Target.td revision cf12067ae08dc7911c860070eaf2830dc1dc4ff7
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// Register - You should define one instance of this class for each register
30// in the target machine.  String n will become the "name" of the register.
31class Register<string n> {
32  string Namespace = "";
33  string AsmName = n;
34
35  // SpillSize - If this value is set to a non-zero value, it is the size in
36  // bits of the spill slot required to hold this register.  If this value is
37  // set to zero, the information is inferred from any register classes the
38  // register belongs to.
39  int SpillSize = 0;
40
41  // SpillAlignment - This value is used to specify the alignment required for
42  // spilling the register.  Like SpillSize, this should only be explicitly
43  // specified if the register is not in a register class.
44  int SpillAlignment = 0;
45
46  // Aliases - A list of registers that this register overlaps with.  A read or
47  // modification of this register can potentially read or modify the aliased
48  // registers.
49  list<Register> Aliases = [];
50  
51  // SubRegs - A list of registers that are parts of this register. Note these
52  // are "immediate" sub-registers and the registers within the list do not
53  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
54  // not [AX, AH, AL].
55  list<Register> SubRegs = [];
56
57  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
58  // to address it. Sub-sub-register indices are automatically inherited from
59  // SubRegs.
60  list<SubRegIndex> SubRegIndices = [];
61
62  // CompositeIndices - Specify subreg indices that don't correspond directly to
63  // a register in SubRegs and are not inherited. The following formats are
64  // supported:
65  //
66  // (a)     Identity  - Reg:a == Reg
67  // (a b)   Alias     - Reg:a == Reg:b
68  // (a b,c) Composite - Reg:a == (Reg:b):c
69  //
70  // This can be used to disambiguate a sub-sub-register that exists in more
71  // than one subregister and other weird stuff.
72  list<dag> CompositeIndices = [];
73
74  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
75  // These values can be determined by locating the <target>.h file in the
76  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
77  // order of these names correspond to the enumeration used by gcc.  A value of
78  // -1 indicates that the gcc number is undefined and -2 that register number
79  // is invalid for this mode/flavour.
80  list<int> DwarfNumbers = [];
81}
82
83// RegisterWithSubRegs - This can be used to define instances of Register which
84// need to specify sub-registers.
85// List "subregs" specifies which registers are sub-registers to this one. This
86// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
87// This allows the code generator to be careful not to put two values with 
88// overlapping live ranges into registers which alias.
89class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
90  let SubRegs = subregs;
91}
92
93// RegisterClass - Now that all of the registers are defined, and aliases
94// between registers are defined, specify which registers belong to which
95// register classes.  This also defines the default allocation order of
96// registers by register allocators.
97//
98class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
99                    list<Register> regList> {
100  string Namespace = namespace;
101
102  // RegType - Specify the list ValueType of the registers in this register
103  // class.  Note that all registers in a register class must have the same
104  // ValueTypes.  This is a list because some targets permit storing different 
105  // types in same register, for example vector values with 128-bit total size,
106  // but different count/size of items, like SSE on x86.
107  //
108  list<ValueType> RegTypes = regTypes;
109
110  // Size - Specify the spill size in bits of the registers.  A default value of
111  // zero lets tablgen pick an appropriate size.
112  int Size = 0;
113
114  // Alignment - Specify the alignment required of the registers when they are
115  // stored or loaded to memory.
116  //
117  int Alignment = alignment;
118
119  // CopyCost - This value is used to specify the cost of copying a value
120  // between two registers in this register class. The default value is one
121  // meaning it takes a single instruction to perform the copying. A negative
122  // value means copying is extremely expensive or impossible.
123  int CopyCost = 1;
124
125  // MemberList - Specify which registers are in this class.  If the
126  // allocation_order_* method are not specified, this also defines the order of
127  // allocation used by the register allocator.
128  //
129  list<Register> MemberList = regList;
130  
131  // SubRegClasses - Specify the register class of subregisters as a list of
132  // dags: (RegClass SubRegIndex, SubRegindex, ...)
