Target.td revision 16884415db751c75f2133bd04921393c792b1158
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// RegAltNameIndex - The alternate name set to use for register operands of
30// this register class when printing.
31class RegAltNameIndex {
32  string Namespace = "";
33}
34def NoRegAltName : RegAltNameIndex;
35
36// Register - You should define one instance of this class for each register
37// in the target machine.  String n will become the "name" of the register.
38class Register<string n, list<string> altNames = []> {
39  string Namespace = "";
40  string AsmName = n;
41  list<string> AltNames = altNames;
42
43  // Aliases - A list of registers that this register overlaps with.  A read or
44  // modification of this register can potentially read or modify the aliased
45  // registers.
46  list<Register> Aliases = [];
47
48  // SubRegs - A list of registers that are parts of this register. Note these
49  // are "immediate" sub-registers and the registers within the list do not
50  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
51  // not [AX, AH, AL].
52  list<Register> SubRegs = [];
53
54  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
55  // to address it. Sub-sub-register indices are automatically inherited from
56  // SubRegs.
57  list<SubRegIndex> SubRegIndices = [];
58
59  // RegAltNameIndices - The alternate name indices which are valid for this
60  // register.
61  list<RegAltNameIndex> RegAltNameIndices = [];
62
63  // CompositeIndices - Specify subreg indices that don't correspond directly to
64  // a register in SubRegs and are not inherited. The following formats are
65  // supported:
66  //
67  // (a)     Identity  - Reg:a == Reg
68  // (a b)   Alias     - Reg:a == Reg:b
69  // (a b,c) Composite - Reg:a == (Reg:b):c
70  //
71  // This can be used to disambiguate a sub-sub-register that exists in more
72  // than one subregister and other weird stuff.
73  list<dag> CompositeIndices = [];
74
75  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
76  // These values can be determined by locating the <target>.h file in the
77  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
78  // order of these names correspond to the enumeration used by gcc.  A value of
79  // -1 indicates that the gcc number is undefined and -2 that register number
80  // is invalid for this mode/flavour.
81  list<int> DwarfNumbers = [];
82
83  // CostPerUse - Additional cost of instructions using this register compared
84  // to other registers in its class. The register allocator will try to
85  // minimize the number of instructions using a register with a CostPerUse.
86  // This is used by the x86-64 and ARM Thumb targets where some registers 
87  // require larger instruction encodings.
88  int CostPerUse = 0;
89}
90
91// RegisterWithSubRegs - This can be used to define instances of Register which
92// need to specify sub-registers.
93// List "subregs" specifies which registers are sub-registers to this one. This
94// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
95// This allows the code generator to be careful not to put two values with
96// overlapping live ranges into registers which alias.
97class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
98  let SubRegs = subregs;
99}
100
101// RegisterClass - Now that all of the registers are defined, and aliases
102// between registers are defined, specify which registers belong to which
103// register classes.  This also defines the default allocation order of
104// registers by register allocators.
105//
106class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
107                    dag regList, RegAltNameIndex idx = NoRegAltName> {
108  string Namespace = namespace;
109
110  // RegType - Specify the list ValueType of the registers in this register
111  // class.  Note that all registers in a register class must have the same
112  // ValueTypes.  This is a list because some targets permit storing different
113  // types in same register, for example vector values with 128-bit total size,
114  // but different count/size of items, like SSE on x86.
115  //
116  list<ValueType> RegTypes = regTypes;
117
118  // Size - Specify the spill size in bits of the registers.  A default value of
119  // zero lets tablgen pick an appropriate size.
120  int Size = 0;
121
122  // Alignment - Specify the alignment required of the registers when they are
123  // stored or loaded to memory.
124  //
125  int Alignment = alignment;
126
127  // CopyCost - This value is used to specify the cost of copying a value
128  // between two registers in this register class. The default value is one
129  // meaning it takes a single instruction to perform the copying. A negative
130  // value means copying is extremely expensive or impossible.
131  int CopyCost = 1;
132
133  // MemberList - Specify which registers are in this class.  If the
134  // allocation_order_* method are not specified, this also defines the order of
135  // allocation used by the register allocator.
136  //
137  dag MemberList = regList;
138
139  // AltNameIndex - The alternate register name to use when printing operands
140  // of this register class. Every register in the register class must have
141  // a valid alternate name for the given index.
