Target.td revision 6b31d4ea3610b04d71e1eb38d8fc625eae7b759a
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex<list<SubRegIndex> comps = []> {
26  string Namespace = "";
27
28  // ComposedOf - A list of two SubRegIndex instances, [A, B].
29  // This indicates that this SubRegIndex is the result of composing A and B.
30  list<SubRegIndex> ComposedOf = comps;
31}
32
33// RegAltNameIndex - The alternate name set to use for register operands of
34// this register class when printing.
35class RegAltNameIndex {
36  string Namespace = "";
37}
38def NoRegAltName : RegAltNameIndex;
39
40// Register - You should define one instance of this class for each register
41// in the target machine.  String n will become the "name" of the register.
42class Register<string n, list<string> altNames = []> {
43  string Namespace = "";
44  string AsmName = n;
45  list<string> AltNames = altNames;
46
47  // Aliases - A list of registers that this register overlaps with.  A read or
48  // modification of this register can potentially read or modify the aliased
49  // registers.
50  list<Register> Aliases = [];
51
52  // SubRegs - A list of registers that are parts of this register. Note these
53  // are "immediate" sub-registers and the registers within the list do not
54  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
55  // not [AX, AH, AL].
56  list<Register> SubRegs = [];
57
58  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
59  // to address it. Sub-sub-register indices are automatically inherited from
60  // SubRegs.
61  list<SubRegIndex> SubRegIndices = [];
62
63  // RegAltNameIndices - The alternate name indices which are valid for this
64  // register.
65  list<RegAltNameIndex> RegAltNameIndices = [];
66
67  // CompositeIndices - Specify subreg indices that don't correspond directly to
68  // a register in SubRegs and are not inherited. The following formats are
69  // supported:
70  //
71  // (a)     Identity  - Reg:a == Reg
72  // (a b)   Alias     - Reg:a == Reg:b
73  // (a b,c) Composite - Reg:a == (Reg:b):c
74  //
75  // This can be used to disambiguate a sub-sub-register that exists in more
76  // than one subregister and other weird stuff.
77  list<dag> CompositeIndices = [];
78
79  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
80  // These values can be determined by locating the <target>.h file in the
81  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
82  // order of these names correspond to the enumeration used by gcc.  A value of
83  // -1 indicates that the gcc number is undefined and -2 that register number
84  // is invalid for this mode/flavour.
85  list<int> DwarfNumbers = [];
86
87  // CostPerUse - Additional cost of instructions using this register compared
88  // to other registers in its class. The register allocator will try to
89  // minimize the number of instructions using a register with a CostPerUse.
90  // This is used by the x86-64 and ARM Thumb targets where some registers
91  // require larger instruction encodings.
92  int CostPerUse = 0;
93
94  // CoveredBySubRegs - When this bit is set, the value of this register is
95  // completely determined by the value of its sub-registers.  For example, the
96  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
97  // covered by its sub-register AX.
98  bit CoveredBySubRegs = 0;
99
100  // HWEncoding - The target specific hardware encoding for this register.
101  bits<16> HWEncoding = 0;
102}
103
104// RegisterWithSubRegs - This can be used to define instances of Register which
105// need to specify sub-registers.
106// List "subregs" specifies which registers are sub-registers to this one. This
107// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
108// This allows the code generator to be careful not to put two values with
109// overlapping live ranges into registers which alias.
110class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
111  let SubRegs = subregs;
112}
113
114// RegisterClass - Now that all of the registers are defined, and aliases
115// between registers are defined, specify which registers belong to which
116// register classes.  This also defines the default allocation order of
117// registers by register allocators.
118//
119class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
120                    dag regList, RegAltNameIndex idx = NoRegAltName> {
121  string Namespace = namespace;
122
123  // RegType - Specify the list ValueType of the registers in this register
124  // class.  Note that all registers in a register class must have the same
125  // ValueTypes.  This is a list because some targets permit storing different
126  // types in same register, for example vector values with 128-bit total size,
127  // but different count/size of items, like SSE on x86.
