Target.td revision a66512e59142f36ae653460891c058d5e78e07e3
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// RegAltNameIndex - The alternate name set to use for register operands of
30// this register class when printing.
31class RegAltNameIndex {
32  string Namespace = "";
33}
34def NoRegAltName : RegAltNameIndex;
35
36// Register - You should define one instance of this class for each register
37// in the target machine.  String n will become the "name" of the register.
38class Register<string n, list<string> altNames = []> {
39  string Namespace = "";
40  string AsmName = n;
41  list<string> AltNames = altNames;
42
43  // Aliases - A list of registers that this register overlaps with.  A read or
44  // modification of this register can potentially read or modify the aliased
45  // registers.
46  list<Register> Aliases = [];
47
48  // SubRegs - A list of registers that are parts of this register. Note these
49  // are "immediate" sub-registers and the registers within the list do not
50  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
51  // not [AX, AH, AL].
52  list<Register> SubRegs = [];
53
54  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
55  // to address it. Sub-sub-register indices are automatically inherited from
56  // SubRegs.
57  list<SubRegIndex> SubRegIndices = [];
58
59  // RegAltNameIndices - The alternate name indices which are valid for this
60  // register.
61  list<RegAltNameIndex> RegAltNameIndices = [];
62
63  // CompositeIndices - Specify subreg indices that don't correspond directly to
64  // a register in SubRegs and are not inherited. The following formats are
65  // supported:
66  //
67  // (a)     Identity  - Reg:a == Reg
68  // (a b)   Alias     - Reg:a == Reg:b
69  // (a b,c) Composite - Reg:a == (Reg:b):c
70  //
71  // This can be used to disambiguate a sub-sub-register that exists in more
72  // than one subregister and other weird stuff.
73  list<dag> CompositeIndices = [];
74
75  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
76  // These values can be determined by locating the <target>.h file in the
77  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
78  // order of these names correspond to the enumeration used by gcc.  A value of
79  // -1 indicates that the gcc number is undefined and -2 that register number
80  // is invalid for this mode/flavour.
81  list<int> DwarfNumbers = [];
82
83  // CostPerUse - Additional cost of instructions using this register compared
84  // to other registers in its class. The register allocator will try to
85  // minimize the number of instructions using a register with a CostPerUse.
86  // This is used by the x86-64 and ARM Thumb targets where some registers
87  // require larger instruction encodings.
88  int CostPerUse = 0;
89}
90
91// RegisterWithSubRegs - This can be used to define instances of Register which
92// need to specify sub-registers.
93// List "subregs" specifies which registers are sub-registers to this one. This
94// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
95// This allows the code generator to be careful not to put two values with
96// overlapping live ranges into registers which alias.
97class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
98  let SubRegs = subregs;
99}
100
101// RegisterClass - Now that all of the registers are defined, and aliases
102// between registers are defined, specify which registers belong to which
103// register classes.  This also defines the default allocation order of
104// registers by register allocators.
105//
106class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
107                    dag regList, RegAltNameIndex idx = NoRegAltName> {
108  string Namespace = namespace;
109
110  // RegType - Specify the list ValueType of the registers in this register
111  // class.  Note that all registers in a register class must have the same
112  // ValueTypes.  This is a list because some targets permit storing different
113  // types in same register, for example vector values with 128-bit total size,
114  // but different count/size of items, like SSE on x86.
115  //
116  list<ValueType> RegTypes = regTypes;
117
118  // Size - Specify the spill size in bits of the registers.  A default value of
119  // zero lets tablgen pick an appropriate size.
120  int Size = 0;
121
122  // Alignment - Specify the alignment required of the registers when they are
123  // stored or loaded to memory.
124  //
125  int Alignment = alignment;
126
127  // CopyCost - This value is used to specify the cost of copying a value
128  // between two registers in this register class. The default value is one
129  // meaning it takes a single instruction to perform the copying. A negative
130  // value means copying is extremely expensive or impossible.