142  RegAltNameIndex altNameIndex = idx;
143
144  // SubRegClasses - Specify the register class of subregisters as a list of
145  // dags: (RegClass SubRegIndex, SubRegindex, ...)
146  list<dag> SubRegClasses = [];
147
148  // isAllocatable - Specify that the register class can be used for virtual
149  // registers and register allocation.  Some register classes are only used to
150  // model instruction operand constraints, and should have isAllocatable = 0.
151  bit isAllocatable = 1;
152
153  // AltOrders - List of alternative allocation orders. The default order is
154  // MemberList itself, and that is good enough for most targets since the
155  // register allocators automatically remove reserved registers and move
156  // callee-saved registers to the end.
157  list<dag> AltOrders = [];
158
159  // AltOrderSelect - The body of a function that selects the allocation order
160  // to use in a given machine function. The code will be inserted in a
161  // function like this:
162  //
163  //   static inline unsigned f(const MachineFunction &MF) { ... }
164  //
165  // The function should return 0 to select the default order defined by
166  // MemberList, 1 to select the first AltOrders entry and so on.
167  code AltOrderSelect = [{}];
168}
169
170// The memberList in a RegisterClass is a dag of set operations. TableGen
171// evaluates these set operations and expand them into register lists. These
172// are the most common operation, see test/TableGen/SetTheory.td for more
173// examples of what is possible:
174//
175// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
176// register class, or a sub-expression. This is also the way to simply list
177// registers.
178//
179// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
180//
181// (and GPR, CSR) - Set intersection. All registers from the first set that are
182// also in the second set.
183//
184// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
185// numbered registers.
186//
187// (shl GPR, 4) - Remove the first N elements.
188//
189// (trunc GPR, 4) - Truncate after the first N elements.
190//
191// (rotl GPR, 1) - Rotate N places to the left.
192//
193// (rotr GPR, 1) - Rotate N places to the right.
194//
195// (decimate GPR, 2) - Pick every N'th element, starting with the first.
196//
197// All of these operators work on ordered sets, not lists. That means
198// duplicates are removed from sub-expressions.
199
200// Set operators. The rest is defined in TargetSelectionDAG.td.
201def sequence;
202def decimate;
203
204// RegisterTuples - Automatically generate super-registers by forming tuples of
205// sub-registers. This is useful for modeling register sequence constraints
206// with pseudo-registers that are larger than the architectural registers.
207//
208// The sub-register lists are zipped together:
209//
210//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
211//
212// Generates the same registers as:
213//
214//   let SubRegIndices = [sube, subo] in {
215//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
216//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
217//   }
218//
219// The generated pseudo-registers inherit super-classes and fields from their
220// first sub-register. Most fields from the Register class are inferred, and
221// the AsmName and Dwarf numbers are cleared.
222//
223// RegisterTuples instances can be used in other set operations to form
224// register classes and so on. This is the only way of using the generated
225// registers.
226class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
227  // SubRegs - N lists of registers to be zipped up. Super-registers are
228  // synthesized from the first element of each SubRegs list, the second
229  // element and so on.
230  list<dag> SubRegs = Regs;
231
232  // SubRegIndices - N SubRegIndex instances. This provides the names of the
233  // sub-registers in the synthesized super-registers.
234  list<SubRegIndex> SubRegIndices = Indices;
235
236  // Compose sub-register indices like in a normal Register.
237  list<dag> CompositeIndices = [];
238}
239
240
241//===----------------------------------------------------------------------===//
242// DwarfRegNum - This class provides a mapping of the llvm register enumeration
243// to the register numbering used by gcc and gdb.  These values are used by a
244// debug information writer to describe where values may be located during
245// execution.
246class DwarfRegNum<list<int> Numbers> {
247  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
248  // These values can be determined by locating the <target>.h file in the
249  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
250  // order of these names correspond to the enumeration used by gcc.  A value of
251  // -1 indicates that the gcc number is undefined and -2 that register number
252  // is invalid for this mode/flavour.
253  list<int> DwarfNumbers = Numbers;
254}
255
256// DwarfRegAlias - This class declares that a given register uses the same dwarf
257// numbers as another one. This is useful for making it clear that the two
258// registers do have the same number. It also lets us build a mapping
259// from dwarf register number to llvm register.