128  //
129  list<ValueType> RegTypes = regTypes;
130
131  // Size - Specify the spill size in bits of the registers.  A default value of
132  // zero lets tablgen pick an appropriate size.
133  int Size = 0;
134
135  // Alignment - Specify the alignment required of the registers when they are
136  // stored or loaded to memory.
137  //
138  int Alignment = alignment;
139
140  // CopyCost - This value is used to specify the cost of copying a value
141  // between two registers in this register class. The default value is one
142  // meaning it takes a single instruction to perform the copying. A negative
143  // value means copying is extremely expensive or impossible.
144  int CopyCost = 1;
145
146  // MemberList - Specify which registers are in this class.  If the
147  // allocation_order_* method are not specified, this also defines the order of
148  // allocation used by the register allocator.
149  //
150  dag MemberList = regList;
151
152  // AltNameIndex - The alternate register name to use when printing operands
153  // of this register class. Every register in the register class must have
154  // a valid alternate name for the given index.
155  RegAltNameIndex altNameIndex = idx;
156
157  // isAllocatable - Specify that the register class can be used for virtual
158  // registers and register allocation.  Some register classes are only used to
159  // model instruction operand constraints, and should have isAllocatable = 0.
160  bit isAllocatable = 1;
161
162  // AltOrders - List of alternative allocation orders. The default order is
163  // MemberList itself, and that is good enough for most targets since the
164  // register allocators automatically remove reserved registers and move
165  // callee-saved registers to the end.
166  list<dag> AltOrders = [];
167
168  // AltOrderSelect - The body of a function that selects the allocation order
169  // to use in a given machine function. The code will be inserted in a
170  // function like this:
171  //
172  //   static inline unsigned f(const MachineFunction &MF) { ... }
173  //
174  // The function should return 0 to select the default order defined by
175  // MemberList, 1 to select the first AltOrders entry and so on.
176  code AltOrderSelect = [{}];
177}
178
179// The memberList in a RegisterClass is a dag of set operations. TableGen
180// evaluates these set operations and expand them into register lists. These
181// are the most common operation, see test/TableGen/SetTheory.td for more
182// examples of what is possible:
183//
184// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
185// register class, or a sub-expression. This is also the way to simply list
186// registers.
187//
188// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
189//
190// (and GPR, CSR) - Set intersection. All registers from the first set that are
191// also in the second set.
192//
193// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
194// numbered registers.  Takes an optional 4th operand which is a stride to use
195// when generating the sequence.
196//
197// (shl GPR, 4) - Remove the first N elements.
198//
199// (trunc GPR, 4) - Truncate after the first N elements.
200//
201// (rotl GPR, 1) - Rotate N places to the left.
202//
203// (rotr GPR, 1) - Rotate N places to the right.
204//
205// (decimate GPR, 2) - Pick every N'th element, starting with the first.
206//
207// (interleave A, B, ...) - Interleave the elements from each argument list.
208//
209// All of these operators work on ordered sets, not lists. That means
210// duplicates are removed from sub-expressions.
211
212// Set operators. The rest is defined in TargetSelectionDAG.td.
213def sequence;
214def decimate;
215def interleave;
216
217// RegisterTuples - Automatically generate super-registers by forming tuples of
218// sub-registers. This is useful for modeling register sequence constraints
219// with pseudo-registers that are larger than the architectural registers.
220//
221// The sub-register lists are zipped together:
222//
223//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
224//
225// Generates the same registers as:
226//
227//   let SubRegIndices = [sube, subo] in {
228//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
229//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
230//   }
231//
232// The generated pseudo-registers inherit super-classes and fields from their
233// first sub-register. Most fields from the Register class are inferred, and
234// the AsmName and Dwarf numbers are cleared.
235//
236// RegisterTuples instances can be used in other set operations to form
237// register classes and so on. This is the only way of using the generated
238// registers.
239class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
240  // SubRegs - N lists of registers to be zipped up. Super-registers are
241  // synthesized from the first element of each SubRegs list, the second
242  // element and so on.
243  list<dag> SubRegs = Regs;
244
245  // SubRegIndices - N SubRegIndex instances. This provides the names of the
246  // sub-registers in the synthesized super-registers.