131  int CopyCost = 1;
132
133  // MemberList - Specify which registers are in this class.  If the
134  // allocation_order_* method are not specified, this also defines the order of
135  // allocation used by the register allocator.
136  //
137  dag MemberList = regList;
138
139  // AltNameIndex - The alternate register name to use when printing operands
140  // of this register class. Every register in the register class must have
141  // a valid alternate name for the given index.
142  RegAltNameIndex altNameIndex = idx;
143
144  // SubRegClasses - Specify the register class of subregisters as a list of
145  // dags: (RegClass SubRegIndex, SubRegindex, ...)
146  list<dag> SubRegClasses = [];
147
148  // isAllocatable - Specify that the register class can be used for virtual
149  // registers and register allocation.  Some register classes are only used to
150  // model instruction operand constraints, and should have isAllocatable = 0.
151  bit isAllocatable = 1;
152
153  // AltOrders - List of alternative allocation orders. The default order is
154  // MemberList itself, and that is good enough for most targets since the
155  // register allocators automatically remove reserved registers and move
156  // callee-saved registers to the end.
157  list<dag> AltOrders = [];
158
159  // AltOrderSelect - The body of a function that selects the allocation order
160  // to use in a given machine function. The code will be inserted in a
161  // function like this:
162  //
163  //   static inline unsigned f(const MachineFunction &MF) { ... }
164  //
165  // The function should return 0 to select the default order defined by
166  // MemberList, 1 to select the first AltOrders entry and so on.
167  code AltOrderSelect = [{}];
168}
169
170// The memberList in a RegisterClass is a dag of set operations. TableGen
171// evaluates these set operations and expand them into register lists. These
172// are the most common operation, see test/TableGen/SetTheory.td for more
173// examples of what is possible:
174//
175// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
176// register class, or a sub-expression. This is also the way to simply list
177// registers.
178//
179// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
180//
181// (and GPR, CSR) - Set intersection. All registers from the first set that are
182// also in the second set.
183//
184// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
185// numbered registers.
186//
187// (shl GPR, 4) - Remove the first N elements.
188//
189// (trunc GPR, 4) - Truncate after the first N elements.
190//
191// (rotl GPR, 1) - Rotate N places to the left.
192//
193// (rotr GPR, 1) - Rotate N places to the right.
194//
195// (decimate GPR, 2) - Pick every N'th element, starting with the first.
196//
197// All of these operators work on ordered sets, not lists. That means
198// duplicates are removed from sub-expressions.
199
200// Set operators. The rest is defined in TargetSelectionDAG.td.
201def sequence;
202def decimate;
203
204// RegisterTuples - Automatically generate super-registers by forming tuples of
205// sub-registers. This is useful for modeling register sequence constraints
206// with pseudo-registers that are larger than the architectural registers.
207//
208// The sub-register lists are zipped together:
209//
210//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
211//
212// Generates the same registers as:
213//
214//   let SubRegIndices = [sube, subo] in {
215//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
216//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
217//   }
218//
219// The generated pseudo-registers inherit super-classes and fields from their
220// first sub-register. Most fields from the Register class are inferred, and
221// the AsmName and Dwarf numbers are cleared.
222//
223// RegisterTuples instances can be used in other set operations to form
224// register classes and so on. This is the only way of using the generated
225// registers.
226class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
227  // SubRegs - N lists of registers to be zipped up. Super-registers are
228  // synthesized from the first element of each SubRegs list, the second
229  // element and so on.
230  list<dag> SubRegs = Regs;
231
232  // SubRegIndices - N SubRegIndex instances. This provides the names of the
233  // sub-registers in the synthesized super-registers.
234  list<SubRegIndex> SubRegIndices = Indices;
235
236  // Compose sub-register indices like in a normal Register.
