Target.td revision 7a067cc6e0b980b186696c13fe847929fbc0d373
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// Register - You should define one instance of this class for each register
30// in the target machine.  String n will become the "name" of the register.
31class Register<string n> {
32  string Namespace = "";
33  string AsmName = n;
34
35  // Aliases - A list of registers that this register overlaps with.  A read or
36  // modification of this register can potentially read or modify the aliased
37  // registers.
38  list<Register> Aliases = [];
39
40  // SubRegs - A list of registers that are parts of this register. Note these
41  // are "immediate" sub-registers and the registers within the list do not
42  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
43  // not [AX, AH, AL].
44  list<Register> SubRegs = [];
45
46  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
47  // to address it. Sub-sub-register indices are automatically inherited from
48  // SubRegs.
49  list<SubRegIndex> SubRegIndices = [];
50
51  // CompositeIndices - Specify subreg indices that don't correspond directly to
52  // a register in SubRegs and are not inherited. The following formats are
53  // supported:
54  //
55  // (a)     Identity  - Reg:a == Reg
56  // (a b)   Alias     - Reg:a == Reg:b
57  // (a b,c) Composite - Reg:a == (Reg:b):c
58  //
59  // This can be used to disambiguate a sub-sub-register that exists in more
60  // than one subregister and other weird stuff.
61  list<dag> CompositeIndices = [];
62
63  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
64  // These values can be determined by locating the <target>.h file in the
65  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
66  // order of these names correspond to the enumeration used by gcc.  A value of
67  // -1 indicates that the gcc number is undefined and -2 that register number
68  // is invalid for this mode/flavour.
69  list<int> DwarfNumbers = [];
70
71  // CostPerUse - Additional cost of instructions using this register compared
72  // to other registers in its class. The register allocator will try to
73  // minimize the number of instructions using a register with a CostPerUse.
74  // This is used by the x86-64 and ARM Thumb targets where some registers 
75  // require larger instruction encodings.
76  int CostPerUse = 0;
77}
78
79// RegisterWithSubRegs - This can be used to define instances of Register which
80// need to specify sub-registers.
81// List "subregs" specifies which registers are sub-registers to this one. This
82// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
83// This allows the code generator to be careful not to put two values with
84// overlapping live ranges into registers which alias.
85class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
86  let SubRegs = subregs;
87}
88
89// RegisterClass - Now that all of the registers are defined, and aliases
90// between registers are defined, specify which registers belong to which
91// register classes.  This also defines the default allocation order of
92// registers by register allocators.
93//
94class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
95                    list<Register> regList> {
96  string Namespace = namespace;
97
98  // RegType - Specify the list ValueType of the registers in this register
99  // class.  Note that all registers in a register class must have the same
100  // ValueTypes.  This is a list because some targets permit storing different
101  // types in same register, for example vector values with 128-bit total size,
102  // but different count/size of items, like SSE on x86.
103  //
104  list<ValueType> RegTypes = regTypes;
105
106  // Size - Specify the spill size in bits of the registers.  A default value of
107  // zero lets tablgen pick an appropriate size.
108  int Size = 0;
109
110  // Alignment - Specify the alignment required of the registers when they are
111  // stored or loaded to memory.
112  //
113  int Alignment = alignment;
114
115  // CopyCost - This value is used to specify the cost of copying a value
116  // between two registers in this register class. The default value is one
117  // meaning it takes a single instruction to perform the copying. A negative
118  // value means copying is extremely expensive or impossible.
119  int CopyCost = 1;
120
121  // MemberList - Specify which registers are in this class.  If the
122  // allocation_order_* method are not specified, this also defines the order of
123  // allocation used by the register allocator.
124  //
125  list<Register> MemberList = regList;
126
127  // SubRegClasses - Specify the register class of subregisters as a list of
128  // dags: (RegClass SubRegIndex, SubRegindex, ...)
129  list<dag> SubRegClasses = [];
130
131  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
132  // code into a generated register class.   The normal usage of this is to
133  // overload virtual methods.