247  list<SubRegIndex> SubRegIndices = Indices;
248
249  // Compose sub-register indices like in a normal Register.
250  list<dag> CompositeIndices = [];
251}
252
253
254//===----------------------------------------------------------------------===//
255// DwarfRegNum - This class provides a mapping of the llvm register enumeration
256// to the register numbering used by gcc and gdb.  These values are used by a
257// debug information writer to describe where values may be located during
258// execution.
259class DwarfRegNum<list<int> Numbers> {
260  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
261  // These values can be determined by locating the <target>.h file in the
262  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
263  // order of these names correspond to the enumeration used by gcc.  A value of
264  // -1 indicates that the gcc number is undefined and -2 that register number
265  // is invalid for this mode/flavour.
266  list<int> DwarfNumbers = Numbers;
267}
268
269// DwarfRegAlias - This class declares that a given register uses the same dwarf
270// numbers as another one. This is useful for making it clear that the two
271// registers do have the same number. It also lets us build a mapping
272// from dwarf register number to llvm register.
273class DwarfRegAlias<Register reg> {
274      Register DwarfAlias = reg;
275}
276
277//===----------------------------------------------------------------------===//
278// Pull in the common support for scheduling
279//
280include "llvm/Target/TargetSchedule.td"
281
282class Predicate; // Forward def
283
284//===----------------------------------------------------------------------===//
285// Instruction set description - These classes correspond to the C++ classes in
286// the Target/TargetInstrInfo.h file.
287//
288class Instruction {
289  string Namespace = "";
290
291  dag OutOperandList;       // An dag containing the MI def operand list.
292  dag InOperandList;        // An dag containing the MI use operand list.
293  string AsmString = "";    // The .s format to print the instruction with.
294
295  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
296  // otherwise, uninitialized.
297  list<dag> Pattern;
298
299  // The follow state will eventually be inferred automatically from the
300  // instruction pattern.
301
302  list<Register> Uses = []; // Default to using no non-operand registers
303  list<Register> Defs = []; // Default to modifying no non-operand registers
304
305  // Predicates - List of predicates which will be turned into isel matching
306  // code.
307  list<Predicate> Predicates = [];
308
309  // Size - Size of encoded instruction, or zero if the size cannot be determined
310  // from the opcode.
311  int Size = 0;
312
313  // DecoderNamespace - The "namespace" in which this instruction exists, on
314  // targets like ARM which multiple ISA namespaces exist.
315  string DecoderNamespace = "";
316
317  // Code size, for instruction selection.
318  // FIXME: What does this actually mean?
319  int CodeSize = 0;
320
321  // Added complexity passed onto matching pattern.
322  int AddedComplexity  = 0;
323
324  // These bits capture information about the high-level semantics of the
325  // instruction.
326  bit isReturn     = 0;     // Is this instruction a return instruction?
327  bit isBranch     = 0;     // Is this instruction a branch instruction?
328  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
329  bit isCompare    = 0;     // Is this instruction a comparison instruction?
330  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
331  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
332  bit isBarrier    = 0;     // Can control flow fall through this instruction?
333  bit isCall       = 0;     // Is this instruction a call instruction?
334  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
335  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
336  bit mayStore     = 0;     // Is it possible for this inst to write memory?
337  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
338  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
339  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
340  bit isReMaterializable = 0; // Is this instruction re-materializable?
341  bit isPredicable = 0;     // Is this instruction predicable?
342  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
343  bit usesCustomInserter = 0; // Pseudo instr needing special help.
344  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
345  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
346  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
347  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
348  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
349  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
350  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
351                            // If so, won't have encoding information for
352                            // the [MC]CodeEmitter stuff.
353
354  // Side effect flags - When set, the flags have these meanings:
355  //
356  //  hasSideEffects - The instruction has side effects that are not
357  //    captured by any operands of the instruction or other flags.
358  //
359  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
360  //    side effects.