133  list<dag> SubRegClasses = [];
134
135  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
136  // code into a generated register class.   The normal usage of this is to 
137  // overload virtual methods.
138  code MethodProtos = [{}];
139  code MethodBodies = [{}];
140}
141
142
143//===----------------------------------------------------------------------===//
144// DwarfRegNum - This class provides a mapping of the llvm register enumeration
145// to the register numbering used by gcc and gdb.  These values are used by a
146// debug information writer to describe where values may be located during
147// execution.
148class DwarfRegNum<list<int> Numbers> {
149  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
150  // These values can be determined by locating the <target>.h file in the
151  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
152  // order of these names correspond to the enumeration used by gcc.  A value of
153  // -1 indicates that the gcc number is undefined and -2 that register number
154  // is invalid for this mode/flavour.
155  list<int> DwarfNumbers = Numbers;
156}
157
158//===----------------------------------------------------------------------===//
159// Pull in the common support for scheduling
160//
161include "llvm/Target/TargetSchedule.td"
162
163class Predicate; // Forward def
164
165//===----------------------------------------------------------------------===//
166// Instruction set description - These classes correspond to the C++ classes in
167// the Target/TargetInstrInfo.h file.
168//
169class Instruction {
170  string Namespace = "";
171
172  dag OutOperandList;       // An dag containing the MI def operand list.
173  dag InOperandList;        // An dag containing the MI use operand list.
174  string AsmString = "";    // The .s format to print the instruction with.
175
176  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
177  // otherwise, uninitialized.
178  list<dag> Pattern;
179
180  // The follow state will eventually be inferred automatically from the
181  // instruction pattern.
182
183  list<Register> Uses = []; // Default to using no non-operand registers
184  list<Register> Defs = []; // Default to modifying no non-operand registers
185
186  // Predicates - List of predicates which will be turned into isel matching
187  // code.
188  list<Predicate> Predicates = [];
189
190  // Code size.
191  int CodeSize = 0;
192
193  // Added complexity passed onto matching pattern.
194  int AddedComplexity  = 0;
195
196  // These bits capture information about the high-level semantics of the
197  // instruction.
198  bit isReturn     = 0;     // Is this instruction a return instruction?
199  bit isBranch     = 0;     // Is this instruction a branch instruction?
200  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
201  bit isCompare    = 0;     // Is this instruction a comparison instruction?
202  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
203  bit isBarrier    = 0;     // Can control flow fall through this instruction?
204  bit isCall       = 0;     // Is this instruction a call instruction?
205  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
206  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
207  bit mayStore     = 0;     // Is it possible for this inst to write memory?
208  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
209  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
210  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
211  bit isReMaterializable = 0; // Is this instruction re-materializable?
212  bit isPredicable = 0;     // Is this instruction predicable?
213  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
214  bit usesCustomInserter = 0; // Pseudo instr needing special help.
215  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
216  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
217  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
218  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
219  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
220
221  // Side effect flags - When set, the flags have these meanings:
222  //
223  //  hasSideEffects - The instruction has side effects that are not
224  //    captured by any operands of the instruction or other flags.
225  //
226  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
227  //    side effects.
228  bit hasSideEffects = 0;
229  bit neverHasSideEffects = 0;
230
231  // Is this instruction a "real" instruction (with a distinct machine
232  // encoding), or is it a pseudo instruction used for codegen modeling
233  // purposes.
234  bit isCodeGenOnly = 0;
235
236  // Is this instruction a pseudo instruction for use by the assembler parser.
237  bit isAsmParserOnly = 0;
238
239  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
240
241  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
242
243  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
244  /// be encoded into the output machineinstr.
245  string DisableEncoding = "";
246
247  string PostEncoderMethod = "";
248
249  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
250  bits<64> TSFlags = 0;
251
252  ///@name Assembler Parser Support
253  ///@{
254
255  string AsmMatchConverter = "";
256
257  ///@}
258}
259
260/// Predicates - These are extra conditionals which are turned into instruction
261/// selector matching code. Currently each predicate is just a string.