134  code MethodProtos = [{}];
135  code MethodBodies = [{}];
136}
137
138
139//===----------------------------------------------------------------------===//
140// DwarfRegNum - This class provides a mapping of the llvm register enumeration
141// to the register numbering used by gcc and gdb.  These values are used by a
142// debug information writer to describe where values may be located during
143// execution.
144class DwarfRegNum<list<int> Numbers> {
145  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
146  // These values can be determined by locating the <target>.h file in the
147  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
148  // order of these names correspond to the enumeration used by gcc.  A value of
149  // -1 indicates that the gcc number is undefined and -2 that register number
150  // is invalid for this mode/flavour.
151  list<int> DwarfNumbers = Numbers;
152}
153
154// DwarfRegAlias - This class declares that a given register uses the same dwarf
155// numbers as another one. This is useful for making it clear that the two
156// registers do have the same number. It also lets us build a mapping
157// from dwarf register number to llvm register.
158class DwarfRegAlias<Register reg> {
159      Register DwarfAlias = reg;
160}
161
162//===----------------------------------------------------------------------===//
163// Pull in the common support for scheduling
164//
165include "llvm/Target/TargetSchedule.td"
166
167class Predicate; // Forward def
168
169//===----------------------------------------------------------------------===//
170// Instruction set description - These classes correspond to the C++ classes in
171// the Target/TargetInstrInfo.h file.
172//
173class Instruction {
174  string Namespace = "";
175
176  dag OutOperandList;       // An dag containing the MI def operand list.
177  dag InOperandList;        // An dag containing the MI use operand list.
178  string AsmString = "";    // The .s format to print the instruction with.
179
180  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
181  // otherwise, uninitialized.
182  list<dag> Pattern;
183
184  // The follow state will eventually be inferred automatically from the
185  // instruction pattern.
186
187  list<Register> Uses = []; // Default to using no non-operand registers
188  list<Register> Defs = []; // Default to modifying no non-operand registers
189
190  // Predicates - List of predicates which will be turned into isel matching
191  // code.
192  list<Predicate> Predicates = [];
193
194  // Code size.
195  int CodeSize = 0;
196
197  // Added complexity passed onto matching pattern.
198  int AddedComplexity  = 0;
199
200  // These bits capture information about the high-level semantics of the
201  // instruction.
202  bit isReturn     = 0;     // Is this instruction a return instruction?
203  bit isBranch     = 0;     // Is this instruction a branch instruction?
204  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
205  bit isCompare    = 0;     // Is this instruction a comparison instruction?
206  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
207  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
208  bit isBarrier    = 0;     // Can control flow fall through this instruction?
209  bit isCall       = 0;     // Is this instruction a call instruction?
210  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
211  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
212  bit mayStore     = 0;     // Is it possible for this inst to write memory?
213  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
214  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
215  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
216  bit isReMaterializable = 0; // Is this instruction re-materializable?
217  bit isPredicable = 0;     // Is this instruction predicable?
218  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
219  bit usesCustomInserter = 0; // Pseudo instr needing special help.
220  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
221  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
222  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
223  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
224  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
225
226  // Side effect flags - When set, the flags have these meanings:
227  //
228  //  hasSideEffects - The instruction has side effects that are not
229  //    captured by any operands of the instruction or other flags.
230  //
231  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
232  //    side effects.
233  bit hasSideEffects = 0;
234  bit neverHasSideEffects = 0;
235
236  // Is this instruction a "real" instruction (with a distinct machine
237  // encoding), or is it a pseudo instruction used for codegen modeling
238  // purposes.
239  bit isCodeGenOnly = 0;
240
241  // Is this instruction a pseudo instruction for use by the assembler parser.
242  bit isAsmParserOnly = 0;
243
244  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
245
246  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
247
248  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
249  /// be encoded into the output machineinstr.