361  bit hasSideEffects = 0;
362  bit neverHasSideEffects = 0;
363
364  // Is this instruction a "real" instruction (with a distinct machine
365  // encoding), or is it a pseudo instruction used for codegen modeling
366  // purposes.
367  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
368  // instructions can (and often do) still have encoding information
369  // associated with them. Once we've migrated all of them over to true
370  // pseudo-instructions that are lowered to real instructions prior to
371  // the printer/emitter, we can remove this attribute and just use isPseudo.
372  //
373  // The intended use is:
374  // isPseudo: Does not have encoding information and should be expanded,
375  //   at the latest, during lowering to MCInst.
376  //
377  // isCodeGenOnly: Does have encoding information and can go through to the
378  //   CodeEmitter unchanged, but duplicates a canonical instruction
379  //   definition's encoding and should be ignored when constructing the
380  //   assembler match tables.
381  bit isCodeGenOnly = 0;
382
383  // Is this instruction a pseudo instruction for use by the assembler parser.
384  bit isAsmParserOnly = 0;
385
386  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
387
388  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
389
390  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
391  /// be encoded into the output machineinstr.
392  string DisableEncoding = "";
393
394  string PostEncoderMethod = "";
395  string DecoderMethod = "";
396
397  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
398  bits<64> TSFlags = 0;
399
400  ///@name Assembler Parser Support
401  ///@{
402
403  string AsmMatchConverter = "";
404
405  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
406  /// two-operand matcher inst-alias for a three operand instruction.
407  /// For example, the arm instruction "add r3, r3, r5" can be written
408  /// as "add r3, r5". The constraint is of the same form as a tied-operand
409  /// constraint. For example, "$Rn = $Rd".
410  string TwoOperandAliasConstraint = "";
411
412  ///@}
413}
414
415/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
416/// Which instruction it expands to and how the operands map from the
417/// pseudo.
418class PseudoInstExpansion<dag Result> {
419  dag ResultInst = Result;     // The instruction to generate.
420  bit isPseudo = 1;
421}
422
423/// Predicates - These are extra conditionals which are turned into instruction
424/// selector matching code. Currently each predicate is just a string.
425class Predicate<string cond> {
426  string CondString = cond;
427
428  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
429  /// matcher, this is true.  Targets should set this by inheriting their
430  /// feature from the AssemblerPredicate class in addition to Predicate.
431  bit AssemblerMatcherPredicate = 0;
432
433  /// AssemblerCondString - Name of the subtarget feature being tested used
434  /// as alternative condition string used for assembler matcher.
435  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
436  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
437  /// It can also list multiple features separated by ",".
438  /// e.g. "ModeThumb,FeatureThumb2" is translated to
439  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
440  string AssemblerCondString = "";
441
442  /// PredicateName - User-level name to use for the predicate. Mainly for use
443  /// in diagnostics such as missing feature errors in the asm matcher.
444  string PredicateName = "";
445}
446
447/// NoHonorSignDependentRounding - This predicate is true if support for
448/// sign-dependent-rounding is not enabled.
449def NoHonorSignDependentRounding
450 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
451
452class Requires<list<Predicate> preds> {
453  list<Predicate> Predicates = preds;
454}
455
456/// ops definition - This is just a simple marker used to identify the operand
457/// list for an instruction. outs and ins are identical both syntactically and
458/// semanticallyr; they are used to define def operands and use operands to
459/// improve readibility. This should be used like this:
460///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
461def ops;
462def outs;
463def ins;
464
465/// variable_ops definition - Mark this instruction as taking a variable number
466/// of operands.
467def variable_ops;
468
469
470/// PointerLikeRegClass - Values that are designed to have pointer width are
471/// derived from this.  TableGen treats the register class as having a symbolic
472/// type that it doesn't know, and resolves the actual regclass to use by using
473/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
474class PointerLikeRegClass<int Kind> {
475  int RegClassKind = Kind;
476}
477
478
479/// ptr_rc definition - Mark this operand as being a pointer value whose
480/// register class is resolved dynamically via a callback to TargetInstrInfo.
481/// FIXME: We should probably change this to a class which contain a list of
482/// flags. But currently we have but one flag.