262class Predicate<string cond> {
263  string CondString = cond;
264  
265  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
266  /// matcher, this is true.  Targets should set this by inheriting their
267  /// feature from the AssemblerPredicate class in addition to Predicate.
268  bit AssemblerMatcherPredicate = 0;
269}
270
271/// NoHonorSignDependentRounding - This predicate is true if support for
272/// sign-dependent-rounding is not enabled.
273def NoHonorSignDependentRounding
274 : Predicate<"!HonorSignDependentRoundingFPMath()">;
275
276class Requires<list<Predicate> preds> {
277  list<Predicate> Predicates = preds;
278}
279
280/// ops definition - This is just a simple marker used to identify the operand
281/// list for an instruction. outs and ins are identical both syntactically and
282/// semanticallyr; they are used to define def operands and use operands to
283/// improve readibility. This should be used like this:
284///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
285def ops;
286def outs;
287def ins;
288
289/// variable_ops definition - Mark this instruction as taking a variable number
290/// of operands.
291def variable_ops;
292
293
294/// PointerLikeRegClass - Values that are designed to have pointer width are
295/// derived from this.  TableGen treats the register class as having a symbolic
296/// type that it doesn't know, and resolves the actual regclass to use by using
297/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
298class PointerLikeRegClass<int Kind> {
299  int RegClassKind = Kind;
300}
301
302
303/// ptr_rc definition - Mark this operand as being a pointer value whose
304/// register class is resolved dynamically via a callback to TargetInstrInfo.
305/// FIXME: We should probably change this to a class which contain a list of
306/// flags. But currently we have but one flag.
307def ptr_rc : PointerLikeRegClass<0>;
308
309/// unknown definition - Mark this operand as being of unknown type, causing
310/// it to be resolved by inference in the context it is used.
311def unknown;
312
313/// AsmOperandClass - Representation for the kinds of operands which the target
314/// specific parser can create and the assembly matcher may need to distinguish.
315///
316/// Operand classes are used to define the order in which instructions are
317/// matched, to ensure that the instruction which gets matched for any
318/// particular list of operands is deterministic.
319///
320/// The target specific parser must be able to classify a parsed operand into a
321/// unique class which does not partially overlap with any other classes. It can
322/// match a subset of some other class, in which case the super class field
323/// should be defined.
324class AsmOperandClass {
325  /// The name to use for this class, which should be usable as an enum value.
326  string Name = ?;
327
328  /// The super classes of this operand.
329  list<AsmOperandClass> SuperClasses = [];
330
331  /// The name of the method on the target specific operand to call to test
332  /// whether the operand is an instance of this class. If not set, this will
333  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
334  /// signature should be:
335  ///   bool isFoo() const;
336  string PredicateMethod = ?;
337
338  /// The name of the method on the target specific operand to call to add the
339  /// target specific operand to an MCInst. If not set, this will default to
340  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
341  /// signature should be:
342  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
343  string RenderMethod = ?;
344}
345
346def ImmAsmOperand : AsmOperandClass {
347  let Name = "Imm";
348}
349   
350/// Operand Types - These provide the built-in operand types that may be used
351/// by a target.  Targets can optionally provide their own operand types as
352/// needed, though this should not be needed for RISC targets.
353class Operand<ValueType ty> {
354  ValueType Type = ty;
355  string PrintMethod = "printOperand";
356  string EncoderMethod = "";
357  string AsmOperandLowerMethod = ?;
358  dag MIOperandInfo = (ops);
359
360  // ParserMatchClass - The "match class" that operands of this type fit
361  // in. Match classes are used to define the order in which instructions are
362  // match, to ensure that which instructions gets matched is deterministic.