260class DwarfRegAlias<Register reg> {
261      Register DwarfAlias = reg;
262}
263
264//===----------------------------------------------------------------------===//
265// Pull in the common support for scheduling
266//
267include "llvm/Target/TargetSchedule.td"
268
269class Predicate; // Forward def
270
271//===----------------------------------------------------------------------===//
272// Instruction set description - These classes correspond to the C++ classes in
273// the Target/TargetInstrInfo.h file.
274//
275class Instruction {
276  string Namespace = "";
277
278  dag OutOperandList;       // An dag containing the MI def operand list.
279  dag InOperandList;        // An dag containing the MI use operand list.
280  string AsmString = "";    // The .s format to print the instruction with.
281
282  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
283  // otherwise, uninitialized.
284  list<dag> Pattern;
285
286  // The follow state will eventually be inferred automatically from the
287  // instruction pattern.
288
289  list<Register> Uses = []; // Default to using no non-operand registers
290  list<Register> Defs = []; // Default to modifying no non-operand registers
291
292  // Predicates - List of predicates which will be turned into isel matching
293  // code.
294  list<Predicate> Predicates = [];
295
296  // Size - Size of encoded instruction, or zero if the size cannot be determined
297  // from the opcode.
298  int Size = 0;
299
300  // Code size, for instruction selection.
301  // FIXME: What does this actually mean?
302  int CodeSize = 0;
303
304  // Added complexity passed onto matching pattern.
305  int AddedComplexity  = 0;
306
307  // These bits capture information about the high-level semantics of the
308  // instruction.
309  bit isReturn     = 0;     // Is this instruction a return instruction?
310  bit isBranch     = 0;     // Is this instruction a branch instruction?
311  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
312  bit isCompare    = 0;     // Is this instruction a comparison instruction?
313  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
314  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
315  bit isBarrier    = 0;     // Can control flow fall through this instruction?
316  bit isCall       = 0;     // Is this instruction a call instruction?
317  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
318  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
319  bit mayStore     = 0;     // Is it possible for this inst to write memory?
320  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
321  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
322  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
323  bit isReMaterializable = 0; // Is this instruction re-materializable?
324  bit isPredicable = 0;     // Is this instruction predicable?
325  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
326  bit usesCustomInserter = 0; // Pseudo instr needing special help.
327  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
328  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
329  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
330  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
331  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
332  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
333                            // If so, won't have encoding information for
334                            // the [MC]CodeEmitter stuff.
335
336  // Side effect flags - When set, the flags have these meanings:
337  //
338  //  hasSideEffects - The instruction has side effects that are not
339  //    captured by any operands of the instruction or other flags.
340  //
341  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
342  //    side effects.
343  bit hasSideEffects = 0;
344  bit neverHasSideEffects = 0;
345
346  // Is this instruction a "real" instruction (with a distinct machine
347  // encoding), or is it a pseudo instruction used for codegen modeling
348  // purposes.
349  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
350  // instructions can (and often do) still have encoding information
351  // associated with them. Once we've migrated all of them over to true
352  // pseudo-instructions that are lowered to real instructions prior to
353  // the printer/emitter, we can remove this attribute and just use isPseudo.
354  bit isCodeGenOnly = 0;
355
356  // Is this instruction a pseudo instruction for use by the assembler parser.
357  bit isAsmParserOnly = 0;
358
359  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
360
361  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
362
363  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
364  /// be encoded into the output machineinstr.
365  string DisableEncoding = "";
366
367  string PostEncoderMethod = "";
368  string DecoderMethod = "";
369
370  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
371  bits<64> TSFlags = 0;
372
373  ///@name Assembler Parser Support
374  ///@{
375
376  string AsmMatchConverter = "";
377
378  ///@}
379}
380
381/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
382/// Which instruction it expands to and how the operands map from the
383/// pseudo.
384class PseudoInstExpansion<dag Result> {
385  dag ResultInst = Result;     // The instruction to generate.
386  bit isPseudo = 1;
387}
388
389/// Predicates - These are extra conditionals which are turned into instruction
390/// selector matching code. Currently each predicate is just a string.
