Target.td revision 99405df044f2c584242e711cc9023ec90356da82
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// Register - You should define one instance of this class for each register
30// in the target machine.  String n will become the "name" of the register.
31class Register<string n> {
32  string Namespace = "";
33  string AsmName = n;
34
35  // SpillSize - If this value is set to a non-zero value, it is the size in
36  // bits of the spill slot required to hold this register.  If this value is
37  // set to zero, the information is inferred from any register classes the
38  // register belongs to.
39  int SpillSize = 0;
40
41  // SpillAlignment - This value is used to specify the alignment required for
42  // spilling the register.  Like SpillSize, this should only be explicitly
43  // specified if the register is not in a register class.
44  int SpillAlignment = 0;
45
46  // Aliases - A list of registers that this register overlaps with.  A read or
47  // modification of this register can potentially read or modify the aliased
48  // registers.
49  list<Register> Aliases = [];
50  
51  // SubRegs - A list of registers that are parts of this register. Note these
52  // are "immediate" sub-registers and the registers within the list do not
53  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
54  // not [AX, AH, AL].
55  list<Register> SubRegs = [];
56
57  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
58  // to address it. Sub-sub-register indices are automatically inherited from
59  // SubRegs.
60  list<SubRegIndex> SubRegIndices = [];
61
62  // CompositeIndices - Specify subreg indices that don't correspond directly to
63  // a register in SubRegs and are not inherited. The following formats are
64  // supported:
65  //
66  // (a)     Identity  - Reg:a == Reg
67  // (a b)   Alias     - Reg:a == Reg:b
68  // (a b,c) Composite - Reg:a == (Reg:b):c
69  //
70  // This can be used to disambiguate a sub-sub-register that exists in more
71  // than one subregister and other weird stuff.
72  list<dag> CompositeIndices = [];
73
74  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
75  // These values can be determined by locating the <target>.h file in the
76  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
77  // order of these names correspond to the enumeration used by gcc.  A value of
78  // -1 indicates that the gcc number is undefined and -2 that register number
79  // is invalid for this mode/flavour.
80  list<int> DwarfNumbers = [];
81}
82
83// RegisterWithSubRegs - This can be used to define instances of Register which
84// need to specify sub-registers.
85// List "subregs" specifies which registers are sub-registers to this one. This
86// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
87// This allows the code generator to be careful not to put two values with 
88// overlapping live ranges into registers which alias.
89class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
90  let SubRegs = subregs;
91}
92
93// RegisterClass - Now that all of the registers are defined, and aliases
94// between registers are defined, specify which registers belong to which
95// register classes.  This also defines the default allocation order of
96// registers by register allocators.
97//
98class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
99                    list<Register> regList> {
100  string Namespace = namespace;
101
102  // RegType - Specify the list ValueType of the registers in this register
103  // class.  Note that all registers in a register class must have the same
104  // ValueTypes.  This is a list because some targets permit storing different 
105  // types in same register, for example vector values with 128-bit total size,
106  // but different count/size of items, like SSE on x86.
107  //
108  list<ValueType> RegTypes = regTypes;
109
110  // Size - Specify the spill size in bits of the registers.  A default value of
111  // zero lets tablgen pick an appropriate size.
112  int Size = 0;
113
114  // Alignment - Specify the alignment required of the registers when they are
115  // stored or loaded to memory.
116  //
117  int Alignment = alignment;
118
119  // CopyCost - This value is used to specify the cost of copying a value
120  // between two registers in this register class. The default value is one
121  // meaning it takes a single instruction to perform the copying. A negative
122  // value means copying is extremely expensive or impossible.
123  int CopyCost = 1;
124
125  // MemberList - Specify which registers are in this class.  If the
126  // allocation_order_* method are not specified, this also defines the order of
127  // allocation used by the register allocator.
128  //
129  list<Register> MemberList = regList;
130  
131  // SubRegClasses - Specify the register class of subregisters as a list of
132  // dags: (RegClass SubRegIndex, SubRegindex, ...)
133  list<dag> SubRegClasses = [];
134
135  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
136  // code into a generated register class.   The normal usage of this is to 
137  // overload virtual methods.
138  code MethodProtos = [{}];
139  code MethodBodies = [{}];
140}
141
142
143//===----------------------------------------------------------------------===//
144// DwarfRegNum - This class provides a mapping of the llvm register enumeration
145// to the register numbering used by gcc and gdb.  These values are used by a
146// debug information writer to describe where values may be located during
147// execution.