483def ptr_rc : PointerLikeRegClass<0>;
484
485/// unknown definition - Mark this operand as being of unknown type, causing
486/// it to be resolved by inference in the context it is used.
487def unknown;
488
489/// AsmOperandClass - Representation for the kinds of operands which the target
490/// specific parser can create and the assembly matcher may need to distinguish.
491///
492/// Operand classes are used to define the order in which instructions are
493/// matched, to ensure that the instruction which gets matched for any
494/// particular list of operands is deterministic.
495///
496/// The target specific parser must be able to classify a parsed operand into a
497/// unique class which does not partially overlap with any other classes. It can
498/// match a subset of some other class, in which case the super class field
499/// should be defined.
500class AsmOperandClass {
501  /// The name to use for this class, which should be usable as an enum value.
502  string Name = ?;
503
504  /// The super classes of this operand.
505  list<AsmOperandClass> SuperClasses = [];
506
507  /// The name of the method on the target specific operand to call to test
508  /// whether the operand is an instance of this class. If not set, this will
509  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
510  /// signature should be:
511  ///   bool isFoo() const;
512  string PredicateMethod = ?;
513
514  /// The name of the method on the target specific operand to call to add the
515  /// target specific operand to an MCInst. If not set, this will default to
516  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
517  /// signature should be:
518  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
519  string RenderMethod = ?;
520
521  /// The name of the method on the target specific operand to call to custom
522  /// handle the operand parsing. This is useful when the operands do not relate
523  /// to immediates or registers and are very instruction specific (as flags to
524  /// set in a processor register, coprocessor number, ...).
525  string ParserMethod = ?;
526}
527
528def ImmAsmOperand : AsmOperandClass {
529  let Name = "Imm";
530}
531
532/// Operand Types - These provide the built-in operand types that may be used
533/// by a target.  Targets can optionally provide their own operand types as
534/// needed, though this should not be needed for RISC targets.
535class Operand<ValueType ty> {
536  ValueType Type = ty;
537  string PrintMethod = "printOperand";
538  string EncoderMethod = "";
539  string DecoderMethod = "";
540  string AsmOperandLowerMethod = ?;
541  string OperandType = "OPERAND_UNKNOWN";
542  dag MIOperandInfo = (ops);
543
544  // ParserMatchClass - The "match class" that operands of this type fit
545  // in. Match classes are used to define the order in which instructions are
546  // match, to ensure that which instructions gets matched is deterministic.
547  //
548  // The target specific parser must be able to classify an parsed operand into
549  // a unique class, which does not partially overlap with any other classes. It
550  // can match a subset of some other class, in which case the AsmOperandClass
551  // should declare the other operand as one of its super classes.
552  AsmOperandClass ParserMatchClass = ImmAsmOperand;
553}
554
555class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
556  // RegClass - The register class of the operand.
557  RegisterClass RegClass = regclass;
558  // PrintMethod - The target method to call to print register operands of
559  // this type. The method normally will just use an alt-name index to look
560  // up the name to print. Default to the generic printOperand().
561  string PrintMethod = pm;
562  // ParserMatchClass - The "match class" that operands of this type fit
563  // in. Match classes are used to define the order in which instructions are
564  // match, to ensure that which instructions gets matched is deterministic.
565  //
566  // The target specific parser must be able to classify an parsed operand into
567  // a unique class, which does not partially overlap with any other classes. It
568  // can match a subset of some other class, in which case the AsmOperandClass
569  // should declare the other operand as one of its super classes.
570  AsmOperandClass ParserMatchClass;
571}
572
573let OperandType = "OPERAND_IMMEDIATE" in {
574def i1imm  : Operand<i1>;
575def i8imm  : Operand<i8>;
576def i16imm : Operand<i16>;
577def i32imm : Operand<i32>;
578def i64imm : Operand<i64>;
579
580def f32imm : Operand<f32>;
581def f64imm : Operand<f64>;
582}
583
584/// zero_reg definition - Special node to stand for the zero register.