391class Predicate<string cond> {
392  string CondString = cond;
393
394  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
395  /// matcher, this is true.  Targets should set this by inheriting their
396  /// feature from the AssemblerPredicate class in addition to Predicate.
397  bit AssemblerMatcherPredicate = 0;
398
399  /// AssemblerCondString - Name of the subtarget feature being tested used
400  /// as alternative condition string used for assembler matcher.
401  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
402  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
403  /// It can also list multiple features separated by ",".
404  /// e.g. "ModeThumb,FeatureThumb2" is translated to
405  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
406  string AssemblerCondString = "";
407}
408
409/// NoHonorSignDependentRounding - This predicate is true if support for
410/// sign-dependent-rounding is not enabled.
411def NoHonorSignDependentRounding
412 : Predicate<"!HonorSignDependentRoundingFPMath()">;
413
414class Requires<list<Predicate> preds> {
415  list<Predicate> Predicates = preds;
416}
417
418/// ops definition - This is just a simple marker used to identify the operand
419/// list for an instruction. outs and ins are identical both syntactically and
420/// semanticallyr; they are used to define def operands and use operands to
421/// improve readibility. This should be used like this:
422///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
423def ops;
424def outs;
425def ins;
426
427/// variable_ops definition - Mark this instruction as taking a variable number
428/// of operands.
429def variable_ops;
430
431
432/// PointerLikeRegClass - Values that are designed to have pointer width are
433/// derived from this.  TableGen treats the register class as having a symbolic
434/// type that it doesn't know, and resolves the actual regclass to use by using
435/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
436class PointerLikeRegClass<int Kind> {
437  int RegClassKind = Kind;
438}
439
440
441/// ptr_rc definition - Mark this operand as being a pointer value whose
442/// register class is resolved dynamically via a callback to TargetInstrInfo.
443/// FIXME: We should probably change this to a class which contain a list of
444/// flags. But currently we have but one flag.
445def ptr_rc : PointerLikeRegClass<0>;
446
447/// unknown definition - Mark this operand as being of unknown type, causing
448/// it to be resolved by inference in the context it is used.
449def unknown;
450
451/// AsmOperandClass - Representation for the kinds of operands which the target
452/// specific parser can create and the assembly matcher may need to distinguish.
453///
454/// Operand classes are used to define the order in which instructions are
455/// matched, to ensure that the instruction which gets matched for any
456/// particular list of operands is deterministic.
457///
458/// The target specific parser must be able to classify a parsed operand into a
459/// unique class which does not partially overlap with any other classes. It can
460/// match a subset of some other class, in which case the super class field
461/// should be defined.
462class AsmOperandClass {
463  /// The name to use for this class, which should be usable as an enum value.
464  string Name = ?;
465
466  /// The super classes of this operand.
467  list<AsmOperandClass> SuperClasses = [];
468
469  /// The name of the method on the target specific operand to call to test
470  /// whether the operand is an instance of this class. If not set, this will
471  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
472  /// signature should be:
473  ///   bool isFoo() const;
474  string PredicateMethod = ?;
475
476  /// The name of the method on the target specific operand to call to add the
477  /// target specific operand to an MCInst. If not set, this will default to
478  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
479  /// signature should be:
480  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
481  string RenderMethod = ?;
482
483  /// The name of the method on the target specific operand to call to custom
484  /// handle the operand parsing. This is useful when the operands do not relate
485  /// to immediates or registers and are very instruction specific (as flags to
486  /// set in a processor register, coprocessor number, ...).
487  string ParserMethod = ?;
488}
489
490def ImmAsmOperand : AsmOperandClass {
491  let Name = "Imm";
492}
493
494/// Operand Types - These provide the built-in operand types that may be used
495/// by a target.  Targets can optionally provide their own operand types as
496/// needed, though this should not be needed for RISC targets.
497class Operand<ValueType ty> {
498  ValueType Type = ty;
499  string PrintMethod = "printOperand";
500  string EncoderMethod = "";
501  string DecoderMethod = "";
502  string AsmOperandLowerMethod = ?;
503  dag MIOperandInfo = (ops);
504
505  // ParserMatchClass - The "match class" that operands of this type fit
506  // in. Match classes are used to define the order in which instructions are
507  // match, to ensure that which instructions gets matched is deterministic.