237  list<dag> CompositeIndices = [];
238}
239
240
241//===----------------------------------------------------------------------===//
242// DwarfRegNum - This class provides a mapping of the llvm register enumeration
243// to the register numbering used by gcc and gdb.  These values are used by a
244// debug information writer to describe where values may be located during
245// execution.
246class DwarfRegNum<list<int> Numbers> {
247  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
248  // These values can be determined by locating the <target>.h file in the
249  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
250  // order of these names correspond to the enumeration used by gcc.  A value of
251  // -1 indicates that the gcc number is undefined and -2 that register number
252  // is invalid for this mode/flavour.
253  list<int> DwarfNumbers = Numbers;
254}
255
256// DwarfRegAlias - This class declares that a given register uses the same dwarf
257// numbers as another one. This is useful for making it clear that the two
258// registers do have the same number. It also lets us build a mapping
259// from dwarf register number to llvm register.
260class DwarfRegAlias<Register reg> {
261      Register DwarfAlias = reg;
262}
263
264//===----------------------------------------------------------------------===//
265// Pull in the common support for scheduling
266//
267include "llvm/Target/TargetSchedule.td"
268
269class Predicate; // Forward def
270
271//===----------------------------------------------------------------------===//
272// Instruction set description - These classes correspond to the C++ classes in
273// the Target/TargetInstrInfo.h file.
274//
275class Instruction {
276  string Namespace = "";
277
278  dag OutOperandList;       // An dag containing the MI def operand list.
279  dag InOperandList;        // An dag containing the MI use operand list.
280  string AsmString = "";    // The .s format to print the instruction with.
281
282  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
283  // otherwise, uninitialized.
284  list<dag> Pattern;
285
286  // The follow state will eventually be inferred automatically from the
287  // instruction pattern.
288
289  list<Register> Uses = []; // Default to using no non-operand registers
290  list<Register> Defs = []; // Default to modifying no non-operand registers
291
292  // Predicates - List of predicates which will be turned into isel matching
293  // code.
294  list<Predicate> Predicates = [];
295
296  // Size - Size of encoded instruction, or zero if the size cannot be determined
297  // from the opcode.
298  int Size = 0;
299
300  // DecoderNamespace - The "namespace" in which this instruction exists, on
301  // targets like ARM which multiple ISA namespaces exist.
302  string DecoderNamespace = "";
303
304  // Code size, for instruction selection.
305  // FIXME: What does this actually mean?
306  int CodeSize = 0;
307
308  // Added complexity passed onto matching pattern.
309  int AddedComplexity  = 0;
310
311  // These bits capture information about the high-level semantics of the
312  // instruction.
313  bit isReturn     = 0;     // Is this instruction a return instruction?
314  bit isBranch     = 0;     // Is this instruction a branch instruction?
315  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
316  bit isCompare    = 0;     // Is this instruction a comparison instruction?
317  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
318  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
319  bit isBarrier    = 0;     // Can control flow fall through this instruction?
320  bit isCall       = 0;     // Is this instruction a call instruction?
321  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
322  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
323  bit mayStore     = 0;     // Is it possible for this inst to write memory?
324  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
325  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
326  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
327  bit isReMaterializable = 0; // Is this instruction re-materializable?
328  bit isPredicable = 0;     // Is this instruction predicable?
329  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
330  bit usesCustomInserter = 0; // Pseudo instr needing special help.
331  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
332  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
333  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
334  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
335  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
336  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
337  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
338                            // If so, won't have encoding information for
339                            // the [MC]CodeEmitter stuff.
340
341  // Side effect flags - When set, the flags have these meanings:
342  //
343  //  hasSideEffects - The instruction has side effects that are not
344  //    captured by any operands of the instruction or other flags.
345  //
346  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
347  //    side effects.
348  bit hasSideEffects = 0;
349  bit neverHasSideEffects = 0;
350
351  // Is this instruction a "real" instruction (with a distinct machine
352  // encoding), or is it a pseudo instruction used for codegen modeling
353  // purposes.
