Target.td revision 09a2769a7f709baf2d6fa9204e529b2e18aee4dd
154e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
254e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// 
354e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//                     The LLVM Compiler Infrastructure
454e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//
554e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// This file is distributed under the University of Illinois Open Source
654e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// License. See LICENSE.TXT for details.
754e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// 
854e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//===----------------------------------------------------------------------===//
954e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//
1054e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// This file defines the target-independent interfaces which should be
1154e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// implemented by each target which is using a TableGen based code generator.
1254e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//
1354e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//===----------------------------------------------------------------------===//
1454e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton
1554e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton// Include all information about LLVM intrinsics.
1654e7afa84d945f9137f9372ecde432f9e1a702fcGreg Claytoninclude "llvm/Intrinsics.td"
17eca14c7b52fdd83705787ca354758d7cd93b8894Peter Collingbourne
1854e7afa84d945f9137f9372ecde432f9e1a702fcGreg Clayton//===----------------------------------------------------------------------===//
19b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Malea// Register file description - These classes are used to fill in the target
20b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Malea// description classes.
21b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Malea
22b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Maleaclass RegisterClass; // Forward def
23b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Malea
24b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Malea// Register - You should define one instance of this class for each register
25b9db9d5bb01963774f28540dbe2c5a11f586ff29Daniel Malea// in the target machine.  String n will become the "name" of the register.
264bb4f30fef9281506baf536a254cac17ae68bd73Filipe Cabecinhasclass Register<string n> {
274bb4f30fef9281506baf536a254cac17ae68bd73Filipe Cabecinhas  string Namespace = "";
284bb4f30fef9281506baf536a254cac17ae68bd73Filipe Cabecinhas  string AsmName = n;
29f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas
30dc3e063595c1b87729242b83baa0ea92a5987704Johnny Chen  // SpillSize - If this value is set to a non-zero value, it is the size in
31f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas  // bits of the spill slot required to hold this register.  If this value is
32f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas  // set to zero, the information is inferred from any register classes the
33f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas  // register belongs to.
34d4c21f0e25545061dcbaef597531a4796dbe15efCharles Davis  int SpillSize = 0;
35f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas
36f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas  // SpillAlignment - This value is used to specify the alignment required for
37d4c21f0e25545061dcbaef597531a4796dbe15efCharles Davis  // spilling the register.  Like SpillSize, this should only be explicitly
38f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas  // specified if the register is not in a register class.
39d4c21f0e25545061dcbaef597531a4796dbe15efCharles Davis  int SpillAlignment = 0;
40f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas
41eca14c7b52fdd83705787ca354758d7cd93b8894Peter Collingbourne  // Aliases - A list of registers that this register overlaps with.  A read or
42eca14c7b52fdd83705787ca354758d7cd93b8894Peter Collingbourne  // modification of this register can potentially read or modify the aliased
43f2b0fef6c754acd4f6a3d7cc5cc5f3ad9be98be7Filipe Cabecinhas  // registers.
44  list<Register> Aliases = [];
45  
46  // SubRegs - A list of registers that are parts of this register. Note these
47  // are "immediate" sub-registers and the registers within the list do not
48  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49  // not [AX, AH, AL].
50  list<Register> SubRegs = [];
51
52  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
53  // These values can be determined by locating the <target>.h file in the
54  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
55  // order of these names correspond to the enumeration used by gcc.  A value of
56  // -1 indicates that the gcc number is undefined and -2 that register number
57  // is invalid for this mode/flavour.
58  list<int> DwarfNumbers = [];
59}
60
61// RegisterWithSubRegs - This can be used to define instances of Register which
62// need to specify sub-registers.
63// List "subregs" specifies which registers are sub-registers to this one. This
64// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
65// This allows the code generator to be careful not to put two values with 
66// overlapping live ranges into registers which alias.
67class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
68  let SubRegs = subregs;
69}
70
71// SubRegSet - This can be used to define a specific mapping of registers to
72// indices, for use as named subregs of a particular physical register.  Each
73// register in 'subregs' becomes an addressable subregister at index 'n' of the
74// corresponding register in 'regs'.
75class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
76  int index = n;
77  
78  list<Register> From = regs;
79  list<Register> To = subregs;
80}
81
82// RegisterClass - Now that all of the registers are defined, and aliases
83// between registers are defined, specify which registers belong to which
84// register classes.  This also defines the default allocation order of
85// registers by register allocators.
86//
87class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
88                    list<Register> regList> {
89  string Namespace = namespace;
90
91  // RegType - Specify the list ValueType of the registers in this register
92  // class.  Note that all registers in a register class must have the same
93  // ValueTypes.  This is a list because some targets permit storing different 
94  // types in same register, for example vector values with 128-bit total size,
95  // but different count/size of items, like SSE on x86.
