Target.td revision 4150d83abe90a5da4ddf86433b7bf4329acfa57c
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine.  String n will become the "name" of the register.
26class Register<string n> {
27  string Namespace = "";
28  string AsmName = n;
29
30  // SpillSize - If this value is set to a non-zero value, it is the size in
31  // bits of the spill slot required to hold this register.  If this value is
32  // set to zero, the information is inferred from any register classes the
33  // register belongs to.
34  int SpillSize = 0;
35
36  // SpillAlignment - This value is used to specify the alignment required for
37  // spilling the register.  Like SpillSize, this should only be explicitly
38  // specified if the register is not in a register class.
39  int SpillAlignment = 0;
40
41  // Aliases - A list of registers that this register overlaps with.  A read or
42  // modification of this register can potentially read or modify the aliased
43  // registers.
44  list<Register> Aliases = [];
45  
46  // SubRegs - A list of registers that are parts of this register. Note these
47  // are "immediate" sub-registers and the registers within the list do not
48  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49  // not [AX, AH, AL].
50  list<Register> SubRegs = [];
51
52  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
53  // These values can be determined by locating the <target>.h file in the
54  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
55  // order of these names correspond to the enumeration used by gcc.  A value of
56  // -1 indicates that the gcc number is undefined and -2 that register number
57  // is invalid for this mode/flavour.
58  list<int> DwarfNumbers = [];
59}
60
61// RegisterWithSubRegs - This can be used to define instances of Register which
62// need to specify sub-registers.
63// List "subregs" specifies which registers are sub-registers to this one. This
64// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
65// This allows the code generator to be careful not to put two values with 
66// overlapping live ranges into registers which alias.
67class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
68  let SubRegs = subregs;
69}
70
71// SubRegSet - This can be used to define a specific mapping of registers to
72// indices, for use as named subregs of a particular physical register.  Each
73// register in 'subregs' becomes an addressable subregister at index 'n' of the
74// corresponding register in 'regs'.
75class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
76  int index = n;
77  
78  list<Register> From = regs;
79  list<Register> To = subregs;
80}
81
82// RegisterClass - Now that all of the registers are defined, and aliases
83// between registers are defined, specify which registers belong to which
84// register classes.  This also defines the default allocation order of
85// registers by register allocators.
86//
87class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
88                    list<Register> regList> {
89  string Namespace = namespace;
90
91  // RegType - Specify the list ValueType of the registers in this register
92  // class.  Note that all registers in a register class must have the same
93  // ValueTypes.  This is a list because some targets permit storing different 
94  // types in same register, for example vector values with 128-bit total size,
95  // but different count/size of items, like SSE on x86.
96  //
97  list<ValueType> RegTypes = regTypes;
98
99  // Size - Specify the spill size in bits of the registers.  A default value of
100  // zero lets tablgen pick an appropriate size.
101  int Size = 0;
102
103  // Alignment - Specify the alignment required of the registers when they are
104  // stored or loaded to memory.
105  //
106  int Alignment = alignment;
107
108  // CopyCost - This value is used to specify the cost of copying a value
109  // between two registers in this register class. The default value is one
110  // meaning it takes a single instruction to perform the copying. A negative
111  // value means copying is extremely expensive or impossible.
112  int CopyCost = 1;
113
114  // MemberList - Specify which registers are in this class.  If the
115  // allocation_order_* method are not specified, this also defines the order of
116  // allocation used by the register allocator.
117  //
118  list<Register> MemberList = regList;
119  
120  // SubClassList - Specify which register classes correspond to subregisters
121  // of this class. The order should be by subregister set index.
122  list<RegisterClass> SubRegClassList = [];
123
124  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
125  // code into a generated register class.   The normal usage of this is to 
126  // overload virtual methods.
127  code MethodProtos = [{}];
128  code MethodBodies = [{}];
129}
130
131
132//===----------------------------------------------------------------------===//
133// DwarfRegNum - This class provides a mapping of the llvm register enumeration
134// to the register numbering used by gcc and gdb.  These values are used by a
135// debug information writer (ex. DwarfWriter) to describe where values may be
136// located during execution.