354  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
355  // instructions can (and often do) still have encoding information
356  // associated with them. Once we've migrated all of them over to true
357  // pseudo-instructions that are lowered to real instructions prior to
358  // the printer/emitter, we can remove this attribute and just use isPseudo.
359  //
360  // The intended use is:
361  // isPseudo: Does not have encoding information and should be expanded,
362  //   at the latest, during lowering to MCInst.
363  //
364  // isCodeGenOnly: Does have encoding information and can go through to the
365  //   CodeEmitter unchanged, but duplicates a canonical instruction
366  //   definition's encoding and should be ignored when constructing the
367  //   assembler match tables.
368  bit isCodeGenOnly = 0;
369
370  // Is this instruction a pseudo instruction for use by the assembler parser.
371  bit isAsmParserOnly = 0;
372
373  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
374
375  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
376
377  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
378  /// be encoded into the output machineinstr.
379  string DisableEncoding = "";
380
381  string PostEncoderMethod = "";
382  string DecoderMethod = "";
383
384  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
385  bits<64> TSFlags = 0;
386
387  ///@name Assembler Parser Support
388  ///@{
389
390  string AsmMatchConverter = "";
391
392  ///@}
393}
394
395/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
396/// Which instruction it expands to and how the operands map from the
397/// pseudo.
398class PseudoInstExpansion<dag Result> {
399  dag ResultInst = Result;     // The instruction to generate.
400  bit isPseudo = 1;
401}
402
403/// Predicates - These are extra conditionals which are turned into instruction
404/// selector matching code. Currently each predicate is just a string.
405class Predicate<string cond> {
406  string CondString = cond;
407
408  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
409  /// matcher, this is true.  Targets should set this by inheriting their
410  /// feature from the AssemblerPredicate class in addition to Predicate.
411  bit AssemblerMatcherPredicate = 0;
412
413  /// AssemblerCondString - Name of the subtarget feature being tested used
414  /// as alternative condition string used for assembler matcher.
415  /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
416  ///      "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
417  /// It can also list multiple features separated by ",".
418  /// e.g. "ModeThumb,FeatureThumb2" is translated to
419  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
420  string AssemblerCondString = "";
421}
422
423/// NoHonorSignDependentRounding - This predicate is true if support for
424/// sign-dependent-rounding is not enabled.
425def NoHonorSignDependentRounding
426 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
427
428class Requires<list<Predicate> preds> {
429  list<Predicate> Predicates = preds;
430}
431
432/// ops definition - This is just a simple marker used to identify the operand
433/// list for an instruction. outs and ins are identical both syntactically and
434/// semanticallyr; they are used to define def operands and use operands to
435/// improve readibility. This should be used like this:
436///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
437def ops;
438def outs;
439def ins;
440
441/// variable_ops definition - Mark this instruction as taking a variable number
442/// of operands.
443def variable_ops;
444
445
446/// PointerLikeRegClass - Values that are designed to have pointer width are
447/// derived from this.  TableGen treats the register class as having a symbolic
448/// type that it doesn't know, and resolves the actual regclass to use by using
449/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
450class PointerLikeRegClass<int Kind> {
451  int RegClassKind = Kind;
452}
453
454
455/// ptr_rc definition - Mark this operand as being a pointer value whose
456/// register class is resolved dynamically via a callback to TargetInstrInfo.
457/// FIXME: We should probably change this to a class which contain a list of
458/// flags. But currently we have but one flag.
459def ptr_rc : PointerLikeRegClass<0>;
460
461/// unknown definition - Mark this operand as being of unknown type, causing
462/// it to be resolved by inference in the context it is used.
463def unknown;
464
465/// AsmOperandClass - Representation for the kinds of operands which the target
466/// specific parser can create and the assembly matcher may need to distinguish.
