Target.td revision 2efd8acb3cc6ceb0ca32610389a53909896f99e5
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex<list<SubRegIndex> comps = []> {
26  string Namespace = "";
27
28  // ComposedOf - A list of two SubRegIndex instances, [A, B].
29  // This indicates that this SubRegIndex is the result of composing A and B.
30  list<SubRegIndex> ComposedOf = comps;
31}
32
33// RegAltNameIndex - The alternate name set to use for register operands of
34// this register class when printing.
35class RegAltNameIndex {
36  string Namespace = "";
37}
38def NoRegAltName : RegAltNameIndex;
39
40// Register - You should define one instance of this class for each register
41// in the target machine.  String n will become the "name" of the register.
42class Register<string n, list<string> altNames = []> {
43  string Namespace = "";
44  string AsmName = n;
45  list<string> AltNames = altNames;
46
47  // Aliases - A list of registers that this register overlaps with.  A read or
48  // modification of this register can potentially read or modify the aliased
49  // registers.
50  list<Register> Aliases = [];
51
52  // SubRegs - A list of registers that are parts of this register. Note these
53  // are "immediate" sub-registers and the registers within the list do not
54  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
55  // not [AX, AH, AL].
56  list<Register> SubRegs = [];
57
58  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
59  // to address it. Sub-sub-register indices are automatically inherited from
60  // SubRegs.
61  list<SubRegIndex> SubRegIndices = [];
62
63  // RegAltNameIndices - The alternate name indices which are valid for this
64  // register.
65  list<RegAltNameIndex> RegAltNameIndices = [];
66
67  // CompositeIndices - Specify subreg indices that don't correspond directly to
68  // a register in SubRegs and are not inherited. The following formats are
69  // supported:
70  //
71  // (a)     Identity  - Reg:a == Reg
72  // (a b)   Alias     - Reg:a == Reg:b
73  // (a b,c) Composite - Reg:a == (Reg:b):c
74  //
75  // This can be used to disambiguate a sub-sub-register that exists in more
76  // than one subregister and other weird stuff.
77  list<dag> CompositeIndices = [];
78
79  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
80  // These values can be determined by locating the <target>.h file in the
81  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
82  // order of these names correspond to the enumeration used by gcc.  A value of
83  // -1 indicates that the gcc number is undefined and -2 that register number
84  // is invalid for this mode/flavour.
85  list<int> DwarfNumbers = [];
86
87  // CostPerUse - Additional cost of instructions using this register compared
88  // to other registers in its class. The register allocator will try to
89  // minimize the number of instructions using a register with a CostPerUse.
90  // This is used by the x86-64 and ARM Thumb targets where some registers
91  // require larger instruction encodings.
92  int CostPerUse = 0;
93
94  // CoveredBySubRegs - When this bit is set, the value of this register is
95  // completely determined by the value of its sub-registers.  For example, the
96  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
97  // covered by its sub-register AX.
98  bit CoveredBySubRegs = 0;
99}
100
101// RegisterWithSubRegs - This can be used to define instances of Register which
102// need to specify sub-registers.
103// List "subregs" specifies which registers are sub-registers to this one. This
104// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
105// This allows the code generator to be careful not to put two values with
106// overlapping live ranges into registers which alias.
107class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
108  let SubRegs = subregs;
109}
110
111// RegisterClass - Now that all of the registers are defined, and aliases
112// between registers are defined, specify which registers belong to which
113// register classes.  This also defines the default allocation order of
114// registers by register allocators.
115//
116class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
117                    dag regList, RegAltNameIndex idx = NoRegAltName> {
118  string Namespace = namespace;
119
120  // RegType - Specify the list ValueType of the registers in this register
121  // class.  Note that all registers in a register class must have the same
122  // ValueTypes.  This is a list because some targets permit storing different
123  // types in same register, for example vector values with 128-bit total size,
124  // but different count/size of items, like SSE on x86.
125  //
126  list<ValueType> RegTypes = regTypes;
127
128  // Size - Specify the spill size in bits of the registers.  A default value of
129  // zero lets tablgen pick an appropriate size.