250  string DisableEncoding = "";
251
252  string PostEncoderMethod = "";
253  string DecoderMethod = "";
254
255  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
256  bits<64> TSFlags = 0;
257
258  ///@name Assembler Parser Support
259  ///@{
260
261  string AsmMatchConverter = "";
262
263  ///@}
264}
265
266/// Predicates - These are extra conditionals which are turned into instruction
267/// selector matching code. Currently each predicate is just a string.
268class Predicate<string cond> {
269  string CondString = cond;
270
271  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
272  /// matcher, this is true.  Targets should set this by inheriting their
273  /// feature from the AssemblerPredicate class in addition to Predicate.
274  bit AssemblerMatcherPredicate = 0;
275}
276
277/// NoHonorSignDependentRounding - This predicate is true if support for
278/// sign-dependent-rounding is not enabled.
279def NoHonorSignDependentRounding
280 : Predicate<"!HonorSignDependentRoundingFPMath()">;
281
282class Requires<list<Predicate> preds> {
283  list<Predicate> Predicates = preds;
284}
285
286/// ops definition - This is just a simple marker used to identify the operand
287/// list for an instruction. outs and ins are identical both syntactically and
288/// semanticallyr; they are used to define def operands and use operands to
289/// improve readibility. This should be used like this:
290///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
291def ops;
292def outs;
293def ins;
294
295/// variable_ops definition - Mark this instruction as taking a variable number
296/// of operands.
297def variable_ops;
298
299
300/// PointerLikeRegClass - Values that are designed to have pointer width are
301/// derived from this.  TableGen treats the register class as having a symbolic
302/// type that it doesn't know, and resolves the actual regclass to use by using
303/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
304class PointerLikeRegClass<int Kind> {
305  int RegClassKind = Kind;
306}
307
308
309/// ptr_rc definition - Mark this operand as being a pointer value whose
310/// register class is resolved dynamically via a callback to TargetInstrInfo.
311/// FIXME: We should probably change this to a class which contain a list of
312/// flags. But currently we have but one flag.
313def ptr_rc : PointerLikeRegClass<0>;
314
315/// unknown definition - Mark this operand as being of unknown type, causing
316/// it to be resolved by inference in the context it is used.
317def unknown;
318
319/// AsmOperandClass - Representation for the kinds of operands which the target
320/// specific parser can create and the assembly matcher may need to distinguish.
321///
322/// Operand classes are used to define the order in which instructions are
323/// matched, to ensure that the instruction which gets matched for any
324/// particular list of operands is deterministic.
325///
326/// The target specific parser must be able to classify a parsed operand into a
327/// unique class which does not partially overlap with any other classes. It can
328/// match a subset of some other class, in which case the super class field
329/// should be defined.
330class AsmOperandClass {
331  /// The name to use for this class, which should be usable as an enum value.
332  string Name = ?;
333
334  /// The super classes of this operand.
335  list<AsmOperandClass> SuperClasses = [];
336
337  /// The name of the method on the target specific operand to call to test
338  /// whether the operand is an instance of this class. If not set, this will
339  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
340  /// signature should be:
341  ///   bool isFoo() const;
342  string PredicateMethod = ?;
343
344  /// The name of the method on the target specific operand to call to add the
345  /// target specific operand to an MCInst. If not set, this will default to
346  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
347  /// signature should be:
348  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
349  string RenderMethod = ?;
350
351  /// The name of the method on the target specific operand to call to custom
352  /// handle the operand parsing. This is useful when the operands do not relate
353  /// to immediates or registers and are very instruction specific (as flags to
354  /// set in a processor register, coprocessor number, ...).
355  string ParserMethod = ?;
356}
357
358def ImmAsmOperand : AsmOperandClass {
359  let Name = "Imm";
360}
361
362/// Operand Types - These provide the built-in operand types that may be used
363/// by a target.  Targets can optionally provide their own operand types as
364/// needed, though this should not be needed for RISC targets.
365class Operand<ValueType ty> {
366  ValueType Type = ty;
367  string PrintMethod = "printOperand";
368  string EncoderMethod = "";
369  string DecoderMethod = "";
370  string AsmOperandLowerMethod = ?;
371  dag MIOperandInfo = (ops);
372
373  // ParserMatchClass - The "match class" that operands of this type fit
374  // in. Match classes are used to define the order in which instructions are
375  // match, to ensure that which instructions gets matched is deterministic.