363  //
364  // The target specific parser must be able to classify an parsed operand into
365  // a unique class, which does not partially overlap with any other classes. It
366  // can match a subset of some other class, in which case the AsmOperandClass
367  // should declare the other operand as one of its super classes.
368  AsmOperandClass ParserMatchClass = ImmAsmOperand;
369}
370
371def i1imm  : Operand<i1>;
372def i8imm  : Operand<i8>;
373def i16imm : Operand<i16>;
374def i32imm : Operand<i32>;
375def i64imm : Operand<i64>;
376
377def f32imm : Operand<f32>;
378def f64imm : Operand<f64>;
379
380/// zero_reg definition - Special node to stand for the zero register.
381///
382def zero_reg;
383
384/// PredicateOperand - This can be used to define a predicate operand for an
385/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
386/// AlwaysVal specifies the value of this predicate when set to "always
387/// execute".
388class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
389  : Operand<ty> {
390  let MIOperandInfo = OpTypes;
391  dag DefaultOps = AlwaysVal;
392}
393
394/// OptionalDefOperand - This is used to define a optional definition operand
395/// for an instruction. DefaultOps is the register the operand represents if
396/// none is supplied, e.g. zero_reg.
397class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
398  : Operand<ty> {
399  let MIOperandInfo = OpTypes;
400  dag DefaultOps = defaultops;
401}
402
403
404// InstrInfo - This class should only be instantiated once to provide parameters
405// which are global to the target machine.
406//
407class InstrInfo {
408  // Target can specify its instructions in either big or little-endian formats.
409  // For instance, while both Sparc and PowerPC are big-endian platforms, the
410  // Sparc manual specifies its instructions in the format [31..0] (big), while
411  // PowerPC specifies them using the format [0..31] (little).
412  bit isLittleEndianEncoding = 0;
413}
414
415// Standard Pseudo Instructions.
416// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
417// Only these instructions are allowed in the TargetOpcode namespace.
418let isCodeGenOnly = 1, Namespace = "TargetOpcode" in {
419def PHI : Instruction {
420  let OutOperandList = (outs);
421  let InOperandList = (ins variable_ops);
422  let AsmString = "PHINODE";
423}
424def INLINEASM : Instruction {
425  let OutOperandList = (outs);
426  let InOperandList = (ins variable_ops);
427  let AsmString = "";
428  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
429}
430def PROLOG_LABEL : Instruction {
431  let OutOperandList = (outs);
432  let InOperandList = (ins i32imm:$id);
433  let AsmString = "";
434  let hasCtrlDep = 1;
435  let isNotDuplicable = 1;
436}
437def EH_LABEL : Instruction {
438  let OutOperandList = (outs);
439  let InOperandList = (ins i32imm:$id);
440  let AsmString = "";
441  let hasCtrlDep = 1;
442  let isNotDuplicable = 1;
443}
444def GC_LABEL : Instruction {
445  let OutOperandList = (outs);
446  let InOperandList = (ins i32imm:$id);
447  let AsmString = "";
448  let hasCtrlDep = 1;
449  let isNotDuplicable = 1;
450}
451def KILL : Instruction {
452  let OutOperandList = (outs);
453  let InOperandList = (ins variable_ops);
454  let AsmString = "";
455  let neverHasSideEffects = 1;
456}
457def EXTRACT_SUBREG : Instruction {
458  let OutOperandList = (outs unknown:$dst);
459  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
460  let AsmString = "";
461  let neverHasSideEffects = 1;
462}
463def INSERT_SUBREG : Instruction {
464  let OutOperandList = (outs unknown:$dst);
465  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
466  let AsmString = "";
467  let neverHasSideEffects = 1;
468  let Constraints = "$supersrc = $dst";
469}
470def IMPLICIT_DEF : Instruction {
471  let OutOperandList = (outs unknown:$dst);
472  let InOperandList = (ins);
473  let AsmString = "";
474  let neverHasSideEffects = 1;
475  let isReMaterializable = 1;
476  let isAsCheapAsAMove = 1;
477}
478def SUBREG_TO_REG : Instruction {
479  let OutOperandList = (outs unknown:$dst);