130  int Size = 0;
131
132  // Alignment - Specify the alignment required of the registers when they are
133  // stored or loaded to memory.
134  //
135  int Alignment = alignment;
136
137  // CopyCost - This value is used to specify the cost of copying a value
138  // between two registers in this register class. The default value is one
139  // meaning it takes a single instruction to perform the copying. A negative
140  // value means copying is extremely expensive or impossible.
141  int CopyCost = 1;
142
143  // MemberList - Specify which registers are in this class.  If the
144  // allocation_order_* method are not specified, this also defines the order of
145  // allocation used by the register allocator.
146  //
147  dag MemberList = regList;
148
149  // AltNameIndex - The alternate register name to use when printing operands
150  // of this register class. Every register in the register class must have
151  // a valid alternate name for the given index.
152  RegAltNameIndex altNameIndex = idx;
153
154  // SubRegClasses - Specify the register class of subregisters as a list of
155  // dags: (RegClass SubRegIndex, SubRegindex, ...)
156  list<dag> SubRegClasses = [];
157
158  // isAllocatable - Specify that the register class can be used for virtual
159  // registers and register allocation.  Some register classes are only used to
160  // model instruction operand constraints, and should have isAllocatable = 0.
161  bit isAllocatable = 1;
162
163  // AltOrders - List of alternative allocation orders. The default order is
164  // MemberList itself, and that is good enough for most targets since the
165  // register allocators automatically remove reserved registers and move
166  // callee-saved registers to the end.
167  list<dag> AltOrders = [];
168
169  // AltOrderSelect - The body of a function that selects the allocation order
170  // to use in a given machine function. The code will be inserted in a
171  // function like this:
172  //
173  //   static inline unsigned f(const MachineFunction &MF) { ... }
174  //
175  // The function should return 0 to select the default order defined by
176  // MemberList, 1 to select the first AltOrders entry and so on.
177  code AltOrderSelect = [{}];
178}
179
180// The memberList in a RegisterClass is a dag of set operations. TableGen
181// evaluates these set operations and expand them into register lists. These
182// are the most common operation, see test/TableGen/SetTheory.td for more
183// examples of what is possible:
184//
185// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
186// register class, or a sub-expression. This is also the way to simply list
187// registers.
188//
189// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
190//
191// (and GPR, CSR) - Set intersection. All registers from the first set that are
192// also in the second set.
193//
194// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
195// numbered registers.
196//
197// (shl GPR, 4) - Remove the first N elements.
198//
199// (trunc GPR, 4) - Truncate after the first N elements.
200//
201// (rotl GPR, 1) - Rotate N places to the left.
202//
203// (rotr GPR, 1) - Rotate N places to the right.
204//
205// (decimate GPR, 2) - Pick every N'th element, starting with the first.
206//
207// (interleave A, B, ...) - Interleave the elements from each argument list.
208//
209// All of these operators work on ordered sets, not lists. That means
210// duplicates are removed from sub-expressions.
211
212// Set operators. The rest is defined in TargetSelectionDAG.td.
213def sequence;
214def decimate;
215def interleave;
216
217// RegisterTuples - Automatically generate super-registers by forming tuples of
218// sub-registers. This is useful for modeling register sequence constraints
219// with pseudo-registers that are larger than the architectural registers.
220//
221// The sub-register lists are zipped together:
222//
223//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
224//
225// Generates the same registers as:
226//
227//   let SubRegIndices = [sube, subo] in {
228//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
229//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
230//   }
231//
232// The generated pseudo-registers inherit super-classes and fields from their
233// first sub-register. Most fields from the Register class are inferred, and
234// the AsmName and Dwarf numbers are cleared.
235//
236// RegisterTuples instances can be used in other set operations to form
237// register classes and so on. This is the only way of using the generated
238// registers.
239class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
240  // SubRegs - N lists of registers to be zipped up. Super-registers are
241  // synthesized from the first element of each SubRegs list, the second
242  // element and so on.