137class DwarfRegNum<list<int> Numbers> {
138  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
139  // These values can be determined by locating the <target>.h file in the
140  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
141  // order of these names correspond to the enumeration used by gcc.  A value of
142  // -1 indicates that the gcc number is undefined and -2 that register number is 
143  // invalid for this mode/flavour.
144  list<int> DwarfNumbers = Numbers;
145}
146
147//===----------------------------------------------------------------------===//
148// Pull in the common support for scheduling
149//
150include "llvm/Target/TargetSchedule.td"
151
152class Predicate; // Forward def
153
154//===----------------------------------------------------------------------===//
155// Instruction set description - These classes correspond to the C++ classes in
156// the Target/TargetInstrInfo.h file.
157//
158class Instruction {
159  string Namespace = "";
160
161  dag OutOperandList;       // An dag containing the MI def operand list.
162  dag InOperandList;        // An dag containing the MI use operand list.
163  string AsmString = "";    // The .s format to print the instruction with.
164
165  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
166  // otherwise, uninitialized.
167  list<dag> Pattern;
168
169  // The follow state will eventually be inferred automatically from the
170  // instruction pattern.
171
172  list<Register> Uses = []; // Default to using no non-operand registers
173  list<Register> Defs = []; // Default to modifying no non-operand registers
174
175  // Predicates - List of predicates which will be turned into isel matching
176  // code.
177  list<Predicate> Predicates = [];
178
179  // Code size.
180  int CodeSize = 0;
181
182  // Added complexity passed onto matching pattern.
183  int AddedComplexity  = 0;
184
185  // These bits capture information about the high-level semantics of the
186  // instruction.
187  bit isReturn     = 0;     // Is this instruction a return instruction?
188  bit isBranch     = 0;     // Is this instruction a branch instruction?
189  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
190  bit isBarrier    = 0;     // Can control flow fall through this instruction?
191  bit isCall       = 0;     // Is this instruction a call instruction?
192  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
193  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
194  bit mayStore     = 0;     // Is it possible for this inst to write memory?
195  bit isTwoAddress = 0;     // Is this a two address instruction?
196  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
197  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
198  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
199  bit isReMaterializable = 0; // Is this instruction re-materializable?
200  bit isPredicable = 0;     // Is this instruction predicable?
201  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
202  bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
203  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
204  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
205  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
206
207  // Side effect flags - When set, the flags have these meanings:
208  //
209  //  hasSideEffects - The instruction has side effects that are not
210  //    captured by any operands of the instruction or other flags.
211  //
212  //  mayHaveSideEffects  - Some instances of the instruction can have side
213  //    effects. The virtual method "isReallySideEffectFree" is called to
214  //    determine this. Load instructions are an example of where this is
215  //    useful. In general, loads always have side effects. However, loads from
216  //    constant pools don't. Individual back ends make this determination.
217  //
218  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
219  //    side effects.
220  bit hasSideEffects = 0;
221  bit mayHaveSideEffects = 0;
222  bit neverHasSideEffects = 0;
223
224  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
225
226  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
227  
228  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
229  /// be encoded into the output machineinstr.
230  string DisableEncoding = "";
231}
232
233/// Predicates - These are extra conditionals which are turned into instruction
234/// selector matching code. Currently each predicate is just a string.
235class Predicate<string cond> {
236  string CondString = cond;
237}
238
239/// NoHonorSignDependentRounding - This predicate is true if support for
240/// sign-dependent-rounding is not enabled.
241def NoHonorSignDependentRounding
242 : Predicate<"!HonorSignDependentRoundingFPMath()">;
243
244class Requires<list<Predicate> preds> {
245  list<Predicate> Predicates = preds;
246}
247
248/// ops definition - This is just a simple marker used to identify the operands
249/// list for an instruction. outs and ins are identical both syntatically and
250/// semantically, they are used to define def operands and use operands to
251/// improve readibility. This should be used like this:
252///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
253def ops;
254def outs;
255def ins;
256
257/// variable_ops definition - Mark this instruction as taking a variable number
258/// of operands.
259def variable_ops;
260
261/// ptr_rc definition - Mark this operand as being a pointer value whose
262/// register class is resolved dynamically via a callback to TargetInstrInfo.
263/// FIXME: We should probably change this to a class which contain a list of
264/// flags. But currently we have but one flag.
