64_t N) const;
656  uint64_t scaleByInverse(uint64_t N) const {
657    // TODO: implement directly, rather than relying on inverse.  Inverse is
658    // expensive.
659    return inverse().scale(N);
660  }
661  int64_t scale(int64_t N) const {
662    std::pair<uint64_t, bool> Unsigned = splitSigned(N);
663    return joinSigned(scale(Unsigned.first), Unsigned.second);
664  }
665  int64_t scaleByInverse(int64_t N) const {
666    std::pair<uint64_t, bool> Unsigned = splitSigned(N);
667    return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
668  }
669
670  int compare(const ScaledNumber &X) const {
671    return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
672  }
673  int compareTo(uint64_t N) const {
674    ScaledNumber Scaled = get(N);
675    int Compare = compare(Scaled);
676    if (Width == 64 || Compare != 0)
677      return Compare;
678
679    // Check for precision loss.  We know *this == RoundTrip.
680    uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
681    return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
682  }
683  int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
684
685  ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
686  ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
687
688private:
689  static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
690    return ScaledNumbers::getProduct(LHS, RHS);
691  }
692  static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
693    return ScaledNumbers::getQuotient(Dividend, Divisor);
694  }
695
696  static int countLeadingZerosWidth(DigitsType Digits) {
697    if (Width == 64)
698      return countLeadingZeros64(Digits);
699    if (Width == 32)
700      return countLeadingZeros32(Digits);
701    return countLeadingZeros32(Digits) + Width - 32;
702  }
703
704  /// \brief Adjust a number to width, rounding up if necessary.
705  ///
706  /// Should only be called for \c Shift close to zero.
707  ///
708  /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
709  static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
710    assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
711    assert(Shift <= ScaledNumbers::MaxScale - 64 &&
712           "Shift should be close to 0");
713    auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
714    return Adjusted;
715  }
716
717  static ScaledNumber getRounded(ScaledNumber P, bool Round) {
718    // Saturate.
719    if (P.isLargest())
720      return P;
721
722    return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
723  }
724};
725
726#define SCALED_NUMBER_BOP(op, base)                                            \
727  template <class DigitsT>                                                     \
728  ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L,            \
729                                    const ScaledNumber<DigitsT> &R) {          \
730    return ScaledNumber<DigitsT>(L) base R;                                    \
731  }
732SCALED_NUMBER_BOP(+, += )
733SCALED_NUMBER_BOP(-, -= )
734SCALED_NUMBER_BOP(*, *= )
735SCALED_NUMBER_BOP(/, /= )
736SCALED_NUMBER_BOP(<<, <<= )
737SCALED_NUMBER_BOP(>>, >>= )
738#undef SCALED_NUMBER_BOP
739
740template <class DigitsT>
741raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
742  return X.print(OS, 10);
743}
744
745#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2)                              \
746  template <class DigitsT>                                                     \
747  bool operator op(const ScaledNumber<DigitsT> &L, T1 R) {                     \
748    return L.compareTo(T2(R)) op 0;                                            \
749  }                                                                            \
750  template <class DigitsT>                                                     \
751  bool operator op(T1 L, const ScaledNumber<DigitsT> &R) {                     \
752    return 0 op R.compareTo(T2(L));                                            \
753  }
754#define SCALED_NUMBER_COMPARE_TO(op)                                           \
755  SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t)                        \
756  SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t)                        \
757  SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t)                          \
758  SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
759SCALED_NUMBER_COMPARE_TO(< )
760SCALED_NUMBER_COMPARE_TO(> )
761SCALED_NUMBER_COMPARE_TO(== )
762SCALED_NUMBER_COMPARE_TO(!= )
763SCALED_NUMBER_COMPARE_TO(<= )
764SCALED_NUMBER_COMPARE_TO(>= )
765#undef SCALED_NUMBER_COMPARE_TO
766#undef SCALED_NUMBER_COMPARE_TO_TYPE
767
768template <class DigitsT>
769uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
770  if (Width == 64 || N <= DigitsLimits::max())
771    return (get(N) * *this).template toInt<uint64_t>();
772
773  // Defer to the 64-bit version.
774  return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
775}
776
777template <class DigitsT>
778template <class IntT>
779IntT ScaledNumber<DigitsT>::toInt() const {
780  typedef std::numeric_limits<IntT> Limits;
781  if (*this < 1)
782    return 0;
783  if (*this >= Limits::max())
784    return Limits::max();
785
786  IntT N = Digits;
787  if (Scale > 0) {
788    assert(size_t(Scale) < sizeof(IntT) * 8);
789    return N << Scale;
790  }
791  if (Scale < 0) {
792    assert(size_t(-Scale) < sizeof(IntT) * 8);
793    return N >> -Scale;
794  }
795  return N;
796}
797
798template <class DigitsT>
799ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
800operator*=(const ScaledNumber &X) {
801  if (isZero())
802    return *this;
803  if (X.isZero())
804    return *this = X;
805
806  // Save the exponents.
807  int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
808
809  // Get the raw product.
810  *this = getProduct(Digits, X.Digits);
811
812  // Combine with exponents.
813  return *this <<= Scales;
814}
815template <class DigitsT>
816ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
817operator/=(const ScaledNumber &X) {
818  if (isZero())
819    return *this;
820  if (X.isZero())
821    return *this = getLargest();
822
823  // Save the exponents.
824  int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
825
826  // Get the raw quotient.
827  *this = getQuotient(Digits, X.Digits);
828
829  // Combine with exponents.
830  return *this <<= Scales;
831}
832template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
833  if (!Shift || isZero())
834    return;
835  assert(Shift != INT32_MIN);
836  if (Shift < 0) {
837    shiftRight(-Shift);
838    return;
839  }
840
841  // Shift as much as we can in the exponent.
842  int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
843  Scale += ScaleShift;
844  if (ScaleShift == Shift)
845    return;
846
847  // Check this late, since it's rare.
848  if (isLargest())
849    return;
850
851  // Shift the digits themselves.
852  Shift -= ScaleShift;
853  if (Shift > countLeadingZerosWidth(Digits)) {
854    // Saturate.
855    *this = getLargest();
856    return;
857  }
858
859  Digits <<= Shift;
860  return;
861}
862
863template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
864  if (!Shift || isZero())
865    return;
866  assert(Shift != INT32_MIN);
867  if (Shift < 0) {
868    shiftLeft(-Shift);
869    return;
870  }
871
872  // Shift as much as we can in the exponent.
873  int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
874  Scale -= ScaleShift;
875  if (ScaleShift == Shift)
876    return;
877
878  // Shift the digits themselves.
879  Shift -= ScaleShift;
880  if (Shift >= Width) {
881    // Saturate.
882    *this = getZero();
883    return;
884  }
885
886  Digits >>= Shift;
887  return;
888}
889
890template <typename T> struct isPodLike;
891template <typename T> struct isPodLike<ScaledNumber<T>> {
892  static const bool value = true;
893};
894
895} // end namespace llvm
896
897#endif
898