243  list<dag> SubRegs = Regs;
244
245  // SubRegIndices - N SubRegIndex instances. This provides the names of the
246  // sub-registers in the synthesized super-registers.
247  list<SubRegIndex> SubRegIndices = Indices;
248
249  // Compose sub-register indices like in a normal Register.
250  list<dag> CompositeIndices = [];
251}
252
253
254//===----------------------------------------------------------------------===//
255// DwarfRegNum - This class provides a mapping of the llvm register enumeration
256// to the register numbering used by gcc and gdb.  These values are used by a
257// debug information writer to describe where values may be located during
258// execution.
259class DwarfRegNum<list<int> Numbers> {
260  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
261  // These values can be determined by locating the <target>.h file in the
262  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
263  // order of these names correspond to the enumeration used by gcc.  A value of
264  // -1 indicates that the gcc number is undefined and -2 that register number
265  // is invalid for this mode/flavour.
266  list<int> DwarfNumbers = Numbers;
267}
268
269// DwarfRegAlias - This class declares that a given register uses the same dwarf
270// numbers as another one. This is useful for making it clear that the two
271// registers do have the same number. It also lets us build a mapping
272// from dwarf register number to llvm register.
273class DwarfRegAlias<Register reg> {
274      Register DwarfAlias = reg;
275}
276
277//===----------------------------------------------------------------------===//
278// Pull in the common support for scheduling
279//
280include "llvm/Target/TargetSchedule.td"
281
282class Predicate; // Forward def
283
284//===----------------------------------------------------------------------===//
285// Instruction set description - These classes correspond to the C++ classes in
286// the Target/TargetInstrInfo.h file.
287//
288class Instruction {
289  string Namespace = "";
290
291  dag OutOperandList;       // An dag containing the MI def operand list.
292  dag InOperandList;        // An dag containing the MI use operand list.
293  string AsmString = "";    // The .s format to print the instruction with.
294
295  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
296  // otherwise, uninitialized.
297  list<dag> Pattern;
298
299  // The follow state will eventually be inferred automatically from the
300  // instruction pattern.
301
302  list<Register> Uses = []; // Default to using no non-operand registers
303  list<Register> Defs = []; // Default to modifying no non-operand registers
304
305  // Predicates - List of predicates which will be turned into isel matching
306  // code.
307  list<Predicate> Predicates = [];
308
309  // Size - Size of encoded instruction, or zero if the size cannot be determined
310  // from the opcode.
311  int Size = 0;
312
313  // DecoderNamespace - The "namespace" in which this instruction exists, on
314  // targets like ARM which multiple ISA namespaces exist.
315  string DecoderNamespace = "";
316
317  // Code size, for instruction selection.
318  // FIXME: What does this actually mean?
319  int CodeSize = 0;
320
321  // Added complexity passed onto matching pattern.
322  int AddedComplexity  = 0;
323
324  // These bits capture information about the high-level semantics of the
325  // instruction.
326  bit isReturn     = 0;     // Is this instruction a return instruction?
327  bit isBranch     = 0;     // Is this instruction a branch instruction?
328  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
329  bit isCompare    = 0;     // Is this instruction a comparison instruction?
330  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
331  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
332  bit isBarrier    = 0;     // Can control flow fall through this instruction?
333  bit isCall       = 0;     // Is this instruction a call instruction?
334  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
335  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
336  bit mayStore     = 0;     // Is it possible for this inst to write memory?
337  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
338  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
339  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
340  bit isReMaterializable = 0; // Is this instruction re-materializable?
341  bit isPredicable = 0;     // Is this instruction predicable?
342  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
343  bit usesCustomInserter = 0; // Pseudo instr needing special help.
344  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
345  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
346  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
347  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
348  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
349  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
350  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
351                            // If so, won't have encoding information for
352                            // the [MC]CodeEmitter stuff.
353
354  // Side effect flags - When set, the flags have these meanings:
355  //
356  //  hasSideEffects - The instruction has side effects that are not
357  //    captured by any operands of the instruction or other flags.
358  //
359  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
360  //    side effects.