376  //
377  // The target specific parser must be able to classify an parsed operand into
378  // a unique class, which does not partially overlap with any other classes. It
379  // can match a subset of some other class, in which case the AsmOperandClass
380  // should declare the other operand as one of its super classes.
381  AsmOperandClass ParserMatchClass = ImmAsmOperand;
382}
383
384def i1imm  : Operand<i1>;
385def i8imm  : Operand<i8>;
386def i16imm : Operand<i16>;
387def i32imm : Operand<i32>;
388def i64imm : Operand<i64>;
389
390def f32imm : Operand<f32>;
391def f64imm : Operand<f64>;
392
393/// zero_reg definition - Special node to stand for the zero register.
394///
395def zero_reg;
396
397/// PredicateOperand - This can be used to define a predicate operand for an
398/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
399/// AlwaysVal specifies the value of this predicate when set to "always
400/// execute".
401class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
402  : Operand<ty> {
403  let MIOperandInfo = OpTypes;
404  dag DefaultOps = AlwaysVal;
405}
406
407/// OptionalDefOperand - This is used to define a optional definition operand
408/// for an instruction. DefaultOps is the register the operand represents if
409/// none is supplied, e.g. zero_reg.
410class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
411  : Operand<ty> {
412  let MIOperandInfo = OpTypes;
413  dag DefaultOps = defaultops;
414}
415
416
417// InstrInfo - This class should only be instantiated once to provide parameters
418// which are global to the target machine.
419//
420class InstrInfo {
421  // Target can specify its instructions in either big or little-endian formats.
422  // For instance, while both Sparc and PowerPC are big-endian platforms, the
423  // Sparc manual specifies its instructions in the format [31..0] (big), while
424  // PowerPC specifies them using the format [0..31] (little).
425  bit isLittleEndianEncoding = 0;
426}
427
428// Standard Pseudo Instructions.
429// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
430// Only these instructions are allowed in the TargetOpcode namespace.
431let isCodeGenOnly = 1, Namespace = "TargetOpcode" in {
432def PHI : Instruction {
433  let OutOperandList = (outs);
434  let InOperandList = (ins variable_ops);
435  let AsmString = "PHINODE";
436}
437def INLINEASM : Instruction {
438  let OutOperandList = (outs);
439  let InOperandList = (ins variable_ops);
440  let AsmString = "";
441  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
442}
443def PROLOG_LABEL : Instruction {
444  let OutOperandList = (outs);
445  let InOperandList = (ins i32imm:$id);
446  let AsmString = "";
447  let hasCtrlDep = 1;
448  let isNotDuplicable = 1;
449}
450def EH_LABEL : Instruction {
451  let OutOperandList = (outs);
452  let InOperandList = (ins i32imm:$id);
453  let AsmString = "";
454  let hasCtrlDep = 1;
455  let isNotDuplicable = 1;
456}
457def GC_LABEL : Instruction {
458  let OutOperandList = (outs);
459  let InOperandList = (ins i32imm:$id);
460  let AsmString = "";
461  let hasCtrlDep = 1;
462  let isNotDuplicable = 1;
463}
464def KILL : Instruction {
465  let OutOperandList = (outs);
466  let InOperandList = (ins variable_ops);
467  let AsmString = "";
468  let neverHasSideEffects = 1;
469}
470def EXTRACT_SUBREG : Instruction {
471  let OutOperandList = (outs unknown:$dst);
472  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
473  let AsmString = "";
474  let neverHasSideEffects = 1;
475}
476def INSERT_SUBREG : Instruction {
477  let OutOperandList = (outs unknown:$dst);
478  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
479  let AsmString = "";
480  let neverHasSideEffects = 1;
481  let Constraints = "$supersrc = $dst";
482}
483def IMPLICIT_DEF : Instruction {
484  let OutOperandList = (outs unknown:$dst);
485  let InOperandList = (ins);
486  let AsmString = "";
487  let neverHasSideEffects = 1;
488  let isReMaterializable = 1;