585///
586def zero_reg;
587
588/// PredicateOperand - This can be used to define a predicate operand for an
589/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
590/// AlwaysVal specifies the value of this predicate when set to "always
591/// execute".
592class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
593  : Operand<ty> {
594  let MIOperandInfo = OpTypes;
595  dag DefaultOps = AlwaysVal;
596}
597
598/// OptionalDefOperand - This is used to define a optional definition operand
599/// for an instruction. DefaultOps is the register the operand represents if
600/// none is supplied, e.g. zero_reg.
601class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
602  : Operand<ty> {
603  let MIOperandInfo = OpTypes;
604  dag DefaultOps = defaultops;
605}
606
607
608// InstrInfo - This class should only be instantiated once to provide parameters
609// which are global to the target machine.
610//
611class InstrInfo {
612  // Target can specify its instructions in either big or little-endian formats.
613  // For instance, while both Sparc and PowerPC are big-endian platforms, the
614  // Sparc manual specifies its instructions in the format [31..0] (big), while
615  // PowerPC specifies them using the format [0..31] (little).
616  bit isLittleEndianEncoding = 0;
617}
618
619// Standard Pseudo Instructions.
620// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
621// Only these instructions are allowed in the TargetOpcode namespace.
622let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
623def PHI : Instruction {
624  let OutOperandList = (outs);
625  let InOperandList = (ins variable_ops);
626  let AsmString = "PHINODE";
627}
628def INLINEASM : Instruction {
629  let OutOperandList = (outs);
630  let InOperandList = (ins variable_ops);
631  let AsmString = "";
632  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
633}
634def PROLOG_LABEL : Instruction {
635  let OutOperandList = (outs);
636  let InOperandList = (ins i32imm:$id);
637  let AsmString = "";
638  let hasCtrlDep = 1;
639  let isNotDuplicable = 1;
640}
641def EH_LABEL : Instruction {
642  let OutOperandList = (outs);
643  let InOperandList = (ins i32imm:$id);
644  let AsmString = "";
645  let hasCtrlDep = 1;
646  let isNotDuplicable = 1;
647}
648def GC_LABEL : Instruction {
649  let OutOperandList = (outs);
650  let InOperandList = (ins i32imm:$id);
651  let AsmString = "";
652  let hasCtrlDep = 1;
653  let isNotDuplicable = 1;
654}
655def KILL : Instruction {
656  let OutOperandList = (outs);
657  let InOperandList = (ins variable_ops);
658  let AsmString = "";
659  let neverHasSideEffects = 1;
660}
661def EXTRACT_SUBREG : Instruction {
662  let OutOperandList = (outs unknown:$dst);
663  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
664  let AsmString = "";
665  let neverHasSideEffects = 1;
666}
667def INSERT_SUBREG : Instruction {
668  let OutOperandList = (outs unknown:$dst);
669  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
670  let AsmString = "";
671  let neverHasSideEffects = 1;
672  let Constraints = "$supersrc = $dst";
673}
674def IMPLICIT_DEF : Instruction {
675  let OutOperandList = (outs unknown:$dst);
676  let InOperandList = (ins);
677  let AsmString = "";
678  let neverHasSideEffects = 1;
679  let isReMaterializable = 1;
680  let isAsCheapAsAMove = 1;
681}
682def SUBREG_TO_REG : Instruction {
683  let OutOperandList = (outs unknown:$dst);
684  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
685  let AsmString = "";
686  let neverHasSideEffects = 1;
687}
688def COPY_TO_REGCLASS : Instruction {
689  let OutOperandList = (outs unknown:$dst);
690  let InOperandList = (ins unknown:$src, i32imm:$regclass);
691  let AsmString = "";
692  let neverHasSideEffects = 1;
693  let isAsCheapAsAMove = 1;
694}
695def DBG_VALUE : Instruction {
696  let OutOperandList = (outs);
697  let InOperandList = (ins variable_ops);
698  let AsmString = "DBG_VALUE";
699  let neverHasSideEffects = 1;
700}
701def REG_SEQUENCE : Instruction {
702  let OutOperandList = (outs unknown:$dst);
703  let InOperandList = (ins variable_ops);
704  let AsmString = "";
705  let neverHasSideEffects = 1;
706  let isAsCheapAsAMove = 1;
707}
708def COPY : Instruction {
709  let OutOperandList = (outs unknown:$dst);
710  let InOperandList = (ins unknown:$src);
711  let AsmString = "";
712  let neverHasSideEffects = 1;
713  let isAsCheapAsAMove = 1;
714}
715def BUNDLE : Instruction {
716  let OutOperandList = (outs);
717  let InOperandList = (ins variable_ops);
718  let AsmString = "BUNDLE";
719}
720}
721
722//===----------------------------------------------------------------------===//
723// AsmParser - This class can be implemented by targets that wish to implement
724// .s file parsing.