96  //
97  list<ValueType> RegTypes = regTypes;
98
99  // Size - Specify the spill size in bits of the registers.  A default value of
100  // zero lets tablgen pick an appropriate size.
101  int Size = 0;
102
103  // Alignment - Specify the alignment required of the registers when they are
104  // stored or loaded to memory.
105  //
106  int Alignment = alignment;
107
108  // CopyCost - This value is used to specify the cost of copying a value
109  // between two registers in this register class. The default value is one
110  // meaning it takes a single instruction to perform the copying. A negative
111  // value means copying is extremely expensive or impossible.
112  int CopyCost = 1;
113
114  // MemberList - Specify which registers are in this class.  If the
115  // allocation_order_* method are not specified, this also defines the order of
116  // allocation used by the register allocator.
117  //
118  list<Register> MemberList = regList;
119  
120  // SubClassList - Specify which register classes correspond to subregisters
121  // of this class. The order should be by subregister set index.
122  list<RegisterClass> SubRegClassList = [];
123
124  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
125  // code into a generated register class.   The normal usage of this is to 
126  // overload virtual methods.
127  code MethodProtos = [{}];
128  code MethodBodies = [{}];
129}
130
131
132//===----------------------------------------------------------------------===//
133// DwarfRegNum - This class provides a mapping of the llvm register enumeration
134// to the register numbering used by gcc and gdb.  These values are used by a
135// debug information writer (ex. DwarfWriter) to describe where values may be
136// located during execution.
137class DwarfRegNum<list<int> Numbers> {
138  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
139  // These values can be determined by locating the <target>.h file in the
140  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
141  // order of these names correspond to the enumeration used by gcc.  A value of
142  // -1 indicates that the gcc number is undefined and -2 that register number is 
143  // invalid for this mode/flavour.
144  list<int> DwarfNumbers = Numbers;
145}
146
147//===----------------------------------------------------------------------===//
148// Pull in the common support for scheduling
149//
150include "llvm/Target/TargetSchedule.td"
151
152class Predicate; // Forward def
153
154//===----------------------------------------------------------------------===//
155// Instruction set description - These classes correspond to the C++ classes in
156// the Target/TargetInstrInfo.h file.
157//
158class Instruction {
159  string Namespace = "";
160
161  dag OutOperandList;       // An dag containing the MI def operand list.
162  dag InOperandList;        // An dag containing the MI use operand list.
163  string AsmString = "";    // The .s format to print the instruction with.
164
165  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
166  // otherwise, uninitialized.
167  list<dag> Pattern;
168
169  // The follow state will eventually be inferred automatically from the
170  // instruction pattern.
171
172  list<Register> Uses = []; // Default to using no non-operand registers
173  list<Register> Defs = []; // Default to modifying no non-operand registers
174
175  // Predicates - List of predicates which will be turned into isel matching
176  // code.
177  list<Predicate> Predicates = [];
178
179  // Code size.
180  int CodeSize = 0;
181
182  // Added complexity passed onto matching pattern.
183  int AddedComplexity  = 0;
184
185  // These bits capture information about the high-level semantics of the
186  // instruction.
187  bit isReturn     = 0;     // Is this instruction a return instruction?
188  bit isBranch     = 0;     // Is this instruction a branch instruction?
189  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
190  bit isBarrier    = 0;     // Can control flow fall through this instruction?
191  bit isCall       = 0;     // Is this instruction a call instruction?
192  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
193  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
194  bit mayStore     = 0;     // Is it possible for this inst to write memory?
195  bit isTwoAddress = 0;     // Is this a two address instruction?
196  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
197  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
198  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
199  bit isReMaterializable = 0; // Is this instruction re-materializable?
200  bit isPredicable = 0;     // Is this instruction predicable?
201  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
202  bit usesCustomInserter = 0; // Pseudo instr needing special help.
203  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
204  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
205  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
206  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
207  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
208
209  // Side effect flags - When set, the flags have these meanings:
210  //
211  //  hasSideEffects - The instruction has side effects that are not
212  //    captured by any operands of the instruction or other flags.
213  //
214  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
215  //    side effects.
216  bit hasSideEffects = 0;
217  bit neverHasSideEffects = 0;
218
219  // Is this instruction a "real" instruction (with a distinct machine
220  // encoding), or is it a pseudo instruction used for codegen modeling
221  // purposes.
222  bit isCodeGenOnly = 0;
223
224  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
225
226  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
227  
228  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
229  /// be encoded into the output machineinstr.