148class DwarfRegNum<list<int> Numbers> {
149  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
150  // These values can be determined by locating the <target>.h file in the
151  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
152  // order of these names correspond to the enumeration used by gcc.  A value of
153  // -1 indicates that the gcc number is undefined and -2 that register number is 
154  // invalid for this mode/flavour.
155  list<int> DwarfNumbers = Numbers;
156}
157
158//===----------------------------------------------------------------------===//
159// Pull in the common support for scheduling
160//
161include "llvm/Target/TargetSchedule.td"
162
163class Predicate; // Forward def
164
165//===----------------------------------------------------------------------===//
166// Instruction set description - These classes correspond to the C++ classes in
167// the Target/TargetInstrInfo.h file.
168//
169class Instruction {
170  string Namespace = "";
171
172  dag OutOperandList;       // An dag containing the MI def operand list.
173  dag InOperandList;        // An dag containing the MI use operand list.
174  string AsmString = "";    // The .s format to print the instruction with.
175
176  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
177  // otherwise, uninitialized.
178  list<dag> Pattern;
179
180  // The follow state will eventually be inferred automatically from the
181  // instruction pattern.
182
183  list<Register> Uses = []; // Default to using no non-operand registers
184  list<Register> Defs = []; // Default to modifying no non-operand registers
185
186  // Predicates - List of predicates which will be turned into isel matching
187  // code.
188  list<Predicate> Predicates = [];
189
190  // Code size.
191  int CodeSize = 0;
192
193  // Added complexity passed onto matching pattern.
194  int AddedComplexity  = 0;
195
196  // These bits capture information about the high-level semantics of the
197  // instruction.
198  bit isReturn     = 0;     // Is this instruction a return instruction?
199  bit isBranch     = 0;     // Is this instruction a branch instruction?
200  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
201  bit isBarrier    = 0;     // Can control flow fall through this instruction?
202  bit isCall       = 0;     // Is this instruction a call instruction?
203  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
204  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
205  bit mayStore     = 0;     // Is it possible for this inst to write memory?
206  bit isTwoAddress = 0;     // Is this a two address instruction?
207  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
208  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
209  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
210  bit isReMaterializable = 0; // Is this instruction re-materializable?
211  bit isPredicable = 0;     // Is this instruction predicable?
212  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
213  bit usesCustomInserter = 0; // Pseudo instr needing special help.
214  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
215  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
216  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
217  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
218  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
219
220  // Side effect flags - When set, the flags have these meanings:
221  //
222  //  hasSideEffects - The instruction has side effects that are not
223  //    captured by any operands of the instruction or other flags.
224  //
225  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
226  //    side effects.
227  bit hasSideEffects = 0;
228  bit neverHasSideEffects = 0;
229
230  // Is this instruction a "real" instruction (with a distinct machine
231  // encoding), or is it a pseudo instruction used for codegen modeling
232  // purposes.
233  bit isCodeGenOnly = 0;
234
235  // Is this instruction a pseudo instruction for use by the assembler parser.
236  bit isAsmParserOnly = 0;
237
238  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
239
240  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
241
242  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
243  /// be encoded into the output machineinstr.
244  string DisableEncoding = "";
245
246  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
247  bits<64> TSFlags = 0;
248}
249
250/// Predicates - These are extra conditionals which are turned into instruction
251/// selector matching code. Currently each predicate is just a string.
252class Predicate<string cond> {
253  string CondString = cond;
254}
255
256/// NoHonorSignDependentRounding - This predicate is true if support for
257/// sign-dependent-rounding is not enabled.
258def NoHonorSignDependentRounding
259 : Predicate<"!HonorSignDependentRoundingFPMath()">;
260
261class Requires<list<Predicate> preds> {
262  list<Predicate> Predicates = preds;
263}
264
265/// ops definition - This is just a simple marker used to identify the operands
266/// list for an instruction. outs and ins are identical both syntatically and
267/// semantically, they are used to define def operands and use operands to
268/// improve readibility. This should be used like this:
269///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
270def ops;
271def outs;
272def ins;
273
274/// variable_ops definition - Mark this instruction as taking a variable number
275/// of operands.