467///
468/// Operand classes are used to define the order in which instructions are
469/// matched, to ensure that the instruction which gets matched for any
470/// particular list of operands is deterministic.
471///
472/// The target specific parser must be able to classify a parsed operand into a
473/// unique class which does not partially overlap with any other classes. It can
474/// match a subset of some other class, in which case the super class field
475/// should be defined.
476class AsmOperandClass {
477  /// The name to use for this class, which should be usable as an enum value.
478  string Name = ?;
479
480  /// The super classes of this operand.
481  list<AsmOperandClass> SuperClasses = [];
482
483  /// The name of the method on the target specific operand to call to test
484  /// whether the operand is an instance of this class. If not set, this will
485  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
486  /// signature should be:
487  ///   bool isFoo() const;
488  string PredicateMethod = ?;
489
490  /// The name of the method on the target specific operand to call to add the
491  /// target specific operand to an MCInst. If not set, this will default to
492  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
493  /// signature should be:
494  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
495  string RenderMethod = ?;
496
497  /// The name of the method on the target specific operand to call to custom
498  /// handle the operand parsing. This is useful when the operands do not relate
499  /// to immediates or registers and are very instruction specific (as flags to
500  /// set in a processor register, coprocessor number, ...).
501  string ParserMethod = ?;
502}
503
504def ImmAsmOperand : AsmOperandClass {
505  let Name = "Imm";
506}
507
508/// Operand Types - These provide the built-in operand types that may be used
509/// by a target.  Targets can optionally provide their own operand types as
510/// needed, though this should not be needed for RISC targets.
511class Operand<ValueType ty> {
512  ValueType Type = ty;
513  string PrintMethod = "printOperand";
514  string EncoderMethod = "";
515  string DecoderMethod = "";
516  string AsmOperandLowerMethod = ?;
517  string OperandType = "OPERAND_UNKNOWN";
518  dag MIOperandInfo = (ops);
519
520  // ParserMatchClass - The "match class" that operands of this type fit
521  // in. Match classes are used to define the order in which instructions are
522  // match, to ensure that which instructions gets matched is deterministic.
523  //
524  // The target specific parser must be able to classify an parsed operand into
525  // a unique class, which does not partially overlap with any other classes. It
526  // can match a subset of some other class, in which case the AsmOperandClass
527  // should declare the other operand as one of its super classes.
528  AsmOperandClass ParserMatchClass = ImmAsmOperand;
529}
530
531class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> {
532  // RegClass - The register class of the operand.
533  RegisterClass RegClass = regclass;
534  // PrintMethod - The target method to call to print register operands of
535  // this type. The method normally will just use an alt-name index to look
536  // up the name to print. Default to the generic printOperand().
537  string PrintMethod = pm;
538  // ParserMatchClass - The "match class" that operands of this type fit
539  // in. Match classes are used to define the order in which instructions are
540  // match, to ensure that which instructions gets matched is deterministic.
541  //
542  // The target specific parser must be able to classify an parsed operand into
543  // a unique class, which does not partially overlap with any other classes. It
544  // can match a subset of some other class, in which case the AsmOperandClass
545  // should declare the other operand as one of its super classes.
546  AsmOperandClass ParserMatchClass;
547}
548
549let OperandType = "OPERAND_IMMEDIATE" in {
550def i1imm  : Operand<i1>;
551def i8imm  : Operand<i8>;
552def i16imm : Operand<i16>;
553def i32imm : Operand<i32>;
554def i64imm : Operand<i64>;
555
556def f32imm : Operand<f32>;
557def f64imm : Operand<f64>;
558}
559
560/// zero_reg definition - Special node to stand for the zero register.
561///
562def zero_reg;
563
564/// PredicateOperand - This can be used to define a predicate operand for an
565/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
566/// AlwaysVal specifies the value of this predicate when set to "always
567/// execute".