230  string DisableEncoding = "";
231}
232
233/// Predicates - These are extra conditionals which are turned into instruction
234/// selector matching code. Currently each predicate is just a string.
235class Predicate<string cond> {
236  string CondString = cond;
237}
238
239/// NoHonorSignDependentRounding - This predicate is true if support for
240/// sign-dependent-rounding is not enabled.
241def NoHonorSignDependentRounding
242 : Predicate<"!HonorSignDependentRoundingFPMath()">;
243
244class Requires<list<Predicate> preds> {
245  list<Predicate> Predicates = preds;
246}
247
248/// ops definition - This is just a simple marker used to identify the operands
249/// list for an instruction. outs and ins are identical both syntatically and
250/// semantically, they are used to define def operands and use operands to
251/// improve readibility. This should be used like this:
252///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
253def ops;
254def outs;
255def ins;
256
257/// variable_ops definition - Mark this instruction as taking a variable number
258/// of operands.
259def variable_ops;
260
261
262/// PointerLikeRegClass - Values that are designed to have pointer width are
263/// derived from this.  TableGen treats the register class as having a symbolic
264/// type that it doesn't know, and resolves the actual regclass to use by using
265/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
266class PointerLikeRegClass<int Kind> {
267  int RegClassKind = Kind;
268}
269
270
271/// ptr_rc definition - Mark this operand as being a pointer value whose
272/// register class is resolved dynamically via a callback to TargetInstrInfo.
273/// FIXME: We should probably change this to a class which contain a list of
274/// flags. But currently we have but one flag.
275def ptr_rc : PointerLikeRegClass<0>;
276
277/// unknown definition - Mark this operand as being of unknown type, causing
278/// it to be resolved by inference in the context it is used.
279def unknown;
280
281/// AsmOperandClass - Representation for the kinds of operands which the target
282/// specific parser can create and the assembly matcher may need to distinguish.
283///
284/// Operand classes are used to define the order in which instructions are
285/// matched, to ensure that the instruction which gets matched for any
286/// particular list of operands is deterministic.
287///
288/// The target specific parser must be able to classify a parsed operand into a
289/// unique class which does not partially overlap with any other classes. It can
290/// match a subset of some other class, in which case the super class field
291/// should be defined.
292class AsmOperandClass {
293  /// The name to use for this class, which should be usable as an enum value.
294  string Name = ?;
295
296  /// The super class of this operand.
297  AsmOperandClass SuperClass = ?;
298
299  /// The name of the method on the target specific operand to call to test
300  /// whether the operand is an instance of this class. If not set, this will
301  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
302  /// signature should be:
303  ///   bool isFoo() const;
304  string PredicateMethod = ?;
305
306  /// The name of the method on the target specific operand to call to add the
307  /// target specific operand to an MCInst. If not set, this will default to
308  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
309  /// signature should be:
310  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
311  string RenderMethod = ?;
312}
313
314def ImmAsmOperand : AsmOperandClass {
315  let Name = "Imm";
316}
317   
318/// Operand Types - These provide the built-in operand types that may be used
319/// by a target.  Targets can optionally provide their own operand types as
320/// needed, though this should not be needed for RISC targets.
321class Operand<ValueType ty> {
322  ValueType Type = ty;
323  string PrintMethod = "printOperand";
324  string AsmOperandLowerMethod = ?;
325  dag MIOperandInfo = (ops);
326
327  // ParserMatchClass - The "match class" that operands of this type fit
328  // in. Match classes are used to define the order in which instructions are
329  // match, to ensure that which instructions gets matched is deterministic.
330  //
331  // The target specific parser must be able to classify an parsed operand 
332  // into a unique class, which does not partially overlap with any other 
333  // classes. It can match a subset of some other class, in which case 
334  // ParserMatchSuperClass should be set to the name of that class.
335  AsmOperandClass ParserMatchClass = ImmAsmOperand;
336}
337
338def i1imm  : Operand<i1>;
339def i8imm  : Operand<i8>;
340def i16imm : Operand<i16>;
341def i32imm : Operand<i32>;
342def i64imm : Operand<i64>;
343
344def f32imm : Operand<f32>;
345def f64imm : Operand<f64>;
346
347/// zero_reg definition - Special node to stand for the zero register.
348///
349def zero_reg;
350
351/// PredicateOperand - This can be used to define a predicate operand for an
352/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
353/// AlwaysVal specifies the value of this predicate when set to "always
354/// execute".
355class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
356  : Operand<ty> {
357  let MIOperandInfo = OpTypes;
358  dag DefaultOps = AlwaysVal;
359}
360
361/// OptionalDefOperand - This is used to define a optional definition operand
362/// for an instruction. DefaultOps is the register the operand represents if
363/// none is supplied, e.g. zero_reg.