276def variable_ops;
277
278
279/// PointerLikeRegClass - Values that are designed to have pointer width are
280/// derived from this.  TableGen treats the register class as having a symbolic
281/// type that it doesn't know, and resolves the actual regclass to use by using
282/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
283class PointerLikeRegClass<int Kind> {
284  int RegClassKind = Kind;
285}
286
287
288/// ptr_rc definition - Mark this operand as being a pointer value whose
289/// register class is resolved dynamically via a callback to TargetInstrInfo.
290/// FIXME: We should probably change this to a class which contain a list of
291/// flags. But currently we have but one flag.
292def ptr_rc : PointerLikeRegClass<0>;
293
294/// unknown definition - Mark this operand as being of unknown type, causing
295/// it to be resolved by inference in the context it is used.
296def unknown;
297
298/// AsmOperandClass - Representation for the kinds of operands which the target
299/// specific parser can create and the assembly matcher may need to distinguish.
300///
301/// Operand classes are used to define the order in which instructions are
302/// matched, to ensure that the instruction which gets matched for any
303/// particular list of operands is deterministic.
304///
305/// The target specific parser must be able to classify a parsed operand into a
306/// unique class which does not partially overlap with any other classes. It can
307/// match a subset of some other class, in which case the super class field
308/// should be defined.
309class AsmOperandClass {
310  /// The name to use for this class, which should be usable as an enum value.
311  string Name = ?;
312
313  /// The super classes of this operand.
314  list<AsmOperandClass> SuperClasses = [];
315
316  /// The name of the method on the target specific operand to call to test
317  /// whether the operand is an instance of this class. If not set, this will
318  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
319  /// signature should be:
320  ///   bool isFoo() const;
321  string PredicateMethod = ?;
322
323  /// The name of the method on the target specific operand to call to add the
324  /// target specific operand to an MCInst. If not set, this will default to
325  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
326  /// signature should be:
327  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
328  string RenderMethod = ?;
329}
330
331def ImmAsmOperand : AsmOperandClass {
332  let Name = "Imm";
333}
334   
335/// Operand Types - These provide the built-in operand types that may be used
336/// by a target.  Targets can optionally provide their own operand types as
337/// needed, though this should not be needed for RISC targets.
338class Operand<ValueType ty> {
339  ValueType Type = ty;
340  string PrintMethod = "printOperand";
341  string AsmOperandLowerMethod = ?;
342  dag MIOperandInfo = (ops);
343
344  // ParserMatchClass - The "match class" that operands of this type fit
345  // in. Match classes are used to define the order in which instructions are
346  // match, to ensure that which instructions gets matched is deterministic.
347  //
348  // The target specific parser must be able to classify an parsed operand into
349  // a unique class, which does not partially overlap with any other classes. It
350  // can match a subset of some other class, in which case the AsmOperandClass
351  // should declare the other operand as one of its super classes.
352  AsmOperandClass ParserMatchClass = ImmAsmOperand;
353}
354
355def i1imm  : Operand<i1>;
356def i8imm  : Operand<i8>;
357def i16imm : Operand<i16>;
358def i32imm : Operand<i32>;
359def i64imm : Operand<i64>;
360
361def f32imm : Operand<f32>;
362def f64imm : Operand<f64>;
363
364/// zero_reg definition - Special node to stand for the zero register.
365///
366def zero_reg;
367
368/// PredicateOperand - This can be used to define a predicate operand for an
369/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
370/// AlwaysVal specifies the value of this predicate when set to "always
371/// execute".
372class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
373  : Operand<ty> {
374  let MIOperandInfo = OpTypes;
375  dag DefaultOps = AlwaysVal;
376}
377
378/// OptionalDefOperand - This is used to define a optional definition operand
379/// for an instruction. DefaultOps is the register the operand represents if
380/// none is supplied, e.g. zero_reg.
381class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
382  : Operand<ty> {
383  let MIOperandInfo = OpTypes;
384  dag DefaultOps = defaultops;
385}
386
387
388// InstrInfo - This class should only be instantiated once to provide parameters
389// which are global to the target machine.
390//
391class InstrInfo {
392  // Target can specify its instructions in either big or little-endian formats.
393  // For instance, while both Sparc and PowerPC are big-endian platforms, the
394  // Sparc manual specifies its instructions in the format [31..0] (big), while
395  // PowerPC specifies them using the format [0..31] (little).
396  bit isLittleEndianEncoding = 0;
397}
398
399// Standard Pseudo Instructions.