265def ptr_rc;
266
267/// unknown definition - Mark this operand as being of unknown type, causing
268/// it to be resolved by inference in the context it is used.
269def unknown;
270
271/// Operand Types - These provide the built-in operand types that may be used
272/// by a target.  Targets can optionally provide their own operand types as
273/// needed, though this should not be needed for RISC targets.
274class Operand<ValueType ty> {
275  ValueType Type = ty;
276  string PrintMethod = "printOperand";
277  dag MIOperandInfo = (ops);
278}
279
280def i1imm  : Operand<i1>;
281def i8imm  : Operand<i8>;
282def i16imm : Operand<i16>;
283def i32imm : Operand<i32>;
284def i64imm : Operand<i64>;
285
286def f32imm : Operand<f32>;
287def f64imm : Operand<f64>;
288
289/// zero_reg definition - Special node to stand for the zero register.
290///
291def zero_reg;
292
293/// PredicateOperand - This can be used to define a predicate operand for an
294/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
295/// AlwaysVal specifies the value of this predicate when set to "always
296/// execute".
297class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
298  : Operand<ty> {
299  let MIOperandInfo = OpTypes;
300  dag DefaultOps = AlwaysVal;
301}
302
303/// OptionalDefOperand - This is used to define a optional definition operand
304/// for an instruction. DefaultOps is the register the operand represents if none
305/// is supplied, e.g. zero_reg.
306class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
307  : Operand<ty> {
308  let MIOperandInfo = OpTypes;
309  dag DefaultOps = defaultops;
310}
311
312
313// InstrInfo - This class should only be instantiated once to provide parameters
314// which are global to the the target machine.
315//
316class InstrInfo {
317  // If the target wants to associate some target-specific information with each
318  // instruction, it should provide these two lists to indicate how to assemble
319  // the target specific information into the 32 bits available.
320  //
321  list<string> TSFlagsFields = [];
322  list<int>    TSFlagsShifts = [];
323
324  // Target can specify its instructions in either big or little-endian formats.
325  // For instance, while both Sparc and PowerPC are big-endian platforms, the
326  // Sparc manual specifies its instructions in the format [31..0] (big), while
327  // PowerPC specifies them using the format [0..31] (little).
328  bit isLittleEndianEncoding = 0;
329
330  // Targets that can support the HasI1 argument on ADDC and ADDE, rather than
331  // Flag, have this bit set.  This is transitional and should go away when all
332  // targets have been switched over.
333  bit supportsHasI1 = 0;
334}
335
336// Standard Instructions.
337def PHI : Instruction {
338  let OutOperandList = (ops);
339  let InOperandList = (ops variable_ops);
340  let AsmString = "PHINODE";
341  let Namespace = "TargetInstrInfo";
342}
343def INLINEASM : Instruction {
344  let OutOperandList = (ops);
345  let InOperandList = (ops variable_ops);
346  let AsmString = "";
347  let Namespace = "TargetInstrInfo";
348}
349def DBG_LABEL : Instruction {
350  let OutOperandList = (ops);
351  let InOperandList = (ops i32imm:$id);
352  let AsmString = "";
353  let Namespace = "TargetInstrInfo";
354  let hasCtrlDep = 1;
355}
356def EH_LABEL : Instruction {
357  let OutOperandList = (ops);
358  let InOperandList = (ops i32imm:$id);
359  let AsmString = "";
360  let Namespace = "TargetInstrInfo";
361  let hasCtrlDep = 1;
362}
363def GC_LABEL : Instruction {
364  let OutOperandList = (ops);
365  let InOperandList = (ops i32imm:$id);
366  let AsmString = "";
367  let Namespace = "TargetInstrInfo";
368  let hasCtrlDep = 1;
369}
370def DECLARE : Instruction {
371  let OutOperandList = (ops);
372  let InOperandList = (ops variable_ops);
373  let AsmString = "";
374  let Namespace = "TargetInstrInfo";
375  let hasCtrlDep = 1;
376}
377def EXTRACT_SUBREG : Instruction {
378  let OutOperandList = (ops unknown:$dst);
379  let InOperandList = (ops unknown:$supersrc, i32imm:$subidx);
380  let AsmString = "";
381  let Namespace = "TargetInstrInfo";
382  let neverHasSideEffects = 1;
383}
384def INSERT_SUBREG : Instruction {
385  let OutOperandList = (ops unknown:$dst);
386  let InOperandList = (ops unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
387  let AsmString = "";
388  let Namespace = "TargetInstrInfo";
389  let neverHasSideEffects = 1;
390  let Constraints = "$supersrc = $dst";
391}