361  bit hasSideEffects = 0;
362  bit neverHasSideEffects = 0;
363
364  // Is this instruction a "real" instruction (with a distinct machine
365  // encoding), or is it a pseudo instruction used for codegen modeling
366  // purposes.
367  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
368  // instructions can (and often do) still have encoding information
369  // associated with them. Once we've migrated all of them over to true
370  // pseudo-instructions that are lowered to real instructions prior to
371  // the printer/emitter, we can remove this attribute and just use isPseudo.
372  //
373  // The intended use is:
374  // isPseudo: Does not have encoding information and should be expanded,
375  //   at the latest, during lowering to MCInst.
376  //
377  // isCodeGenOnly: Does have encoding information and can go through to the
378  //   CodeEmitter unchanged, but duplicates a canonical instruction
379  //   definition's encoding and should be ignored when constructing the
380  //   assembler match tables.
381  bit isCodeGenOnly = 0;
382
383  // Is this instruction a pseudo instruction for use by the assembler parser.
384  bit isAsmParserOnly = 0;
385
386  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
387
388  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
389
390  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
391  /// be encoded into the output machineinstr.
392  string DisableEncoding = "";
393
394  string PostEncoderMethod = "";
395  string DecoderMethod = "";
396
397  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
398  bits<64> TSFlags = 0;
399
400  ///@name Assembler Parser Support
401  ///@{
402
403  string AsmMatchConverter = "";
404
405  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
406  /// two-operand matcher inst-alias for a three operand instruction.
407  /// For example, the arm instruction "add r3, r3, r5" can be written
408  /// as "add r3, r5". The constraint is of the same form as a tied-operand
409  /// constraint. For example, "$Rn = $Rd".
410  string TwoOperandAliasConstraint = "";
411
412  ///@}
413}
414
415/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
416/// Which instruction it expands to and how the operands map from the
417/// pseudo.
418class PseudoInstExpansion<dag Result> {
419  dag ResultInst = Result;     // The instruction to generate.
420  bit isPseudo = 1;
421}
422
423/// Predicates - These are extra conditionals which are turned into instruction
424/// selector matching code. Currently each predicate is just a string.
425class Predicate<string cond> {
426  string CondString = cond;
427
428  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
429  /// matcher, this is true.  Targets should set this by inheriting their
430  /// feature from the AssemblerPredicate class in addition to Predicate.
431  bit AssemblerMatcherPredicate = 0;
432
433  /// AssemblerCondString - Name of the subtarget feature being tested used
434  /// as alternative condition string used for assembler matcher.
435  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
436  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
437  /// It can also list multiple features separated by ",".
438  /// e.g. "ModeThumb,FeatureThumb2" is translated to
439  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
440  string AssemblerCondString = "";
441}
442
443/// NoHonorSignDependentRounding - This predicate is true if support for
444/// sign-dependent-rounding is not enabled.
445def NoHonorSignDependentRounding
446 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
447
448class Requires<list<Predicate> preds> {
449  list<Predicate> Predicates = preds;
450}
451
452/// ops definition - This is just a simple marker used to identify the operand
453/// list for an instruction. outs and ins are identical both syntactically and
454/// semanticallyr; they are used to define def operands and use operands to
455/// improve readibility. This should be used like this:
456///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
457def ops;
458def outs;
459def ins;
460
461/// variable_ops definition - Mark this instruction as taking a variable number
462/// of operands.
463def variable_ops;
464
465
466/// PointerLikeRegClass - Values that are designed to have pointer width are
467/// derived from this.  TableGen treats the register class as having a symbolic
468/// type that it doesn't know, and resolves the actual regclass to use by using
469/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
470class PointerLikeRegClass<int Kind> {
471  int RegClassKind = Kind;
472}
473
474
475/// ptr_rc definition - Mark this operand as being a pointer value whose
476/// register class is resolved dynamically via a callback to TargetInstrInfo.
477/// FIXME: We should probably change this to a class which contain a list of
478/// flags. But currently we have but one flag.