364class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
365  : Operand<ty> {
366  let MIOperandInfo = OpTypes;
367  dag DefaultOps = defaultops;
368}
369
370
371// InstrInfo - This class should only be instantiated once to provide parameters
372// which are global to the target machine.
373//
374class InstrInfo {
375  // If the target wants to associate some target-specific information with each
376  // instruction, it should provide these two lists to indicate how to assemble
377  // the target specific information into the 32 bits available.
378  //
379  list<string> TSFlagsFields = [];
380  list<int>    TSFlagsShifts = [];
381
382  // Target can specify its instructions in either big or little-endian formats.
383  // For instance, while both Sparc and PowerPC are big-endian platforms, the
384  // Sparc manual specifies its instructions in the format [31..0] (big), while
385  // PowerPC specifies them using the format [0..31] (little).
386  bit isLittleEndianEncoding = 0;
387}
388
389// Standard Pseudo Instructions.
390let isCodeGenOnly = 1 in {
391def PHI : Instruction {
392  let OutOperandList = (outs);
393  let InOperandList = (ins variable_ops);
394  let AsmString = "PHINODE";
395  let Namespace = "TargetOpcode";
396}
397def INLINEASM : Instruction {
398  let OutOperandList = (outs);
399  let InOperandList = (ins variable_ops);
400  let AsmString = "";
401  let Namespace = "TargetOpcode";
402}
403def DBG_LABEL : Instruction {
404  let OutOperandList = (outs);
405  let InOperandList = (ins i32imm:$id);
406  let AsmString = "";
407  let Namespace = "TargetOpcode";
408  let hasCtrlDep = 1;
409  let isNotDuplicable = 1;
410}
411def EH_LABEL : Instruction {
412  let OutOperandList = (outs);
413  let InOperandList = (ins i32imm:$id);
414  let AsmString = "";
415  let Namespace = "TargetOpcode";
416  let hasCtrlDep = 1;
417  let isNotDuplicable = 1;
418}
419def GC_LABEL : Instruction {
420  let OutOperandList = (outs);
421  let InOperandList = (ins i32imm:$id);
422  let AsmString = "";
423  let Namespace = "TargetOpcode";
424  let hasCtrlDep = 1;
425  let isNotDuplicable = 1;
426}
427def KILL : Instruction {
428  let OutOperandList = (outs);
429  let InOperandList = (ins variable_ops);
430  let AsmString = "";
431  let Namespace = "TargetOpcode";
432  let neverHasSideEffects = 1;
433}
434def EXTRACT_SUBREG : Instruction {
435  let OutOperandList = (outs unknown:$dst);
436  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
437  let AsmString = "";
438  let Namespace = "TargetOpcode";
439  let neverHasSideEffects = 1;
440}
441def INSERT_SUBREG : Instruction {
442  let OutOperandList = (outs unknown:$dst);
443  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
444  let AsmString = "";
445  let Namespace = "TargetOpcode";
446  let neverHasSideEffects = 1;
447  let Constraints = "$supersrc = $dst";
448}
449def IMPLICIT_DEF : Instruction {
450  let OutOperandList = (outs unknown:$dst);
451  let InOperandList = (ins);
452  let AsmString = "";
453  let Namespace = "TargetOpcode";
454  let neverHasSideEffects = 1;
455  let isReMaterializable = 1;
456  let isAsCheapAsAMove = 1;
457}
458def SUBREG_TO_REG : Instruction {
459  let OutOperandList = (outs unknown:$dst);
460  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
461  let AsmString = "";
462  let Namespace = "TargetOpcode";
463  let neverHasSideEffects = 1;
464}
465def COPY_TO_REGCLASS : Instruction {
466  let OutOperandList = (outs unknown:$dst);
467  let InOperandList = (ins unknown:$src, i32imm:$regclass);
468  let AsmString = "";
469  let Namespace = "TargetOpcode";
470  let neverHasSideEffects = 1;
471  let isAsCheapAsAMove = 1;
472}
473def DBG_VALUE : Instruction {
474  let OutOperandList = (outs);
475  let InOperandList = (ins variable_ops);
476  let AsmString = "DBG_VALUE";
477  let Namespace = "TargetOpcode";
478  let isAsCheapAsAMove = 1;
479}
480}
481
482//===----------------------------------------------------------------------===//
483// AsmParser - This class can be implemented by targets that wish to implement 
484// .s file parsing.
485//
486// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel 
487// syntax on X86 for example).