725//
726// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
727// syntax on X86 for example).
728//
729class AsmParser {
730  // AsmParserClassName - This specifies the suffix to use for the asmparser
731  // class.  Generated AsmParser classes are always prefixed with the target
732  // name.
733  string AsmParserClassName  = "AsmParser";
734
735  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
736  // function of the AsmParser class to call on every matched instruction.
737  // This can be used to perform target specific instruction post-processing.
738  string AsmParserInstCleanup  = "";
739}
740def DefaultAsmParser : AsmParser;
741
742//===----------------------------------------------------------------------===//
743// AsmParserVariant - Subtargets can have multiple different assembly parsers 
744// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
745// implemented by targets to describe such variants.
746//
747class AsmParserVariant {
748  // Variant - AsmParsers can be of multiple different variants.  Variants are
749  // used to support targets that need to parser multiple formats for the
750  // assembly language.
751  int Variant = 0;
752
753  // CommentDelimiter - If given, the delimiter string used to recognize
754  // comments which are hard coded in the .td assembler strings for individual
755  // instructions.
756  string CommentDelimiter = "";
757
758  // RegisterPrefix - If given, the token prefix which indicates a register
759  // token. This is used by the matcher to automatically recognize hard coded
760  // register tokens as constrained registers, instead of tokens, for the
761  // purposes of matching.
762  string RegisterPrefix = "";
763}
764def DefaultAsmParserVariant : AsmParserVariant;
765
766/// AssemblerPredicate - This is a Predicate that can be used when the assembler
767/// matches instructions and aliases.
768class AssemblerPredicate<string cond, string name = ""> {
769  bit AssemblerMatcherPredicate = 1;
770  string AssemblerCondString = cond;
771  string PredicateName = name;
772}
773
774/// TokenAlias - This class allows targets to define assembler token
775/// operand aliases. That is, a token literal operand which is equivalent
776/// to another, canonical, token literal. For example, ARM allows:
777///   vmov.u32 s4, #0  -> vmov.i32, #0
778/// 'u32' is a more specific designator for the 32-bit integer type specifier
779/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
780///   def : TokenAlias<".u32", ".i32">;
781///
782/// This works by marking the match class of 'From' as a subclass of the
783/// match class of 'To'.
784class TokenAlias<string From, string To> {
785  string FromToken = From;
786  string ToToken = To;
787}
788
789/// MnemonicAlias - This class allows targets to define assembler mnemonic
790/// aliases.  This should be used when all forms of one mnemonic are accepted
791/// with a different mnemonic.  For example, X86 allows:
792///   sal %al, 1    -> shl %al, 1
793///   sal %ax, %cl  -> shl %ax, %cl
794///   sal %eax, %cl -> shl %eax, %cl
795/// etc.  Though "sal" is accepted with many forms, all of them are directly
796/// translated to a shl, so it can be handled with (in the case of X86, it
797/// actually has one for each suffix as well):
798///   def : MnemonicAlias<"sal", "shl">;
799///
800/// Mnemonic aliases are mapped before any other translation in the match phase,
801/// and do allow Requires predicates, e.g.:
802///
803///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
804///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
805///
806class MnemonicAlias<string From, string To> {
807  string FromMnemonic = From;
808  string ToMnemonic = To;
809
810  // Predicates - Predicates that must be true for this remapping to happen.