479def ptr_rc : PointerLikeRegClass<0>;
480
481/// unknown definition - Mark this operand as being of unknown type, causing
482/// it to be resolved by inference in the context it is used.
483def unknown;
484
485/// AsmOperandClass - Representation for the kinds of operands which the target
486/// specific parser can create and the assembly matcher may need to distinguish.
487///
488/// Operand classes are used to define the order in which instructions are
489/// matched, to ensure that the instruction which gets matched for any
490/// particular list of operands is deterministic.
491///
492/// The target specific parser must be able to classify a parsed operand into a
493/// unique class which does not partially overlap with any other classes. It can
494/// match a subset of some other class, in which case the super class field
495/// should be defined.
496class AsmOperandClass {
497  /// The name to use for this class, which should be usable as an enum value.
498  string Name = ?;
499
500  /// The super classes of this operand.
501  list<AsmOperandClass> SuperClasses = [];
502
503  /// The name of the method on the target specific operand to call to test
504  /// whether the operand is an instance of this class. If not set, this will
505  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
506  /// signature should be:
507  ///   bool isFoo() const;
508  string PredicateMethod = ?;
509
510  /// The name of the method on the target specific operand to call to add the
511  /// target specific operand to an MCInst. If not set, this will default to
512  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
513  /// signature should be:
514  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
515  string RenderMethod = ?;
516
517  /// The name of the method on the target specific operand to call to custom
518  /// handle the operand parsing. This is useful when the operands do not relate
519  /// to immediates or registers and are very instruction specific (as flags to
520  /// set in a processor register, coprocessor number, ...).
521  string ParserMethod = ?;
522}
523
524def ImmAsmOperand : AsmOperandClass {
525  let Name = "Imm";
526}
527
528/// Operand Types - These provide the built-in operand types that may be used
529/// by a target.  Targets can optionally provide their own operand types as
530/// needed, though this should not be needed for RISC targets.
531class Operand<ValueType ty> {
532  ValueType Type = ty;
533  string PrintMethod = "printOperand";
534  string EncoderMethod = "";
535  string DecoderMethod = "";
536  string AsmOperandLowerMethod = ?;
537  string OperandType = "OPERAND_UNKNOWN";
538  dag MIOperandInfo = (ops);
539
540  // ParserMatchClass - The "match class" that operands of this type fit
541  // in. Match classes are used to define the order in which instructions are
542  // match, to ensure that which instructions gets matched is deterministic.
543  //
544  // The target specific parser must be able to classify an parsed operand into
545  // a unique class, which does not partially overlap with any other classes. It
546  // can match a subset of some other class, in which case the AsmOperandClass
547  // should declare the other operand as one of its super classes.
548  AsmOperandClass ParserMatchClass = ImmAsmOperand;
549}
550
551class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
552  // RegClass - The register class of the operand.
553  RegisterClass RegClass = regclass;
554  // PrintMethod - The target method to call to print register operands of
555  // this type. The method normally will just use an alt-name index to look
556  // up the name to print. Default to the generic printOperand().
557  string PrintMethod = pm;
558  // ParserMatchClass - The "match class" that operands of this type fit
559  // in. Match classes are used to define the order in which instructions are
560  // match, to ensure that which instructions gets matched is deterministic.
561  //
562  // The target specific parser must be able to classify an parsed operand into
563  // a unique class, which does not partially overlap with any other classes. It
564  // can match a subset of some other class, in which case the AsmOperandClass
565  // should declare the other operand as one of its super classes.
566  AsmOperandClass ParserMatchClass;
567}
568
569let OperandType = "OPERAND_IMMEDIATE" in {
570def i1imm  : Operand<i1>;
571def i8imm  : Operand<i8>;
572def i16imm : Operand<i16>;
573def i32imm : Operand<i32>;
574def i64imm : Operand<i64>;
575
576def f32imm : Operand<f32>;
577def f64imm : Operand<f64>;
578}
579
580/// zero_reg definition - Special node to stand for the zero register.
581///
582def zero_reg;
583
584/// PredicateOperand - This can be used to define a predicate operand for an
585/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
586/// AlwaysVal specifies the value of this predicate when set to "always
587/// execute".