568class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
569  : Operand<ty> {
570  let MIOperandInfo = OpTypes;
571  dag DefaultOps = AlwaysVal;
572}
573
574/// OptionalDefOperand - This is used to define a optional definition operand
575/// for an instruction. DefaultOps is the register the operand represents if
576/// none is supplied, e.g. zero_reg.
577class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
578  : Operand<ty> {
579  let MIOperandInfo = OpTypes;
580  dag DefaultOps = defaultops;
581}
582
583
584// InstrInfo - This class should only be instantiated once to provide parameters
585// which are global to the target machine.
586//
587class InstrInfo {
588  // Target can specify its instructions in either big or little-endian formats.
589  // For instance, while both Sparc and PowerPC are big-endian platforms, the
590  // Sparc manual specifies its instructions in the format [31..0] (big), while
591  // PowerPC specifies them using the format [0..31] (little).
592  bit isLittleEndianEncoding = 0;
593}
594
595// Standard Pseudo Instructions.
596// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
597// Only these instructions are allowed in the TargetOpcode namespace.
598let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
599def PHI : Instruction {
600  let OutOperandList = (outs);
601  let InOperandList = (ins variable_ops);
602  let AsmString = "PHINODE";
603}
604def INLINEASM : Instruction {
605  let OutOperandList = (outs);
606  let InOperandList = (ins variable_ops);
607  let AsmString = "";
608  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
609}
610def PROLOG_LABEL : Instruction {
611  let OutOperandList = (outs);
612  let InOperandList = (ins i32imm:$id);
613  let AsmString = "";
614  let hasCtrlDep = 1;
615  let isNotDuplicable = 1;
616}
617def EH_LABEL : Instruction {
618  let OutOperandList = (outs);
619  let InOperandList = (ins i32imm:$id);
620  let AsmString = "";
621  let hasCtrlDep = 1;
622  let isNotDuplicable = 1;
623}
624def GC_LABEL : Instruction {
625  let OutOperandList = (outs);
626  let InOperandList = (ins i32imm:$id);
627  let AsmString = "";
628  let hasCtrlDep = 1;
629  let isNotDuplicable = 1;
630}
631def KILL : Instruction {
632  let OutOperandList = (outs);
633  let InOperandList = (ins variable_ops);
634  let AsmString = "";
635  let neverHasSideEffects = 1;
636}
637def EXTRACT_SUBREG : Instruction {
638  let OutOperandList = (outs unknown:$dst);
639  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
640  let AsmString = "";
641  let neverHasSideEffects = 1;
642}
643def INSERT_SUBREG : Instruction {
644  let OutOperandList = (outs unknown:$dst);
645  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
646  let AsmString = "";
647  let neverHasSideEffects = 1;
648  let Constraints = "$supersrc = $dst";
649}
650def IMPLICIT_DEF : Instruction {
651  let OutOperandList = (outs unknown:$dst);
652  let InOperandList = (ins);
653  let AsmString = "";
654  let neverHasSideEffects = 1;
655  let isReMaterializable = 1;
656  let isAsCheapAsAMove = 1;
657}
658def SUBREG_TO_REG : Instruction {
659  let OutOperandList = (outs unknown:$dst);
660  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
661  let AsmString = "";
662  let neverHasSideEffects = 1;
663}
664def COPY_TO_REGCLASS : Instruction {
665  let OutOperandList = (outs unknown:$dst);
666  let InOperandList = (ins unknown:$src, i32imm:$regclass);
667  let AsmString = "";
668  let neverHasSideEffects = 1;
669  let isAsCheapAsAMove = 1;
670}
671def DBG_VALUE : Instruction {
672  let OutOperandList = (outs);
673  let InOperandList = (ins variable_ops);
674  let AsmString = "DBG_VALUE";
675  let neverHasSideEffects = 1;
676}
677def REG_SEQUENCE : Instruction {
678  let OutOperandList = (outs unknown:$dst);
679  let InOperandList = (ins variable_ops);
680  let AsmString = "";
681  let neverHasSideEffects = 1;
682  let isAsCheapAsAMove = 1;
683}
684def COPY : Instruction {
685  let OutOperandList = (outs unknown:$dst);
686  let InOperandList = (ins unknown:$src);
687  let AsmString = "";
688  let neverHasSideEffects = 1;
689  let isAsCheapAsAMove = 1;
690}
691def BUNDLE : Instruction {
692  let OutOperandList = (outs);
693  let InOperandList = (ins variable_ops);
694  let AsmString = "BUNDLE";
695}
696}
697
698//===----------------------------------------------------------------------===//
699// AsmParser - This class can be implemented by targets that wish to implement
700// .s file parsing.