508  //
509  // The target specific parser must be able to classify an parsed operand into
510  // a unique class, which does not partially overlap with any other classes. It
511  // can match a subset of some other class, in which case the AsmOperandClass
512  // should declare the other operand as one of its super classes.
513  AsmOperandClass ParserMatchClass = ImmAsmOperand;
514}
515
516class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
517  // RegClass - The register class of the operand.
518  RegisterClass RegClass = regclass;
519  // PrintMethod - The target method to call to print register operands of
520  // this type. The method normally will just use an alt-name index to look
521  // up the name to print. Default to the generic printOperand().
522  string PrintMethod = pm;
523  // ParserMatchClass - The "match class" that operands of this type fit
524  // in. Match classes are used to define the order in which instructions are
525  // match, to ensure that which instructions gets matched is deterministic.
526  //
527  // The target specific parser must be able to classify an parsed operand into
528  // a unique class, which does not partially overlap with any other classes. It
529  // can match a subset of some other class, in which case the AsmOperandClass
530  // should declare the other operand as one of its super classes.
531  AsmOperandClass ParserMatchClass;
532}
533
534def i1imm  : Operand<i1>;
535def i8imm  : Operand<i8>;
536def i16imm : Operand<i16>;
537def i32imm : Operand<i32>;
538def i64imm : Operand<i64>;
539
540def f32imm : Operand<f32>;
541def f64imm : Operand<f64>;
542
543/// zero_reg definition - Special node to stand for the zero register.
544///
545def zero_reg;
546
547/// PredicateOperand - This can be used to define a predicate operand for an
548/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
549/// AlwaysVal specifies the value of this predicate when set to "always
550/// execute".
551class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
552  : Operand<ty> {
553  let MIOperandInfo = OpTypes;
554  dag DefaultOps = AlwaysVal;
555}
556
557/// OptionalDefOperand - This is used to define a optional definition operand
558/// for an instruction. DefaultOps is the register the operand represents if
559/// none is supplied, e.g. zero_reg.
560class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
561  : Operand<ty> {
562  let MIOperandInfo = OpTypes;
563  dag DefaultOps = defaultops;
564}
565
566
567// InstrInfo - This class should only be instantiated once to provide parameters
568// which are global to the target machine.
569//
570class InstrInfo {
571  // Target can specify its instructions in either big or little-endian formats.
572  // For instance, while both Sparc and PowerPC are big-endian platforms, the
573  // Sparc manual specifies its instructions in the format [31..0] (big), while
574  // PowerPC specifies them using the format [0..31] (little).
575  bit isLittleEndianEncoding = 0;
576}
577
578// Standard Pseudo Instructions.
579// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
580// Only these instructions are allowed in the TargetOpcode namespace.
581let isCodeGenOnly = 1, Namespace = "TargetOpcode" in {
582def PHI : Instruction {
583  let OutOperandList = (outs);
584  let InOperandList = (ins variable_ops);
585  let AsmString = "PHINODE";
586}
587def INLINEASM : Instruction {
588  let OutOperandList = (outs);
589  let InOperandList = (ins variable_ops);
590  let AsmString = "";
591  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
592}
593def PROLOG_LABEL : Instruction {
594  let OutOperandList = (outs);
595  let InOperandList = (ins i32imm:$id);
596  let AsmString = "";
597  let hasCtrlDep = 1;
598  let isNotDuplicable = 1;
599}
600def EH_LABEL : Instruction {
601  let OutOperandList = (outs);
602  let InOperandList = (ins i32imm:$id);
603  let AsmString = "";
604  let hasCtrlDep = 1;
605  let isNotDuplicable = 1;
606}
607def GC_LABEL : Instruction {
608  let OutOperandList = (outs);
609  let InOperandList = (ins i32imm:$id);
610  let AsmString = "";
611  let hasCtrlDep = 1;
612  let isNotDuplicable = 1;
613}
614def KILL : Instruction {
615  let OutOperandList = (outs);
616  let InOperandList = (ins variable_ops);
617  let AsmString = "";
618  let neverHasSideEffects = 1;
619}
620def EXTRACT_SUBREG : Instruction {
621  let OutOperandList = (outs unknown:$dst);
622  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
623  let AsmString = "";