588class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
589  : Operand<ty> {
590  let MIOperandInfo = OpTypes;
591  dag DefaultOps = AlwaysVal;
592}
593
594/// OptionalDefOperand - This is used to define a optional definition operand
595/// for an instruction. DefaultOps is the register the operand represents if
596/// none is supplied, e.g. zero_reg.
597class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
598  : Operand<ty> {
599  let MIOperandInfo = OpTypes;
600  dag DefaultOps = defaultops;
601}
602
603
604// InstrInfo - This class should only be instantiated once to provide parameters
605// which are global to the target machine.
606//
607class InstrInfo {
608  // Target can specify its instructions in either big or little-endian formats.
609  // For instance, while both Sparc and PowerPC are big-endian platforms, the
610  // Sparc manual specifies its instructions in the format [31..0] (big), while
611  // PowerPC specifies them using the format [0..31] (little).
612  bit isLittleEndianEncoding = 0;
613}
614
615// Standard Pseudo Instructions.
616// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
617// Only these instructions are allowed in the TargetOpcode namespace.
618let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
619def PHI : Instruction {
620  let OutOperandList = (outs);
621  let InOperandList = (ins variable_ops);
622  let AsmString = "PHINODE";
623}
624def INLINEASM : Instruction {
625  let OutOperandList = (outs);
626  let InOperandList = (ins variable_ops);
627  let AsmString = "";
628  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
629}
630def PROLOG_LABEL : Instruction {
631  let OutOperandList = (outs);
632  let InOperandList = (ins i32imm:$id);
633  let AsmString = "";
634  let hasCtrlDep = 1;
635  let isNotDuplicable = 1;
636}
637def EH_LABEL : Instruction {
638  let OutOperandList = (outs);
639  let InOperandList = (ins i32imm:$id);
640  let AsmString = "";
641  let hasCtrlDep = 1;
642  let isNotDuplicable = 1;
643}
644def GC_LABEL : Instruction {
645  let OutOperandList = (outs);
646  let InOperandList = (ins i32imm:$id);
647  let AsmString = "";
648  let hasCtrlDep = 1;
649  let isNotDuplicable = 1;
650}
651def KILL : Instruction {
652  let OutOperandList = (outs);
653  let InOperandList = (ins variable_ops);
654  let AsmString = "";
655  let neverHasSideEffects = 1;
656}
657def EXTRACT_SUBREG : Instruction {
658  let OutOperandList = (outs unknown:$dst);
659  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
660  let AsmString = "";
661  let neverHasSideEffects = 1;
662}
663def INSERT_SUBREG : Instruction {
664  let OutOperandList = (outs unknown:$dst);
665  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
666  let AsmString = "";
667  let neverHasSideEffects = 1;
668  let Constraints = "$supersrc = $dst";
669}
670def IMPLICIT_DEF : Instruction {
671  let OutOperandList = (outs unknown:$dst);
672  let InOperandList = (ins);
673  let AsmString = "";
674  let neverHasSideEffects = 1;
675  let isReMaterializable = 1;
676  let isAsCheapAsAMove = 1;
677}
678def SUBREG_TO_REG : Instruction {
679  let OutOperandList = (outs unknown:$dst);
680  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
681  let AsmString = "";
682  let neverHasSideEffects = 1;
683}
684def COPY_TO_REGCLASS : Instruction {
685  let OutOperandList = (outs unknown:$dst);
686  let InOperandList = (ins unknown:$src, i32imm:$regclass);
687  let AsmString = "";
688  let neverHasSideEffects = 1;
689  let isAsCheapAsAMove = 1;
690}
691def DBG_VALUE : Instruction {
692  let OutOperandList = (outs);
693  let InOperandList = (ins variable_ops);
694  let AsmString = "DBG_VALUE";
695  let neverHasSideEffects = 1;
696}
697def REG_SEQUENCE : Instruction {
698  let OutOperandList = (outs unknown:$dst);
699  let InOperandList = (ins variable_ops);
700  let AsmString = "";
701  let neverHasSideEffects = 1;
702  let isAsCheapAsAMove = 1;
703}
704def COPY : Instruction {
705  let OutOperandList = (outs unknown:$dst);
706  let InOperandList = (ins unknown:$src);
707  let AsmString = "";
708  let neverHasSideEffects = 1;
709  let isAsCheapAsAMove = 1;
710}
711def BUNDLE : Instruction {
712  let OutOperandList = (outs);
713  let InOperandList = (ins variable_ops);
714  let AsmString = "BUNDLE";
715}
716}
717
718//===----------------------------------------------------------------------===//
719// AsmParser - This class can be implemented by targets that wish to implement
720// .s file parsing.