480  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
481  let AsmString = "";
482  let neverHasSideEffects = 1;
483}
484def COPY_TO_REGCLASS : Instruction {
485  let OutOperandList = (outs unknown:$dst);
486  let InOperandList = (ins unknown:$src, i32imm:$regclass);
487  let AsmString = "";
488  let neverHasSideEffects = 1;
489  let isAsCheapAsAMove = 1;
490}
491def DBG_VALUE : Instruction {
492  let OutOperandList = (outs);
493  let InOperandList = (ins variable_ops);
494  let AsmString = "DBG_VALUE";
495  let neverHasSideEffects = 1;
496}
497def REG_SEQUENCE : Instruction {
498  let OutOperandList = (outs unknown:$dst);
499  let InOperandList = (ins variable_ops);
500  let AsmString = "";
501  let neverHasSideEffects = 1;
502  let isAsCheapAsAMove = 1;
503}
504def COPY : Instruction {
505  let OutOperandList = (outs unknown:$dst);
506  let InOperandList = (ins unknown:$src);
507  let AsmString = "";
508  let neverHasSideEffects = 1;
509  let isAsCheapAsAMove = 1;
510}
511}
512
513//===----------------------------------------------------------------------===//
514// AsmParser - This class can be implemented by targets that wish to implement
515// .s file parsing.
516//
517// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
518// syntax on X86 for example).
519//
520class AsmParser {
521  // AsmParserClassName - This specifies the suffix to use for the asmparser
522  // class.  Generated AsmParser classes are always prefixed with the target
523  // name.
524  string AsmParserClassName  = "AsmParser";
525
526  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
527  // function of the AsmParser class to call on every matched instruction.
528  // This can be used to perform target specific instruction post-processing.
529  string AsmParserInstCleanup  = "";
530
531  // Variant - AsmParsers can be of multiple different variants.  Variants are
532  // used to support targets that need to parser multiple formats for the
533  // assembly language.
534  int Variant = 0;
535
536  // CommentDelimiter - If given, the delimiter string used to recognize
537  // comments which are hard coded in the .td assembler strings for individual
538  // instructions.
539  string CommentDelimiter = "";
540
541  // RegisterPrefix - If given, the token prefix which indicates a register
542  // token. This is used by the matcher to automatically recognize hard coded
543  // register tokens as constrained registers, instead of tokens, for the
544  // purposes of matching.
545  string RegisterPrefix = "";
546}
547def DefaultAsmParser : AsmParser;
548
549/// AssemblerPredicate - This is a Predicate that can be used when the assembler
550/// matches instructions and aliases.
551class AssemblerPredicate {
552  bit AssemblerMatcherPredicate = 1;
553}
554
555
556
557/// MnemonicAlias - This class allows targets to define assembler mnemonic
558/// aliases.  This should be used when all forms of one mnemonic are accepted
559/// with a different mnemonic.  For example, X86 allows:
560///   sal %al, 1    -> shl %al, 1
561///   sal %ax, %cl  -> shl %ax, %cl
562///   sal %eax, %cl -> shl %eax, %cl
563/// etc.  Though "sal" is accepted with many forms, all of them are directly
564/// translated to a shl, so it can be handled with (in the case of X86, it
565/// actually has one for each suffix as well):
566///   def : MnemonicAlias<"sal", "shl">;
567///
568/// Mnemonic aliases are mapped before any other translation in the match phase,
569/// and do allow Requires predicates, e.g.:
570///
571///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
572///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
573///
574class MnemonicAlias<string From, string To> {
575  string FromMnemonic = From;
576  string ToMnemonic = To;
577  
578  // Predicates - Predicates that must be true for this remapping to happen.
579  list<Predicate> Predicates = [];
580}
581
582/// InstAlias - This defines an alternate assembly syntax that is allowed to
583/// match an instruction that has a different (more canonical) assembly
584/// representation.