811  list<Predicate> Predicates = [];
812}
813
814/// InstAlias - This defines an alternate assembly syntax that is allowed to
815/// match an instruction that has a different (more canonical) assembly
816/// representation.
817class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
818  string AsmString = Asm;      // The .s format to match the instruction with.
819  dag ResultInst = Result;     // The MCInst to generate.
820  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
821
822  // Predicates - Predicates that must be true for this to match.
823  list<Predicate> Predicates = [];
824}
825
826//===----------------------------------------------------------------------===//
827// AsmWriter - This class can be implemented by targets that need to customize
828// the format of the .s file writer.
829//
830// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
831// on X86 for example).
832//
833class AsmWriter {
834  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
835  // class.  Generated AsmWriter classes are always prefixed with the target
836  // name.
837  string AsmWriterClassName  = "AsmPrinter";
838
839  // Variant - AsmWriters can be of multiple different variants.  Variants are
840  // used to support targets that need to emit assembly code in ways that are
841  // mostly the same for different targets, but have minor differences in
842  // syntax.  If the asmstring contains {|} characters in them, this integer
843  // will specify which alternative to use.  For example "{x|y|z}" with Variant
844  // == 1, will expand to "y".
845  int Variant = 0;
846
847
848  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
849  // layout, the asmwriter can actually generate output in this columns (in
850  // verbose-asm mode).  These two values indicate the width of the first column
851  // (the "opcode" area) and the width to reserve for subsequent operands.  When
852  // verbose asm mode is enabled, operands will be indented to respect this.
853  int FirstOperandColumn = -1;
854
855  // OperandSpacing - Space between operand columns.
856  int OperandSpacing = -1;
857
858  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
859  // generation of the printInstruction() method. For MC printers, it takes
860  // an MCInstr* operand, otherwise it takes a MachineInstr*.
861  bit isMCAsmWriter = 0;
862}
863def DefaultAsmWriter : AsmWriter;
864
865
866//===----------------------------------------------------------------------===//
867// Target - This class contains the "global" target information
868//
869class Target {
870  // InstructionSet - Instruction set description for this target.
871  InstrInfo InstructionSet;
872
873  // AssemblyParsers - The AsmParser instances available for this target.
874  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
875
876  /// AssemblyParserVariants - The AsmParserVariant instances available for 
877  /// this target.
878  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
879
880  // AssemblyWriters - The AsmWriter instances available for this target.
881  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
882}
883
884//===----------------------------------------------------------------------===//
885// SubtargetFeature - A characteristic of the chip set.
886//
887class SubtargetFeature<string n, string a,  string v, string d,
888                       list<SubtargetFeature> i = []> {
889  // Name - Feature name.  Used by command line (-mattr=) to determine the
890  // appropriate target chip.
891  //
892  string Name = n;
893
894  // Attribute - Attribute to be set by feature.
895  //
896  string Attribute = a;
897
898  // Value - Value the attribute to be set to by feature.
899  //
900  string Value = v;
901
902  // Desc - Feature description.  Used by command line (-mattr=) to display help
903  // information.
904  //
905  string Desc = d;
906
907  // Implies - Features that this feature implies are present. If one of those
908  // features isn't set, then this one shouldn't be set either.
909  //
910  list<SubtargetFeature> Implies = i;
911}
912
913//===----------------------------------------------------------------------===//
914// Processor chip sets - These values represent each of the chip sets supported
915// by the scheduler.  Each Processor definition requires corresponding
916// instruction itineraries.
917//
918class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
919  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
920  // appropriate target chip.
921  //
922  string Name = n;
923
924  // ProcItin - The scheduling information for the target processor.
925  //
926  ProcessorItineraries ProcItin = pi;
927
928  // Features - list of
929  list<SubtargetFeature> Features = f;
930}
931
932//===----------------------------------------------------------------------===//
933// Pull in the common support for calling conventions.
934//
935include "llvm/Target/TargetCallingConv.td"
936
937//===----------------------------------------------------------------------===//
938// Pull in the common support for DAG isel generation.
939//
940include "llvm/Target/TargetSelectionDAG.td"
941