Target.td revision 1f4a1493fb1f60547f84d2f3454c8ccd02895f83
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// Register - You should define one instance of this class for each register
30// in the target machine.  String n will become the "name" of the register.
31class Register<string n> {
32  string Namespace = "";
33  string AsmName = n;
34
35  // SpillSize - If this value is set to a non-zero value, it is the size in
36  // bits of the spill slot required to hold this register.  If this value is
37  // set to zero, the information is inferred from any register classes the
38  // register belongs to.
39  int SpillSize = 0;
40
41  // SpillAlignment - This value is used to specify the alignment required for
42  // spilling the register.  Like SpillSize, this should only be explicitly
43  // specified if the register is not in a register class.
44  int SpillAlignment = 0;
45
46  // Aliases - A list of registers that this register overlaps with.  A read or
47  // modification of this register can potentially read or modify the aliased
48  // registers.
49  list<Register> Aliases = [];
50  
51  // SubRegs - A list of registers that are parts of this register. Note these
52  // are "immediate" sub-registers and the registers within the list do not
53  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
54  // not [AX, AH, AL].
55  list<Register> SubRegs = [];
56
57  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
58  // to address it. Sub-sub-register indices are automatically inherited from
59  // SubRegs.
60  list<SubRegIndex> SubRegIndices = [];
61
62  // CompositeIndices - Specify subreg indices that don't correspond directly to
63  // a register in SubRegs and are not inherited. The following formats are
64  // supported:
65  //
66  // (a)     Identity  - Reg:a == Reg
67  // (a b)   Alias     - Reg:a == Reg:b
68  // (a b,c) Composite - Reg:a == (Reg:b):c
69  //
70  // This can be used to disambiguate a sub-sub-register that exists in more
71  // than one subregister and other weird stuff.
72  list<dag> CompositeIndices = [];
73
74  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
75  // These values can be determined by locating the <target>.h file in the
76  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
77  // order of these names correspond to the enumeration used by gcc.  A value of
78  // -1 indicates that the gcc number is undefined and -2 that register number
79  // is invalid for this mode/flavour.
80  list<int> DwarfNumbers = [];
81}
82
83// RegisterWithSubRegs - This can be used to define instances of Register which
84// need to specify sub-registers.
85// List "subregs" specifies which registers are sub-registers to this one. This
86// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
87// This allows the code generator to be careful not to put two values with 
88// overlapping live ranges into registers which alias.
89class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
90  let SubRegs = subregs;
91}
92
93// RegisterClass - Now that all of the registers are defined, and aliases
94// between registers are defined, specify which registers belong to which
95// register classes.  This also defines the default allocation order of
96// registers by register allocators.
97//
98class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
99                    list<Register> regList> {
100  string Namespace = namespace;
101
102  // RegType - Specify the list ValueType of the registers in this register
103  // class.  Note that all registers in a register class must have the same
104  // ValueTypes.  This is a list because some targets permit storing different 
105  // types in same register, for example vector values with 128-bit total size,
106  // but different count/size of items, like SSE on x86.
107  //
108  list<ValueType> RegTypes = regTypes;
109
110  // Size - Specify the spill size in bits of the registers.  A default value of
111  // zero lets tablgen pick an appropriate size.
112  int Size = 0;
113
114  // Alignment - Specify the alignment required of the registers when they are
115  // stored or loaded to memory.
116  //
117  int Alignment = alignment;
118
119  // CopyCost - This value is used to specify the cost of copying a value
120  // between two registers in this register class. The default value is one
121  // meaning it takes a single instruction to perform the copying. A negative
122  // value means copying is extremely expensive or impossible.
123  int CopyCost = 1;
124
125  // MemberList - Specify which registers are in this class.  If the
126  // allocation_order_* method are not specified, this also defines the order of
127  // allocation used by the register allocator.
128  //
129  list<Register> MemberList = regList;
130  
131  // SubRegClasses - Specify the register class of subregisters as a list of
132  // dags: (RegClass SubRegIndex, SubRegindex, ...)
133  list<dag> SubRegClasses = [];
134
135  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
136  // code into a generated register class.   The normal usage of this is to 
137  // overload virtual methods.
138  code MethodProtos = [{}];
139  code MethodBodies = [{}];
140}
141
142
143//===----------------------------------------------------------------------===//
144// DwarfRegNum - This class provides a mapping of the llvm register enumeration
145// to the register numbering used by gcc and gdb.  These values are used by a
146// debug information writer to describe where values may be located during
147// execution.