585class InstAlias<string Asm, dag Result> {
586  string AsmString = Asm;      // The .s format to match the instruction with.
587  dag ResultInst = Result;     // The MCInst to generate.
588  
589  // Predicates - Predicates that must be true for this to match.
590  list<Predicate> Predicates = [];
591}
592
593//===----------------------------------------------------------------------===//
594// AsmWriter - This class can be implemented by targets that need to customize
595// the format of the .s file writer.
596//
597// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
598// on X86 for example).
599//
600class AsmWriter {
601  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
602  // class.  Generated AsmWriter classes are always prefixed with the target
603  // name.
604  string AsmWriterClassName  = "AsmPrinter";
605
606  // Variant - AsmWriters can be of multiple different variants.  Variants are
607  // used to support targets that need to emit assembly code in ways that are
608  // mostly the same for different targets, but have minor differences in
609  // syntax.  If the asmstring contains {|} characters in them, this integer
610  // will specify which alternative to use.  For example "{x|y|z}" with Variant
611  // == 1, will expand to "y".
612  int Variant = 0;
613  
614  
615  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
616  // layout, the asmwriter can actually generate output in this columns (in
617  // verbose-asm mode).  These two values indicate the width of the first column
618  // (the "opcode" area) and the width to reserve for subsequent operands.  When
619  // verbose asm mode is enabled, operands will be indented to respect this.
620  int FirstOperandColumn = -1;
621  
622  // OperandSpacing - Space between operand columns.
623  int OperandSpacing = -1;
624
625  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
626  // generation of the printInstruction() method. For MC printers, it takes
627  // an MCInstr* operand, otherwise it takes a MachineInstr*.
628  bit isMCAsmWriter = 0;
629}
630def DefaultAsmWriter : AsmWriter;
631
632
633//===----------------------------------------------------------------------===//
634// Target - This class contains the "global" target information
635//
636class Target {
637  // InstructionSet - Instruction set description for this target.
638  InstrInfo InstructionSet;
639
640  // AssemblyParsers - The AsmParser instances available for this target.
641  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
642
643  // AssemblyWriters - The AsmWriter instances available for this target.
644  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
645}
646
647//===----------------------------------------------------------------------===//
648// SubtargetFeature - A characteristic of the chip set.
649//
650class SubtargetFeature<string n, string a,  string v, string d,
651                       list<SubtargetFeature> i = []> {
652  // Name - Feature name.  Used by command line (-mattr=) to determine the
653  // appropriate target chip.
654  //
655  string Name = n;
656  
657  // Attribute - Attribute to be set by feature.
658  //
659  string Attribute = a;
660  
661  // Value - Value the attribute to be set to by feature.
662  //
663  string Value = v;
664  
665  // Desc - Feature description.  Used by command line (-mattr=) to display help
666  // information.
667  //
668  string Desc = d;
669
670  // Implies - Features that this feature implies are present. If one of those
671  // features isn't set, then this one shouldn't be set either.
672  //
673  list<SubtargetFeature> Implies = i;
674}
675
676//===----------------------------------------------------------------------===//
677// Processor chip sets - These values represent each of the chip sets supported
678// by the scheduler.  Each Processor definition requires corresponding
679// instruction itineraries.
680//
681class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
682  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
683  // appropriate target chip.
684  //
685  string Name = n;
686  
687  // ProcItin - The scheduling information for the target processor.
688  //
689  ProcessorItineraries ProcItin = pi;
690  
691  // Features - list of 
692  list<SubtargetFeature> Features = f;
693}
694
695//===----------------------------------------------------------------------===//
696// Pull in the common support for calling conventions.
697//
698include "llvm/Target/TargetCallingConv.td"
699
700//===----------------------------------------------------------------------===//
701// Pull in the common support for DAG isel generation.
702//
703include "llvm/Target/TargetSelectionDAG.td"
704