400let isCodeGenOnly = 1 in {
401def PHI : Instruction {
402  let OutOperandList = (outs);
403  let InOperandList = (ins variable_ops);
404  let AsmString = "PHINODE";
405  let Namespace = "TargetOpcode";
406}
407def INLINEASM : Instruction {
408  let OutOperandList = (outs);
409  let InOperandList = (ins variable_ops);
410  let AsmString = "";
411  let Namespace = "TargetOpcode";
412}
413def DBG_LABEL : Instruction {
414  let OutOperandList = (outs);
415  let InOperandList = (ins i32imm:$id);
416  let AsmString = "";
417  let Namespace = "TargetOpcode";
418  let hasCtrlDep = 1;
419  let isNotDuplicable = 1;
420}
421def EH_LABEL : Instruction {
422  let OutOperandList = (outs);
423  let InOperandList = (ins i32imm:$id);
424  let AsmString = "";
425  let Namespace = "TargetOpcode";
426  let hasCtrlDep = 1;
427  let isNotDuplicable = 1;
428}
429def GC_LABEL : Instruction {
430  let OutOperandList = (outs);
431  let InOperandList = (ins i32imm:$id);
432  let AsmString = "";
433  let Namespace = "TargetOpcode";
434  let hasCtrlDep = 1;
435  let isNotDuplicable = 1;
436}
437def KILL : Instruction {
438  let OutOperandList = (outs);
439  let InOperandList = (ins variable_ops);
440  let AsmString = "";
441  let Namespace = "TargetOpcode";
442  let neverHasSideEffects = 1;
443}
444def EXTRACT_SUBREG : Instruction {
445  let OutOperandList = (outs unknown:$dst);
446  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
447  let AsmString = "";
448  let Namespace = "TargetOpcode";
449  let neverHasSideEffects = 1;
450}
451def INSERT_SUBREG : Instruction {
452  let OutOperandList = (outs unknown:$dst);
453  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
454  let AsmString = "";
455  let Namespace = "TargetOpcode";
456  let neverHasSideEffects = 1;
457  let Constraints = "$supersrc = $dst";
458}
459def IMPLICIT_DEF : Instruction {
460  let OutOperandList = (outs unknown:$dst);
461  let InOperandList = (ins);
462  let AsmString = "";
463  let Namespace = "TargetOpcode";
464  let neverHasSideEffects = 1;
465  let isReMaterializable = 1;
466  let isAsCheapAsAMove = 1;
467}
468def SUBREG_TO_REG : Instruction {
469  let OutOperandList = (outs unknown:$dst);
470  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
471  let AsmString = "";
472  let Namespace = "TargetOpcode";
473  let neverHasSideEffects = 1;
474}
475def COPY_TO_REGCLASS : Instruction {
476  let OutOperandList = (outs unknown:$dst);
477  let InOperandList = (ins unknown:$src, i32imm:$regclass);
478  let AsmString = "";
479  let Namespace = "TargetOpcode";
480  let neverHasSideEffects = 1;
481  let isAsCheapAsAMove = 1;
482}
483def DBG_VALUE : Instruction {
484  let OutOperandList = (outs);
485  let InOperandList = (ins variable_ops);
486  let AsmString = "DBG_VALUE";
487  let Namespace = "TargetOpcode";
488  let isAsCheapAsAMove = 1;
489}
490
491def REG_SEQUENCE : Instruction {
492  let OutOperandList = (outs unknown:$dst);
493  let InOperandList = (ins variable_ops);
494  let AsmString = "";
495  let Namespace = "TargetOpcode";
496  let neverHasSideEffects = 1;
497  let isAsCheapAsAMove = 1;
498}
499}
500
501//===----------------------------------------------------------------------===//
502// AsmParser - This class can be implemented by targets that wish to implement
503// .s file parsing.
504//
505// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
506// syntax on X86 for example).
507//
508class AsmParser {
509  // AsmParserClassName - This specifies the suffix to use for the asmparser
510  // class.  Generated AsmParser classes are always prefixed with the target
511  // name.
512  string AsmParserClassName  = "AsmParser";
513
514  // AsmParserInstCleanup - If non-empty, this is the name of a custom function on the
515  // AsmParser class to call on every matched instruction. This can be used to
516  // perform target specific instruction post-processing.