701//
702// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
703// syntax on X86 for example).
704//
705class AsmParser {
706  // AsmParserClassName - This specifies the suffix to use for the asmparser
707  // class.  Generated AsmParser classes are always prefixed with the target
708  // name.
709  string AsmParserClassName  = "AsmParser";
710
711  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
712  // function of the AsmParser class to call on every matched instruction.
713  // This can be used to perform target specific instruction post-processing.
714  string AsmParserInstCleanup  = "";
715
716  // Variant - AsmParsers can be of multiple different variants.  Variants are
717  // used to support targets that need to parser multiple formats for the
718  // assembly language.
719  int Variant = 0;
720
721  // CommentDelimiter - If given, the delimiter string used to recognize
722  // comments which are hard coded in the .td assembler strings for individual
723  // instructions.
724  string CommentDelimiter = "";
725
726  // RegisterPrefix - If given, the token prefix which indicates a register
727  // token. This is used by the matcher to automatically recognize hard coded
728  // register tokens as constrained registers, instead of tokens, for the
729  // purposes of matching.
730  string RegisterPrefix = "";
731}
732def DefaultAsmParser : AsmParser;
733
734/// AssemblerPredicate - This is a Predicate that can be used when the assembler
735/// matches instructions and aliases.
736class AssemblerPredicate<string cond> {
737  bit AssemblerMatcherPredicate = 1;
738  string AssemblerCondString = cond;
739}
740
741/// TokenAlias - This class allows targets to define assembler token
742/// operand aliases. That is, a token literal operand which is equivalent
743/// to another, canonical, token literal. For example, ARM allows:
744///   vmov.u32 s4, #0  -> vmov.i32, #0
745/// 'u32' is a more specific designator for the 32-bit integer type specifier
746/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
747///   def : TokenAlias<".u32", ".i32">;
748///
749/// This works by marking the match class of 'From' as a subclass of the
750/// match class of 'To'.
751class TokenAlias<string From, string To> {
752  string FromToken = From;
753  string ToToken = To;
754}
755
756/// MnemonicAlias - This class allows targets to define assembler mnemonic
757/// aliases.  This should be used when all forms of one mnemonic are accepted
758/// with a different mnemonic.  For example, X86 allows:
759///   sal %al, 1    -> shl %al, 1
760///   sal %ax, %cl  -> shl %ax, %cl
761///   sal %eax, %cl -> shl %eax, %cl
762/// etc.  Though "sal" is accepted with many forms, all of them are directly
763/// translated to a shl, so it can be handled with (in the case of X86, it
764/// actually has one for each suffix as well):
765///   def : MnemonicAlias<"sal", "shl">;
766///
767/// Mnemonic aliases are mapped before any other translation in the match phase,
768/// and do allow Requires predicates, e.g.:
769///
770///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
771///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
772///
773class MnemonicAlias<string From, string To> {
774  string FromMnemonic = From;
775  string ToMnemonic = To;
776
777  // Predicates - Predicates that must be true for this remapping to happen.
778  list<Predicate> Predicates = [];
779}
780
781/// InstAlias - This defines an alternate assembly syntax that is allowed to
782/// match an instruction that has a different (more canonical) assembly
783/// representation.