721//
722// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
723// syntax on X86 for example).
724//
725class AsmParser {
726  // AsmParserClassName - This specifies the suffix to use for the asmparser
727  // class.  Generated AsmParser classes are always prefixed with the target
728  // name.
729  string AsmParserClassName  = "AsmParser";
730
731  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
732  // function of the AsmParser class to call on every matched instruction.
733  // This can be used to perform target specific instruction post-processing.
734  string AsmParserInstCleanup  = "";
735}
736def DefaultAsmParser : AsmParser;
737
738//===----------------------------------------------------------------------===//
739// AsmParserVariant - Subtargets can have multiple different assembly parsers 
740// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
741// implemented by targets to describe such variants.
742//
743class AsmParserVariant {
744  // Variant - AsmParsers can be of multiple different variants.  Variants are
745  // used to support targets that need to parser multiple formats for the
746  // assembly language.
747  int Variant = 0;
748
749  // CommentDelimiter - If given, the delimiter string used to recognize
750  // comments which are hard coded in the .td assembler strings for individual
751  // instructions.
752  string CommentDelimiter = "";
753
754  // RegisterPrefix - If given, the token prefix which indicates a register
755  // token. This is used by the matcher to automatically recognize hard coded
756  // register tokens as constrained registers, instead of tokens, for the
757  // purposes of matching.
758  string RegisterPrefix = "";
759}
760def DefaultAsmParserVariant : AsmParserVariant;
761
762/// AssemblerPredicate - This is a Predicate that can be used when the assembler
763/// matches instructions and aliases.
764class AssemblerPredicate<string cond> {
765  bit AssemblerMatcherPredicate = 1;
766  string AssemblerCondString = cond;
767}
768
769/// TokenAlias - This class allows targets to define assembler token
770/// operand aliases. That is, a token literal operand which is equivalent
771/// to another, canonical, token literal. For example, ARM allows:
772///   vmov.u32 s4, #0  -> vmov.i32, #0
773/// 'u32' is a more specific designator for the 32-bit integer type specifier
774/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
775///   def : TokenAlias<".u32", ".i32">;
776///
777/// This works by marking the match class of 'From' as a subclass of the
778/// match class of 'To'.
779class TokenAlias<string From, string To> {
780  string FromToken = From;
781  string ToToken = To;
782}
783
784/// MnemonicAlias - This class allows targets to define assembler mnemonic
785/// aliases.  This should be used when all forms of one mnemonic are accepted
786/// with a different mnemonic.  For example, X86 allows:
787///   sal %al, 1    -> shl %al, 1
788///   sal %ax, %cl  -> shl %ax, %cl
789///   sal %eax, %cl -> shl %eax, %cl
790/// etc.  Though "sal" is accepted with many forms, all of them are directly
791/// translated to a shl, so it can be handled with (in the case of X86, it
792/// actually has one for each suffix as well):
793///   def : MnemonicAlias<"sal", "shl">;
794///
795/// Mnemonic aliases are mapped before any other translation in the match phase,
796/// and do allow Requires predicates, e.g.:
797///
798///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
799///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
800///
801class MnemonicAlias<string From, string To> {
802  string FromMnemonic = From;
803  string ToMnemonic = To;
804
805  // Predicates - Predicates that must be true for this remapping to happen.