489  let isAsCheapAsAMove = 1;
490}
491def SUBREG_TO_REG : Instruction {
492  let OutOperandList = (outs unknown:$dst);
493  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
494  let AsmString = "";
495  let neverHasSideEffects = 1;
496}
497def COPY_TO_REGCLASS : Instruction {
498  let OutOperandList = (outs unknown:$dst);
499  let InOperandList = (ins unknown:$src, i32imm:$regclass);
500  let AsmString = "";
501  let neverHasSideEffects = 1;
502  let isAsCheapAsAMove = 1;
503}
504def DBG_VALUE : Instruction {
505  let OutOperandList = (outs);
506  let InOperandList = (ins variable_ops);
507  let AsmString = "DBG_VALUE";
508  let neverHasSideEffects = 1;
509}
510def REG_SEQUENCE : Instruction {
511  let OutOperandList = (outs unknown:$dst);
512  let InOperandList = (ins variable_ops);
513  let AsmString = "";
514  let neverHasSideEffects = 1;
515  let isAsCheapAsAMove = 1;
516}
517def COPY : Instruction {
518  let OutOperandList = (outs unknown:$dst);
519  let InOperandList = (ins unknown:$src);
520  let AsmString = "";
521  let neverHasSideEffects = 1;
522  let isAsCheapAsAMove = 1;
523}
524}
525
526//===----------------------------------------------------------------------===//
527// AsmParser - This class can be implemented by targets that wish to implement
528// .s file parsing.
529//
530// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
531// syntax on X86 for example).
532//
533class AsmParser {
534  // AsmParserClassName - This specifies the suffix to use for the asmparser
535  // class.  Generated AsmParser classes are always prefixed with the target
536  // name.
537  string AsmParserClassName  = "AsmParser";
538
539  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
540  // function of the AsmParser class to call on every matched instruction.
541  // This can be used to perform target specific instruction post-processing.
542  string AsmParserInstCleanup  = "";
543
544  // Variant - AsmParsers can be of multiple different variants.  Variants are
545  // used to support targets that need to parser multiple formats for the
546  // assembly language.
547  int Variant = 0;
548
549  // CommentDelimiter - If given, the delimiter string used to recognize
550  // comments which are hard coded in the .td assembler strings for individual
551  // instructions.
552  string CommentDelimiter = "";
553
554  // RegisterPrefix - If given, the token prefix which indicates a register
555  // token. This is used by the matcher to automatically recognize hard coded
556  // register tokens as constrained registers, instead of tokens, for the
557  // purposes of matching.
558  string RegisterPrefix = "";
559}
560def DefaultAsmParser : AsmParser;
561
562/// AssemblerPredicate - This is a Predicate that can be used when the assembler
563/// matches instructions and aliases.
564class AssemblerPredicate {
565  bit AssemblerMatcherPredicate = 1;
566}
567
568
569
570/// MnemonicAlias - This class allows targets to define assembler mnemonic
571/// aliases.  This should be used when all forms of one mnemonic are accepted
572/// with a different mnemonic.  For example, X86 allows:
573///   sal %al, 1    -> shl %al, 1
574///   sal %ax, %cl  -> shl %ax, %cl
575///   sal %eax, %cl -> shl %eax, %cl
576/// etc.  Though "sal" is accepted with many forms, all of them are directly
577/// translated to a shl, so it can be handled with (in the case of X86, it
578/// actually has one for each suffix as well):
579///   def : MnemonicAlias<"sal", "shl">;
580///
581/// Mnemonic aliases are mapped before any other translation in the match phase,
582/// and do allow Requires predicates, e.g.:
583///
584///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
585///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
586///
587class MnemonicAlias<string From, string To> {
588  string FromMnemonic = From;
589  string ToMnemonic = To;
590
591  // Predicates - Predicates that must be true for this remapping to happen.