624  let neverHasSideEffects = 1;
625}
626def INSERT_SUBREG : Instruction {
627  let OutOperandList = (outs unknown:$dst);
628  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
629  let AsmString = "";
630  let neverHasSideEffects = 1;
631  let Constraints = "$supersrc = $dst";
632}
633def IMPLICIT_DEF : Instruction {
634  let OutOperandList = (outs unknown:$dst);
635  let InOperandList = (ins);
636  let AsmString = "";
637  let neverHasSideEffects = 1;
638  let isReMaterializable = 1;
639  let isAsCheapAsAMove = 1;
640}
641def SUBREG_TO_REG : Instruction {
642  let OutOperandList = (outs unknown:$dst);
643  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
644  let AsmString = "";
645  let neverHasSideEffects = 1;
646}
647def COPY_TO_REGCLASS : Instruction {
648  let OutOperandList = (outs unknown:$dst);
649  let InOperandList = (ins unknown:$src, i32imm:$regclass);
650  let AsmString = "";
651  let neverHasSideEffects = 1;
652  let isAsCheapAsAMove = 1;
653}
654def DBG_VALUE : Instruction {
655  let OutOperandList = (outs);
656  let InOperandList = (ins variable_ops);
657  let AsmString = "DBG_VALUE";
658  let neverHasSideEffects = 1;
659}
660def REG_SEQUENCE : Instruction {
661  let OutOperandList = (outs unknown:$dst);
662  let InOperandList = (ins variable_ops);
663  let AsmString = "";
664  let neverHasSideEffects = 1;
665  let isAsCheapAsAMove = 1;
666}
667def COPY : Instruction {
668  let OutOperandList = (outs unknown:$dst);
669  let InOperandList = (ins unknown:$src);
670  let AsmString = "";
671  let neverHasSideEffects = 1;
672  let isAsCheapAsAMove = 1;
673}
674}
675
676//===----------------------------------------------------------------------===//
677// AsmParser - This class can be implemented by targets that wish to implement
678// .s file parsing.
679//
680// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
681// syntax on X86 for example).
682//
683class AsmParser {
684  // AsmParserClassName - This specifies the suffix to use for the asmparser
685  // class.  Generated AsmParser classes are always prefixed with the target
686  // name.
687  string AsmParserClassName  = "AsmParser";
688
689  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
690  // function of the AsmParser class to call on every matched instruction.
691  // This can be used to perform target specific instruction post-processing.
692  string AsmParserInstCleanup  = "";
693
694  // Variant - AsmParsers can be of multiple different variants.  Variants are
695  // used to support targets that need to parser multiple formats for the
696  // assembly language.
697  int Variant = 0;
698
699  // CommentDelimiter - If given, the delimiter string used to recognize
700  // comments which are hard coded in the .td assembler strings for individual
701  // instructions.
702  string CommentDelimiter = "";
703
704  // RegisterPrefix - If given, the token prefix which indicates a register
705  // token. This is used by the matcher to automatically recognize hard coded
706  // register tokens as constrained registers, instead of tokens, for the
707  // purposes of matching.
708  string RegisterPrefix = "";
709}
710def DefaultAsmParser : AsmParser;
711
712/// AssemblerPredicate - This is a Predicate that can be used when the assembler
713/// matches instructions and aliases.
714class AssemblerPredicate<string cond> {
715  bit AssemblerMatcherPredicate = 1;
716  string AssemblerCondString = cond;
717}
718
719
720
721/// MnemonicAlias - This class allows targets to define assembler mnemonic
722/// aliases.  This should be used when all forms of one mnemonic are accepted
723/// with a different mnemonic.  For example, X86 allows:
724///   sal %al, 1    -> shl %al, 1
725///   sal %ax, %cl  -> shl %ax, %cl
726///   sal %eax, %cl -> shl %eax, %cl
727/// etc.  Though "sal" is accepted with many forms, all of them are directly
728/// translated to a shl, so it can be handled with (in the case of X86, it
729/// actually has one for each suffix as well):
730///   def : MnemonicAlias<"sal", "shl">;
731///
732/// Mnemonic aliases are mapped before any other translation in the match phase,
733/// and do allow Requires predicates, e.g.:
734///
735///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
736///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
737///
738class MnemonicAlias<string From, string To> {
739  string FromMnemonic = From;
740  string ToMnemonic = To;
741
742  // Predicates - Predicates that must be true for this remapping to happen.