784class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
785  string AsmString = Asm;      // The .s format to match the instruction with.
786  dag ResultInst = Result;     // The MCInst to generate.
787  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
788
789  // Predicates - Predicates that must be true for this to match.
790  list<Predicate> Predicates = [];
791}
792
793//===----------------------------------------------------------------------===//
794// AsmWriter - This class can be implemented by targets that need to customize
795// the format of the .s file writer.
796//
797// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
798// on X86 for example).
799//
800class AsmWriter {
801  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
802  // class.  Generated AsmWriter classes are always prefixed with the target
803  // name.
804  string AsmWriterClassName  = "AsmPrinter";
805
806  // Variant - AsmWriters can be of multiple different variants.  Variants are
807  // used to support targets that need to emit assembly code in ways that are
808  // mostly the same for different targets, but have minor differences in
809  // syntax.  If the asmstring contains {|} characters in them, this integer
810  // will specify which alternative to use.  For example "{x|y|z}" with Variant
811  // == 1, will expand to "y".
812  int Variant = 0;
813
814
815  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
816  // layout, the asmwriter can actually generate output in this columns (in
817  // verbose-asm mode).  These two values indicate the width of the first column
818  // (the "opcode" area) and the width to reserve for subsequent operands.  When
819  // verbose asm mode is enabled, operands will be indented to respect this.
820  int FirstOperandColumn = -1;
821
822  // OperandSpacing - Space between operand columns.
823  int OperandSpacing = -1;
824
825  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
826  // generation of the printInstruction() method. For MC printers, it takes
827  // an MCInstr* operand, otherwise it takes a MachineInstr*.
828  bit isMCAsmWriter = 0;
829}
830def DefaultAsmWriter : AsmWriter;
831
832
833//===----------------------------------------------------------------------===//
834// Target - This class contains the "global" target information
835//
836class Target {
837  // InstructionSet - Instruction set description for this target.
838  InstrInfo InstructionSet;
839
840  // AssemblyParsers - The AsmParser instances available for this target.
841  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
842
843  // AssemblyWriters - The AsmWriter instances available for this target.
844  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
845}
846
847//===----------------------------------------------------------------------===//
848// SubtargetFeature - A characteristic of the chip set.
849//
850class SubtargetFeature<string n, string a,  string v, string d,
851                       list<SubtargetFeature> i = []> {
852  // Name - Feature name.  Used by command line (-mattr=) to determine the
853  // appropriate target chip.
854  //
855  string Name = n;
856
857  // Attribute - Attribute to be set by feature.
858  //
859  string Attribute = a;
860
861  // Value - Value the attribute to be set to by feature.
862  //
863  string Value = v;
864
865  // Desc - Feature description.  Used by command line (-mattr=) to display help
866  // information.
867  //
868  string Desc = d;
869
870  // Implies - Features that this feature implies are present. If one of those
871  // features isn't set, then this one shouldn't be set either.
872  //
873  list<SubtargetFeature> Implies = i;
874}
875
876//===----------------------------------------------------------------------===//
877// Processor chip sets - These values represent each of the chip sets supported
878// by the scheduler.  Each Processor definition requires corresponding
879// instruction itineraries.
880//
881class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
882  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
883  // appropriate target chip.
884  //
885  string Name = n;
886
887  // ProcItin - The scheduling information for the target processor.
888  //
889  ProcessorItineraries ProcItin = pi;
890
891  // Features - list of
892  list<SubtargetFeature> Features = f;
893}
894
895//===----------------------------------------------------------------------===//
896// Pull in the common support for calling conventions.
897//
898include "llvm/Target/TargetCallingConv.td"
899
900//===----------------------------------------------------------------------===//
901// Pull in the common support for DAG isel generation.
902//
903include "llvm/Target/TargetSelectionDAG.td"
904