488//
489class AsmParser {
490  // AsmParserClassName - This specifies the suffix to use for the asmparser
491  // class.  Generated AsmParser classes are always prefixed with the target
492  // name.
493  string AsmParserClassName  = "AsmParser";
494
495  // AsmParserInstCleanup - If non-empty, this is the name of a custom function on the
496  // AsmParser class to call on every matched instruction. This can be used to
497  // perform target specific instruction post-processing.
498  string AsmParserInstCleanup  = "";
499 
500  // Variant - AsmParsers can be of multiple different variants.  Variants are
501  // used to support targets that need to parser multiple formats for the 
502  // assembly language.
503  int Variant = 0;
504
505  // CommentDelimiter - If given, the delimiter string used to recognize
506  // comments which are hard coded in the .td assembler strings for individual
507  // instructions.
508  string CommentDelimiter = "";
509
510  // RegisterPrefix - If given, the token prefix which indicates a register
511  // token. This is used by the matcher to automatically recognize hard coded
512  // register tokens as constrained registers, instead of tokens, for the
513  // purposes of matching.
514  string RegisterPrefix = "";
515}
516def DefaultAsmParser : AsmParser;
517
518
519//===----------------------------------------------------------------------===//
520// AsmWriter - This class can be implemented by targets that need to customize
521// the format of the .s file writer.
522//
523// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
524// on X86 for example).
525//
526class AsmWriter {
527  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
528  // class.  Generated AsmWriter classes are always prefixed with the target
529  // name.
530  string AsmWriterClassName  = "AsmPrinter";
531
532  // InstFormatName - AsmWriters can specify the name of the format string to
533  // print instructions with.
534  string InstFormatName = "AsmString";
535
536  // Variant - AsmWriters can be of multiple different variants.  Variants are
537  // used to support targets that need to emit assembly code in ways that are
538  // mostly the same for different targets, but have minor differences in
539  // syntax.  If the asmstring contains {|} characters in them, this integer
540  // will specify which alternative to use.  For example "{x|y|z}" with Variant
541  // == 1, will expand to "y".
542  int Variant = 0;
543  
544  
545  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
546  // layout, the asmwriter can actually generate output in this columns (in
547  // verbose-asm mode).  These two values indicate the width of the first column
548  // (the "opcode" area) and the width to reserve for subsequent operands.  When
549  // verbose asm mode is enabled, operands will be indented to respect this.
550  int FirstOperandColumn = -1;
551  
552  // OperandSpacing - Space between operand columns.
553  int OperandSpacing = -1;
554}
555def DefaultAsmWriter : AsmWriter;
556
557
558//===----------------------------------------------------------------------===//
559// Target - This class contains the "global" target information
560//
561class Target {
562  // InstructionSet - Instruction set description for this target.
563  InstrInfo InstructionSet;
564
565  // AssemblyParsers - The AsmParser instances available for this target.
566  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
567
568  // AssemblyWriters - The AsmWriter instances available for this target.
569  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
570}
571
572//===----------------------------------------------------------------------===//
573// SubtargetFeature - A characteristic of the chip set.
574//
575class SubtargetFeature<string n, string a,  string v, string d,
576                       list<SubtargetFeature> i = []> {
577  // Name - Feature name.  Used by command line (-mattr=) to determine the
578  // appropriate target chip.
579  //
580  string Name = n;
581  
582  // Attribute - Attribute to be set by feature.
583  //
584  string Attribute = a;
585  
586  // Value - Value the attribute to be set to by feature.
587  //
588  string Value = v;
589  
590  // Desc - Feature description.  Used by command line (-mattr=) to display help
591  // information.
592  //
593  string Desc = d;
594
595  // Implies - Features that this feature implies are present. If one of those
596  // features isn't set, then this one shouldn't be set either.
597  //
598  list<SubtargetFeature> Implies = i;
599}
600
601//===----------------------------------------------------------------------===//
602// Processor chip sets - These values represent each of the chip sets supported
603// by the scheduler.  Each Processor definition requires corresponding
604// instruction itineraries.
605//
606class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
607  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
608  // appropriate target chip.
609  //
610  string Name = n;
611  
612  // ProcItin - The scheduling information for the target processor.
613  //
614  ProcessorItineraries ProcItin = pi;
615  
616  // Features - list of 
617  list<SubtargetFeature> Features = f;
618}
619
620//===----------------------------------------------------------------------===//
621// Pull in the common support for calling conventions.
622//
623include "llvm/Target/TargetCallingConv.td"
624
625//===----------------------------------------------------------------------===//
626// Pull in the common support for DAG isel generation.
627//
628include "llvm/Target/TargetSelectionDAG.td"
629