148class DwarfRegNum<list<int> Numbers> {
149  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
150  // These values can be determined by locating the <target>.h file in the
151  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
152  // order of these names correspond to the enumeration used by gcc.  A value of
153  // -1 indicates that the gcc number is undefined and -2 that register number is 
154  // invalid for this mode/flavour.
155  list<int> DwarfNumbers = Numbers;
156}
157
158//===----------------------------------------------------------------------===//
159// Pull in the common support for scheduling
160//
161include "llvm/Target/TargetSchedule.td"
162
163class Predicate; // Forward def
164
165//===----------------------------------------------------------------------===//
166// Instruction set description - These classes correspond to the C++ classes in
167// the Target/TargetInstrInfo.h file.
168//
169class Instruction {
170  string Namespace = "";
171
172  dag OutOperandList;       // An dag containing the MI def operand list.
173  dag InOperandList;        // An dag containing the MI use operand list.
174  string AsmString = "";    // The .s format to print the instruction with.
175
176  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
177  // otherwise, uninitialized.
178  list<dag> Pattern;
179
180  // The follow state will eventually be inferred automatically from the
181  // instruction pattern.
182
183  list<Register> Uses = []; // Default to using no non-operand registers
184  list<Register> Defs = []; // Default to modifying no non-operand registers
185
186  // Predicates - List of predicates which will be turned into isel matching
187  // code.
188  list<Predicate> Predicates = [];
189
190  // Code size.
191  int CodeSize = 0;
192
193  // Added complexity passed onto matching pattern.
194  int AddedComplexity  = 0;
195
196  // These bits capture information about the high-level semantics of the
197  // instruction.
198  bit isReturn     = 0;     // Is this instruction a return instruction?
199  bit isBranch     = 0;     // Is this instruction a branch instruction?
200  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
201  bit isBarrier    = 0;     // Can control flow fall through this instruction?
202  bit isCall       = 0;     // Is this instruction a call instruction?
203  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
204  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
205  bit mayStore     = 0;     // Is it possible for this inst to write memory?
206  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
207  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
208  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
209  bit isReMaterializable = 0; // Is this instruction re-materializable?
210  bit isPredicable = 0;     // Is this instruction predicable?
211  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
212  bit usesCustomInserter = 0; // Pseudo instr needing special help.
213  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
214  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
215  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
216  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
217  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
218
219  // Side effect flags - When set, the flags have these meanings:
220  //
221  //  hasSideEffects - The instruction has side effects that are not
222  //    captured by any operands of the instruction or other flags.
223  //
224  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
225  //    side effects.
226  bit hasSideEffects = 0;
227  bit neverHasSideEffects = 0;
228
229  // Is this instruction a "real" instruction (with a distinct machine
230  // encoding), or is it a pseudo instruction used for codegen modeling
231  // purposes.
232  bit isCodeGenOnly = 0;
233
234  // Is this instruction a pseudo instruction for use by the assembler parser.
235  bit isAsmParserOnly = 0;
236
237  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
238
239  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
240
241  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
242  /// be encoded into the output machineinstr.
243  string DisableEncoding = "";
244
245  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
246  bits<64> TSFlags = 0;
247}
248
249/// Predicates - These are extra conditionals which are turned into instruction
250/// selector matching code. Currently each predicate is just a string.
251class Predicate<string cond> {
252  string CondString = cond;
253}
254
255/// NoHonorSignDependentRounding - This predicate is true if support for
256/// sign-dependent-rounding is not enabled.
257def NoHonorSignDependentRounding
258 : Predicate<"!HonorSignDependentRoundingFPMath()">;
259
260class Requires<list<Predicate> preds> {
261  list<Predicate> Predicates = preds;
262}
263
264/// ops definition - This is just a simple marker used to identify the operands
265/// list for an instruction. outs and ins are identical both syntatically and
266/// semantically, they are used to define def operands and use operands to
267/// improve readibility. This should be used like this:
268///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
269def ops;
270def outs;
271def ins;
272
273/// variable_ops definition - Mark this instruction as taking a variable number
274/// of operands.