592  list<Predicate> Predicates = [];
593}
594
595/// InstAlias - This defines an alternate assembly syntax that is allowed to
596/// match an instruction that has a different (more canonical) assembly
597/// representation.
598class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
599  string AsmString = Asm;      // The .s format to match the instruction with.
600  dag ResultInst = Result;     // The MCInst to generate.
601  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
602
603  // Predicates - Predicates that must be true for this to match.
604  list<Predicate> Predicates = [];
605}
606
607//===----------------------------------------------------------------------===//
608// AsmWriter - This class can be implemented by targets that need to customize
609// the format of the .s file writer.
610//
611// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
612// on X86 for example).
613//
614class AsmWriter {
615  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
616  // class.  Generated AsmWriter classes are always prefixed with the target
617  // name.
618  string AsmWriterClassName  = "AsmPrinter";
619
620  // Variant - AsmWriters can be of multiple different variants.  Variants are
621  // used to support targets that need to emit assembly code in ways that are
622  // mostly the same for different targets, but have minor differences in
623  // syntax.  If the asmstring contains {|} characters in them, this integer
624  // will specify which alternative to use.  For example "{x|y|z}" with Variant
625  // == 1, will expand to "y".
626  int Variant = 0;
627
628
629  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
630  // layout, the asmwriter can actually generate output in this columns (in
631  // verbose-asm mode).  These two values indicate the width of the first column
632  // (the "opcode" area) and the width to reserve for subsequent operands.  When
633  // verbose asm mode is enabled, operands will be indented to respect this.
634  int FirstOperandColumn = -1;
635
636  // OperandSpacing - Space between operand columns.
637  int OperandSpacing = -1;
638
639  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
640  // generation of the printInstruction() method. For MC printers, it takes
641  // an MCInstr* operand, otherwise it takes a MachineInstr*.
642  bit isMCAsmWriter = 0;
643}
644def DefaultAsmWriter : AsmWriter;
645
646
647//===----------------------------------------------------------------------===//
648// Target - This class contains the "global" target information
649//
650class Target {
651  // InstructionSet - Instruction set description for this target.
652  InstrInfo InstructionSet;
653
654  // AssemblyParsers - The AsmParser instances available for this target.
655  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
656
657  // AssemblyWriters - The AsmWriter instances available for this target.
658  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
659}
660
661//===----------------------------------------------------------------------===//
662// SubtargetFeature - A characteristic of the chip set.
663//
664class SubtargetFeature<string n, string a,  string v, string d,
665                       list<SubtargetFeature> i = []> {
666  // Name - Feature name.  Used by command line (-mattr=) to determine the
667  // appropriate target chip.
668  //
669  string Name = n;
670
671  // Attribute - Attribute to be set by feature.
672  //
673  string Attribute = a;
674
675  // Value - Value the attribute to be set to by feature.
676  //
677  string Value = v;
678
679  // Desc - Feature description.  Used by command line (-mattr=) to display help
680  // information.
681  //
682  string Desc = d;
683
684  // Implies - Features that this feature implies are present. If one of those
685  // features isn't set, then this one shouldn't be set either.
686  //
687  list<SubtargetFeature> Implies = i;
688}
689
690//===----------------------------------------------------------------------===//
691// Processor chip sets - These values represent each of the chip sets supported
692// by the scheduler.  Each Processor definition requires corresponding
693// instruction itineraries.
694//
695class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
696  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
697  // appropriate target chip.
698  //
699  string Name = n;
700
701  // ProcItin - The scheduling information for the target processor.
702  //
703  ProcessorItineraries ProcItin = pi;
704
705  // Features - list of
706  list<SubtargetFeature> Features = f;
707}
708
709//===----------------------------------------------------------------------===//
710// Pull in the common support for calling conventions.
711//
712include "llvm/Target/TargetCallingConv.td"
713
714//===----------------------------------------------------------------------===//
715// Pull in the common support for DAG isel generation.
716//
717include "llvm/Target/TargetSelectionDAG.td"
718