392def IMPLICIT_DEF : Instruction {
393  let OutOperandList = (ops unknown:$dst);
394  let InOperandList = (ops);
395  let AsmString = "";
396  let Namespace = "TargetInstrInfo";
397  let neverHasSideEffects = 1;
398  let isReMaterializable = 1;
399  let isAsCheapAsAMove = 1;
400}
401def SUBREG_TO_REG : Instruction {
402  let OutOperandList = (ops unknown:$dst);
403  let InOperandList = (ops unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
404  let AsmString = "";
405  let Namespace = "TargetInstrInfo";
406  let neverHasSideEffects = 1;
407}
408def COPY_TO_REGCLASS : Instruction {
409  let OutOperandList = (ops unknown:$dst);
410  let InOperandList = (ops unknown:$src, i32imm:$regclass);
411  let AsmString = "";
412  let Namespace = "TargetInstrInfo";
413  let neverHasSideEffects = 1;
414  let isAsCheapAsAMove = 1;
415}
416
417//===----------------------------------------------------------------------===//
418// AsmWriter - This class can be implemented by targets that need to customize
419// the format of the .s file writer.
420//
421// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
422// on X86 for example).
423//
424class AsmWriter {
425  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
426  // class.  Generated AsmWriter classes are always prefixed with the target
427  // name.
428  string AsmWriterClassName  = "AsmPrinter";
429
430  // InstFormatName - AsmWriters can specify the name of the format string to
431  // print instructions with.
432  string InstFormatName = "AsmString";
433
434  // Variant - AsmWriters can be of multiple different variants.  Variants are
435  // used to support targets that need to emit assembly code in ways that are
436  // mostly the same for different targets, but have minor differences in
437  // syntax.  If the asmstring contains {|} characters in them, this integer
438  // will specify which alternative to use.  For example "{x|y|z}" with Variant
439  // == 1, will expand to "y".
440  int Variant = 0;
441}
442def DefaultAsmWriter : AsmWriter;
443
444
445//===----------------------------------------------------------------------===//
446// Target - This class contains the "global" target information
447//
448class Target {
449  // InstructionSet - Instruction set description for this target.
450  InstrInfo InstructionSet;
451
452  // AssemblyWriters - The AsmWriter instances available for this target.
453  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
454}
455
456//===----------------------------------------------------------------------===//
457// SubtargetFeature - A characteristic of the chip set.
458//
459class SubtargetFeature<string n, string a,  string v, string d,
460                       list<SubtargetFeature> i = []> {
461  // Name - Feature name.  Used by command line (-mattr=) to determine the
462  // appropriate target chip.
463  //
464  string Name = n;
465  
466  // Attribute - Attribute to be set by feature.
467  //
468  string Attribute = a;
469  
470  // Value - Value the attribute to be set to by feature.
471  //
472  string Value = v;
473  
474  // Desc - Feature description.  Used by command line (-mattr=) to display help
475  // information.
476  //
477  string Desc = d;
478
479  // Implies - Features that this feature implies are present. If one of those
480  // features isn't set, then this one shouldn't be set either.
481  //
482  list<SubtargetFeature> Implies = i;
483}
484
485//===----------------------------------------------------------------------===//
486// Processor chip sets - These values represent each of the chip sets supported
487// by the scheduler.  Each Processor definition requires corresponding
488// instruction itineraries.
489//
490class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
491  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
492  // appropriate target chip.
493  //
494  string Name = n;
495  
496  // ProcItin - The scheduling information for the target processor.
497  //
498  ProcessorItineraries ProcItin = pi;
499  
500  // Features - list of 
501  list<SubtargetFeature> Features = f;
502}
503
504//===----------------------------------------------------------------------===//
505// Pull in the common support for calling conventions.
506//
507include "llvm/Target/TargetCallingConv.td"
508
509//===----------------------------------------------------------------------===//
510// Pull in the common support for DAG isel generation.
511//
512include "llvm/Target/TargetSelectionDAG.td"
513