275def variable_ops;
276
277
278/// PointerLikeRegClass - Values that are designed to have pointer width are
279/// derived from this.  TableGen treats the register class as having a symbolic
280/// type that it doesn't know, and resolves the actual regclass to use by using
281/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
282class PointerLikeRegClass<int Kind> {
283  int RegClassKind = Kind;
284}
285
286
287/// ptr_rc definition - Mark this operand as being a pointer value whose
288/// register class is resolved dynamically via a callback to TargetInstrInfo.
289/// FIXME: We should probably change this to a class which contain a list of
290/// flags. But currently we have but one flag.
291def ptr_rc : PointerLikeRegClass<0>;
292
293/// unknown definition - Mark this operand as being of unknown type, causing
294/// it to be resolved by inference in the context it is used.
295def unknown;
296
297/// AsmOperandClass - Representation for the kinds of operands which the target
298/// specific parser can create and the assembly matcher may need to distinguish.
299///
300/// Operand classes are used to define the order in which instructions are
301/// matched, to ensure that the instruction which gets matched for any
302/// particular list of operands is deterministic.
303///
304/// The target specific parser must be able to classify a parsed operand into a
305/// unique class which does not partially overlap with any other classes. It can
306/// match a subset of some other class, in which case the super class field
307/// should be defined.
308class AsmOperandClass {
309  /// The name to use for this class, which should be usable as an enum value.
310  string Name = ?;
311
312  /// The super classes of this operand.
313  list<AsmOperandClass> SuperClasses = [];
314
315  /// The name of the method on the target specific operand to call to test
316  /// whether the operand is an instance of this class. If not set, this will
317  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
318  /// signature should be:
319  ///   bool isFoo() const;
320  string PredicateMethod = ?;
321
322  /// The name of the method on the target specific operand to call to add the
323  /// target specific operand to an MCInst. If not set, this will default to
324  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
325  /// signature should be:
326  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
327  string RenderMethod = ?;
328}
329
330def ImmAsmOperand : AsmOperandClass {
331  let Name = "Imm";
332}
333   
334/// Operand Types - These provide the built-in operand types that may be used
335/// by a target.  Targets can optionally provide their own operand types as
336/// needed, though this should not be needed for RISC targets.
337class Operand<ValueType ty> {
338  ValueType Type = ty;
339  string PrintMethod = "printOperand";
340  string AsmOperandLowerMethod = ?;
341  dag MIOperandInfo = (ops);
342
343  // ParserMatchClass - The "match class" that operands of this type fit
344  // in. Match classes are used to define the order in which instructions are
345  // match, to ensure that which instructions gets matched is deterministic.
346  //
347  // The target specific parser must be able to classify an parsed operand into
348  // a unique class, which does not partially overlap with any other classes. It
349  // can match a subset of some other class, in which case the AsmOperandClass
350  // should declare the other operand as one of its super classes.
351  AsmOperandClass ParserMatchClass = ImmAsmOperand;
352}
353
354def i1imm  : Operand<i1>;
355def i8imm  : Operand<i8>;
356def i16imm : Operand<i16>;
357def i32imm : Operand<i32>;
358def i64imm : Operand<i64>;
359
360def f32imm : Operand<f32>;
361def f64imm : Operand<f64>;
362
363/// zero_reg definition - Special node to stand for the zero register.
364///
365def zero_reg;
366
367/// PredicateOperand - This can be used to define a predicate operand for an
368/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
369/// AlwaysVal specifies the value of this predicate when set to "always
370/// execute".
371class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
372  : Operand<ty> {
373  let MIOperandInfo = OpTypes;
374  dag DefaultOps = AlwaysVal;
375}
376
377/// OptionalDefOperand - This is used to define a optional definition operand
378/// for an instruction. DefaultOps is the register the operand represents if
379/// none is supplied, e.g. zero_reg.
380class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
381  : Operand<ty> {
382  let MIOperandInfo = OpTypes;
383  dag DefaultOps = defaultops;
384}
385
386
387// InstrInfo - This class should only be instantiated once to provide parameters
388// which are global to the target machine.
389//
390class InstrInfo {
391  // Target can specify its instructions in either big or little-endian formats.
392  // For instance, while both Sparc and PowerPC are big-endian platforms, the
393  // Sparc manual specifies its instructions in the format [31..0] (big), while
394  // PowerPC specifies them using the format [0..31] (little).
395  bit isLittleEndianEncoding = 0;
396}
397
398// Standard Pseudo Instructions.