806  list<Predicate> Predicates = [];
807}
808
809/// InstAlias - This defines an alternate assembly syntax that is allowed to
810/// match an instruction that has a different (more canonical) assembly
811/// representation.
812class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
813  string AsmString = Asm;      // The .s format to match the instruction with.
814  dag ResultInst = Result;     // The MCInst to generate.
815  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
816
817  // Predicates - Predicates that must be true for this to match.
818  list<Predicate> Predicates = [];
819}
820
821//===----------------------------------------------------------------------===//
822// AsmWriter - This class can be implemented by targets that need to customize
823// the format of the .s file writer.
824//
825// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
826// on X86 for example).
827//
828class AsmWriter {
829  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
830  // class.  Generated AsmWriter classes are always prefixed with the target
831  // name.
832  string AsmWriterClassName  = "AsmPrinter";
833
834  // Variant - AsmWriters can be of multiple different variants.  Variants are
835  // used to support targets that need to emit assembly code in ways that are
836  // mostly the same for different targets, but have minor differences in
837  // syntax.  If the asmstring contains {|} characters in them, this integer
838  // will specify which alternative to use.  For example "{x|y|z}" with Variant
839  // == 1, will expand to "y".
840  int Variant = 0;
841
842
843  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
844  // layout, the asmwriter can actually generate output in this columns (in
845  // verbose-asm mode).  These two values indicate the width of the first column
846  // (the "opcode" area) and the width to reserve for subsequent operands.  When
847  // verbose asm mode is enabled, operands will be indented to respect this.
848  int FirstOperandColumn = -1;
849
850  // OperandSpacing - Space between operand columns.
851  int OperandSpacing = -1;
852
853  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
854  // generation of the printInstruction() method. For MC printers, it takes
855  // an MCInstr* operand, otherwise it takes a MachineInstr*.
856  bit isMCAsmWriter = 0;
857}
858def DefaultAsmWriter : AsmWriter;
859
860
861//===----------------------------------------------------------------------===//
862// Target - This class contains the "global" target information
863//
864class Target {
865  // InstructionSet - Instruction set description for this target.
866  InstrInfo InstructionSet;
867
868  // AssemblyParsers - The AsmParser instances available for this target.
869  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
870
871  /// AssemblyParserVariants - The AsmParserVariant instances available for 
872  /// this target.
873  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
874
875  // AssemblyWriters - The AsmWriter instances available for this target.
876  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
877}
878
879//===----------------------------------------------------------------------===//
880// SubtargetFeature - A characteristic of the chip set.
881//
882class SubtargetFeature<string n, string a,  string v, string d,
883                       list<SubtargetFeature> i = []> {
884  // Name - Feature name.  Used by command line (-mattr=) to determine the
885  // appropriate target chip.
886  //
887  string Name = n;
888
889  // Attribute - Attribute to be set by feature.
890  //
891  string Attribute = a;
892
893  // Value - Value the attribute to be set to by feature.
894  //
895  string Value = v;
896
897  // Desc - Feature description.  Used by command line (-mattr=) to display help
898  // information.
899  //
900  string Desc = d;
901
902  // Implies - Features that this feature implies are present. If one of those
903  // features isn't set, then this one shouldn't be set either.
904  //
905  list<SubtargetFeature> Implies = i;
906}
907
908//===----------------------------------------------------------------------===//
909// Processor chip sets - These values represent each of the chip sets supported
910// by the scheduler.  Each Processor definition requires corresponding
911// instruction itineraries.
912//
913class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
914  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
915  // appropriate target chip.
916  //
917  string Name = n;
918
919  // ProcItin - The scheduling information for the target processor.
920  //
921  ProcessorItineraries ProcItin = pi;
922
923  // Features - list of
924  list<SubtargetFeature> Features = f;
925}
926
927//===----------------------------------------------------------------------===//
928// Pull in the common support for calling conventions.
929//
930include "llvm/Target/TargetCallingConv.td"
931
932//===----------------------------------------------------------------------===//
933// Pull in the common support for DAG isel generation.
934//
935include "llvm/Target/TargetSelectionDAG.td"
936