743  list<Predicate> Predicates = [];
744}
745
746/// InstAlias - This defines an alternate assembly syntax that is allowed to
747/// match an instruction that has a different (more canonical) assembly
748/// representation.
749class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
750  string AsmString = Asm;      // The .s format to match the instruction with.
751  dag ResultInst = Result;     // The MCInst to generate.
752  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
753
754  // Predicates - Predicates that must be true for this to match.
755  list<Predicate> Predicates = [];
756}
757
758//===----------------------------------------------------------------------===//
759// AsmWriter - This class can be implemented by targets that need to customize
760// the format of the .s file writer.
761//
762// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
763// on X86 for example).
764//
765class AsmWriter {
766  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
767  // class.  Generated AsmWriter classes are always prefixed with the target
768  // name.
769  string AsmWriterClassName  = "AsmPrinter";
770
771  // Variant - AsmWriters can be of multiple different variants.  Variants are
772  // used to support targets that need to emit assembly code in ways that are
773  // mostly the same for different targets, but have minor differences in
774  // syntax.  If the asmstring contains {|} characters in them, this integer
775  // will specify which alternative to use.  For example "{x|y|z}" with Variant
776  // == 1, will expand to "y".
777  int Variant = 0;
778
779
780  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
781  // layout, the asmwriter can actually generate output in this columns (in
782  // verbose-asm mode).  These two values indicate the width of the first column
783  // (the "opcode" area) and the width to reserve for subsequent operands.  When
784  // verbose asm mode is enabled, operands will be indented to respect this.
785  int FirstOperandColumn = -1;
786
787  // OperandSpacing - Space between operand columns.
788  int OperandSpacing = -1;
789
790  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
791  // generation of the printInstruction() method. For MC printers, it takes
792  // an MCInstr* operand, otherwise it takes a MachineInstr*.
793  bit isMCAsmWriter = 0;
794}
795def DefaultAsmWriter : AsmWriter;
796
797
798//===----------------------------------------------------------------------===//
799// Target - This class contains the "global" target information
800//
801class Target {
802  // InstructionSet - Instruction set description for this target.
803  InstrInfo InstructionSet;
804
805  // AssemblyParsers - The AsmParser instances available for this target.
806  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
807
808  // AssemblyWriters - The AsmWriter instances available for this target.
809  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
810}
811
812//===----------------------------------------------------------------------===//
813// SubtargetFeature - A characteristic of the chip set.
814//
815class SubtargetFeature<string n, string a,  string v, string d,
816                       list<SubtargetFeature> i = []> {
817  // Name - Feature name.  Used by command line (-mattr=) to determine the
818  // appropriate target chip.
819  //
820  string Name = n;
821
822  // Attribute - Attribute to be set by feature.
823  //
824  string Attribute = a;
825
826  // Value - Value the attribute to be set to by feature.
827  //
828  string Value = v;
829
830  // Desc - Feature description.  Used by command line (-mattr=) to display help
831  // information.
832  //
833  string Desc = d;
834
835  // Implies - Features that this feature implies are present. If one of those
836  // features isn't set, then this one shouldn't be set either.
837  //
838  list<SubtargetFeature> Implies = i;
839}
840
841//===----------------------------------------------------------------------===//
842// Processor chip sets - These values represent each of the chip sets supported
843// by the scheduler.  Each Processor definition requires corresponding
844// instruction itineraries.
845//
846class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
847  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
848  // appropriate target chip.
849  //
850  string Name = n;
851
852  // ProcItin - The scheduling information for the target processor.
853  //
854  ProcessorItineraries ProcItin = pi;
855
856  // Features - list of
857  list<SubtargetFeature> Features = f;
858}
859
860//===----------------------------------------------------------------------===//
861// Pull in the common support for calling conventions.
862//
863include "llvm/Target/TargetCallingConv.td"
864
865//===----------------------------------------------------------------------===//
866// Pull in the common support for DAG isel generation.
867//
868include "llvm/Target/TargetSelectionDAG.td"
869