399let isCodeGenOnly = 1 in {
400def PHI : Instruction {
401  let OutOperandList = (outs);
402  let InOperandList = (ins variable_ops);
403  let AsmString = "PHINODE";
404  let Namespace = "TargetOpcode";
405}
406def INLINEASM : Instruction {
407  let OutOperandList = (outs);
408  let InOperandList = (ins variable_ops);
409  let AsmString = "";
410  let Namespace = "TargetOpcode";
411}
412def DBG_LABEL : Instruction {
413  let OutOperandList = (outs);
414  let InOperandList = (ins i32imm:$id);
415  let AsmString = "";
416  let Namespace = "TargetOpcode";
417  let hasCtrlDep = 1;
418  let isNotDuplicable = 1;
419}
420def EH_LABEL : Instruction {
421  let OutOperandList = (outs);
422  let InOperandList = (ins i32imm:$id);
423  let AsmString = "";
424  let Namespace = "TargetOpcode";
425  let hasCtrlDep = 1;
426  let isNotDuplicable = 1;
427}
428def GC_LABEL : Instruction {
429  let OutOperandList = (outs);
430  let InOperandList = (ins i32imm:$id);
431  let AsmString = "";
432  let Namespace = "TargetOpcode";
433  let hasCtrlDep = 1;
434  let isNotDuplicable = 1;
435}
436def KILL : Instruction {
437  let OutOperandList = (outs);
438  let InOperandList = (ins variable_ops);
439  let AsmString = "";
440  let Namespace = "TargetOpcode";
441  let neverHasSideEffects = 1;
442}
443def EXTRACT_SUBREG : Instruction {
444  let OutOperandList = (outs unknown:$dst);
445  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
446  let AsmString = "";
447  let Namespace = "TargetOpcode";
448  let neverHasSideEffects = 1;
449}
450def INSERT_SUBREG : Instruction {
451  let OutOperandList = (outs unknown:$dst);
452  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
453  let AsmString = "";
454  let Namespace = "TargetOpcode";
455  let neverHasSideEffects = 1;
456  let Constraints = "$supersrc = $dst";
457}
458def IMPLICIT_DEF : Instruction {
459  let OutOperandList = (outs unknown:$dst);
460  let InOperandList = (ins);
461  let AsmString = "";
462  let Namespace = "TargetOpcode";
463  let neverHasSideEffects = 1;
464  let isReMaterializable = 1;
465  let isAsCheapAsAMove = 1;
466}
467def SUBREG_TO_REG : Instruction {
468  let OutOperandList = (outs unknown:$dst);
469  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
470  let AsmString = "";
471  let Namespace = "TargetOpcode";
472  let neverHasSideEffects = 1;
473}
474def COPY_TO_REGCLASS : Instruction {
475  let OutOperandList = (outs unknown:$dst);
476  let InOperandList = (ins unknown:$src, i32imm:$regclass);
477  let AsmString = "";
478  let Namespace = "TargetOpcode";
479  let neverHasSideEffects = 1;
480  let isAsCheapAsAMove = 1;
481}
482def DBG_VALUE : Instruction {
483  let OutOperandList = (outs);
484  let InOperandList = (ins variable_ops);
485  let AsmString = "DBG_VALUE";
486  let Namespace = "TargetOpcode";
487  let isAsCheapAsAMove = 1;
488}
489
490def REG_SEQUENCE : Instruction {
491  let OutOperandList = (outs unknown:$dst);
492  let InOperandList = (ins variable_ops);
493  let AsmString = "";
494  let Namespace = "TargetOpcode";
495  let neverHasSideEffects = 1;
496  let isAsCheapAsAMove = 1;
497}
498}
499
500//===----------------------------------------------------------------------===//
501// AsmParser - This class can be implemented by targets that wish to implement
502// .s file parsing.
503//
504// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
505// syntax on X86 for example).
506//
507class AsmParser {
508  // AsmParserClassName - This specifies the suffix to use for the asmparser
509  // class.  Generated AsmParser classes are always prefixed with the target
510  // name.
511  string AsmParserClassName  = "AsmParser";
512
513  // AsmParserInstCleanup - If non-empty, this is the name of a custom function on the
514  // AsmParser class to call on every matched instruction. This can be used to
515  // perform target specific instruction post-processing.