517  string AsmParserInstCleanup  = "";
518
519  // MatchInstructionName - The name of the instruction matching function to
520  // generate.
521  string MatchInstructionName  = "MatchInstruction";
522
523  // Variant - AsmParsers can be of multiple different variants.  Variants are
524  // used to support targets that need to parser multiple formats for the
525  // assembly language.
526  int Variant = 0;
527
528  // CommentDelimiter - If given, the delimiter string used to recognize
529  // comments which are hard coded in the .td assembler strings for individual
530  // instructions.
531  string CommentDelimiter = "";
532
533  // RegisterPrefix - If given, the token prefix which indicates a register
534  // token. This is used by the matcher to automatically recognize hard coded
535  // register tokens as constrained registers, instead of tokens, for the
536  // purposes of matching.
537  string RegisterPrefix = "";
538}
539def DefaultAsmParser : AsmParser;
540
541
542//===----------------------------------------------------------------------===//
543// AsmWriter - This class can be implemented by targets that need to customize
544// the format of the .s file writer.
545//
546// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
547// on X86 for example).
548//
549class AsmWriter {
550  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
551  // class.  Generated AsmWriter classes are always prefixed with the target
552  // name.
553  string AsmWriterClassName  = "AsmPrinter";
554
555  // InstFormatName - AsmWriters can specify the name of the format string to
556  // print instructions with.
557  string InstFormatName = "AsmString";
558
559  // Variant - AsmWriters can be of multiple different variants.  Variants are
560  // used to support targets that need to emit assembly code in ways that are
561  // mostly the same for different targets, but have minor differences in
562  // syntax.  If the asmstring contains {|} characters in them, this integer
563  // will specify which alternative to use.  For example "{x|y|z}" with Variant
564  // == 1, will expand to "y".
565  int Variant = 0;
566  
567  
568  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
569  // layout, the asmwriter can actually generate output in this columns (in
570  // verbose-asm mode).  These two values indicate the width of the first column
571  // (the "opcode" area) and the width to reserve for subsequent operands.  When
572  // verbose asm mode is enabled, operands will be indented to respect this.
573  int FirstOperandColumn = -1;
574  
575  // OperandSpacing - Space between operand columns.
576  int OperandSpacing = -1;
577}
578def DefaultAsmWriter : AsmWriter;
579
580
581//===----------------------------------------------------------------------===//
582// Target - This class contains the "global" target information
583//
584class Target {
585  // InstructionSet - Instruction set description for this target.
586  InstrInfo InstructionSet;
587
588  // AssemblyParsers - The AsmParser instances available for this target.
589  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
590
591  // AssemblyWriters - The AsmWriter instances available for this target.
592  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
593}
594
595//===----------------------------------------------------------------------===//
596// SubtargetFeature - A characteristic of the chip set.
597//
598class SubtargetFeature<string n, string a,  string v, string d,
599                       list<SubtargetFeature> i = []> {
600  // Name - Feature name.  Used by command line (-mattr=) to determine the
601  // appropriate target chip.
602  //
603  string Name = n;
604  
605  // Attribute - Attribute to be set by feature.
606  //
607  string Attribute = a;
608  
609  // Value - Value the attribute to be set to by feature.
610  //
611  string Value = v;
612  
613  // Desc - Feature description.  Used by command line (-mattr=) to display help
614  // information.
615  //
616  string Desc = d;
617
618  // Implies - Features that this feature implies are present. If one of those
619  // features isn't set, then this one shouldn't be set either.
620  //
621  list<SubtargetFeature> Implies = i;
622}
623
624//===----------------------------------------------------------------------===//
625// Processor chip sets - These values represent each of the chip sets supported
626// by the scheduler.  Each Processor definition requires corresponding
627// instruction itineraries.
628//
629class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
630  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
631  // appropriate target chip.
632  //
633  string Name = n;
634  
635  // ProcItin - The scheduling information for the target processor.
636  //
637  ProcessorItineraries ProcItin = pi;
638  
639  // Features - list of 
640  list<SubtargetFeature> Features = f;
641}
642
643//===----------------------------------------------------------------------===//
644// Pull in the common support for calling conventions.
645//
646include "llvm/Target/TargetCallingConv.td"
647
648//===----------------------------------------------------------------------===//
649// Pull in the common support for DAG isel generation.
650//
651include "llvm/Target/TargetSelectionDAG.td"
652