516  string AsmParserInstCleanup  = "";
517
518  // MatchInstructionName - The name of the instruction matching function to
519  // generate.
520  string MatchInstructionName  = "MatchInstruction";
521
522  // Variant - AsmParsers can be of multiple different variants.  Variants are
523  // used to support targets that need to parser multiple formats for the
524  // assembly language.
525  int Variant = 0;
526
527  // CommentDelimiter - If given, the delimiter string used to recognize
528  // comments which are hard coded in the .td assembler strings for individual
529  // instructions.
530  string CommentDelimiter = "";
531
532  // RegisterPrefix - If given, the token prefix which indicates a register
533  // token. This is used by the matcher to automatically recognize hard coded
534  // register tokens as constrained registers, instead of tokens, for the
535  // purposes of matching.
536  string RegisterPrefix = "";
537}
538def DefaultAsmParser : AsmParser;
539
540
541//===----------------------------------------------------------------------===//
542// AsmWriter - This class can be implemented by targets that need to customize
543// the format of the .s file writer.
544//
545// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
546// on X86 for example).
547//
548class AsmWriter {
549  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
550  // class.  Generated AsmWriter classes are always prefixed with the target
551  // name.
552  string AsmWriterClassName  = "AsmPrinter";
553
554  // InstFormatName - AsmWriters can specify the name of the format string to
555  // print instructions with.
556  string InstFormatName = "AsmString";
557
558  // Variant - AsmWriters can be of multiple different variants.  Variants are
559  // used to support targets that need to emit assembly code in ways that are
560  // mostly the same for different targets, but have minor differences in
561  // syntax.  If the asmstring contains {|} characters in them, this integer
562  // will specify which alternative to use.  For example "{x|y|z}" with Variant
563  // == 1, will expand to "y".
564  int Variant = 0;
565  
566  
567  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
568  // layout, the asmwriter can actually generate output in this columns (in
569  // verbose-asm mode).  These two values indicate the width of the first column
570  // (the "opcode" area) and the width to reserve for subsequent operands.  When
571  // verbose asm mode is enabled, operands will be indented to respect this.
572  int FirstOperandColumn = -1;
573  
574  // OperandSpacing - Space between operand columns.
575  int OperandSpacing = -1;
576}
577def DefaultAsmWriter : AsmWriter;
578
579
580//===----------------------------------------------------------------------===//
581// Target - This class contains the "global" target information
582//
583class Target {
584  // InstructionSet - Instruction set description for this target.
585  InstrInfo InstructionSet;
586
587  // AssemblyParsers - The AsmParser instances available for this target.
588  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
589
590  // AssemblyWriters - The AsmWriter instances available for this target.
591  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
592}
593
594//===----------------------------------------------------------------------===//
595// SubtargetFeature - A characteristic of the chip set.
596//
597class SubtargetFeature<string n, string a,  string v, string d,
598                       list<SubtargetFeature> i = []> {
599  // Name - Feature name.  Used by command line (-mattr=) to determine the
600  // appropriate target chip.
601  //
602  string Name = n;
603  
604  // Attribute - Attribute to be set by feature.
605  //
606  string Attribute = a;
607  
608  // Value - Value the attribute to be set to by feature.
609  //
610  string Value = v;
611  
612  // Desc - Feature description.  Used by command line (-mattr=) to display help
613  // information.
614  //
615  string Desc = d;
616
617  // Implies - Features that this feature implies are present. If one of those
618  // features isn't set, then this one shouldn't be set either.
619  //
620  list<SubtargetFeature> Implies = i;
621}
622
623//===----------------------------------------------------------------------===//
624// Processor chip sets - These values represent each of the chip sets supported
625// by the scheduler.  Each Processor definition requires corresponding
626// instruction itineraries.
627//
628class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
629  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
630  // appropriate target chip.
631  //
632  string Name = n;
633  
634  // ProcItin - The scheduling information for the target processor.
635  //
636  ProcessorItineraries ProcItin = pi;
637  
638  // Features - list of 
639  list<SubtargetFeature> Features = f;
640}
641
642//===----------------------------------------------------------------------===//
643// Pull in the common support for calling conventions.
644//
645include "llvm/Target/TargetCallingConv.td"
646
647//===----------------------------------------------------------------------===//
648// Pull in the common support for DAG isel generation.
649//
650include "llvm/Target/TargetSelectionDAG.td"
651