Target.td revision f28987b76e758b5f2fcc2c5d2c8e073df54ca91e
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
25class SubRegIndex {
26  string Namespace = "";
27}
28
29// Register - You should define one instance of this class for each register
30// in the target machine.  String n will become the "name" of the register.
31class Register<string n> {
32  string Namespace = "";
33  string AsmName = n;
34
35  // Aliases - A list of registers that this register overlaps with.  A read or
36  // modification of this register can potentially read or modify the aliased
37  // registers.
38  list<Register> Aliases = [];
39
40  // SubRegs - A list of registers that are parts of this register. Note these
41  // are "immediate" sub-registers and the registers within the list do not
42  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
43  // not [AX, AH, AL].
44  list<Register> SubRegs = [];
45
46  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
47  // to address it. Sub-sub-register indices are automatically inherited from
48  // SubRegs.
49  list<SubRegIndex> SubRegIndices = [];
50
51  // CompositeIndices - Specify subreg indices that don't correspond directly to
52  // a register in SubRegs and are not inherited. The following formats are
53  // supported:
54  //
55  // (a)     Identity  - Reg:a == Reg
56  // (a b)   Alias     - Reg:a == Reg:b
57  // (a b,c) Composite - Reg:a == (Reg:b):c
58  //
59  // This can be used to disambiguate a sub-sub-register that exists in more
60  // than one subregister and other weird stuff.
61  list<dag> CompositeIndices = [];
62
63  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
64  // These values can be determined by locating the <target>.h file in the
65  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
66  // order of these names correspond to the enumeration used by gcc.  A value of
67  // -1 indicates that the gcc number is undefined and -2 that register number
68  // is invalid for this mode/flavour.
69  list<int> DwarfNumbers = [];
70
71  // CostPerUse - Additional cost of instructions using this register compared
72  // to other registers in its class. The register allocator will try to
73  // minimize the number of instructions using a register with a CostPerUse.
74  // This is used by the x86-64 and ARM Thumb targets where some registers 
75  // require larger instruction encodings.
76  int CostPerUse = 0;
77}
78
79// RegisterWithSubRegs - This can be used to define instances of Register which
80// need to specify sub-registers.
81// List "subregs" specifies which registers are sub-registers to this one. This
82// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
83// This allows the code generator to be careful not to put two values with
84// overlapping live ranges into registers which alias.
85class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
86  let SubRegs = subregs;
87}
88
89// RegisterClass - Now that all of the registers are defined, and aliases
90// between registers are defined, specify which registers belong to which
91// register classes.  This also defines the default allocation order of
92// registers by register allocators.
93//
94class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
95                    dag regList> {
96  string Namespace = namespace;
97
98  // RegType - Specify the list ValueType of the registers in this register
99  // class.  Note that all registers in a register class must have the same
100  // ValueTypes.  This is a list because some targets permit storing different
101  // types in same register, for example vector values with 128-bit total size,
102  // but different count/size of items, like SSE on x86.
103  //
104  list<ValueType> RegTypes = regTypes;
105
106  // Size - Specify the spill size in bits of the registers.  A default value of
107  // zero lets tablgen pick an appropriate size.
108  int Size = 0;
109
110  // Alignment - Specify the alignment required of the registers when they are
111  // stored or loaded to memory.
112  //
113  int Alignment = alignment;
114
115  // CopyCost - This value is used to specify the cost of copying a value
116  // between two registers in this register class. The default value is one
117  // meaning it takes a single instruction to perform the copying. A negative
118  // value means copying is extremely expensive or impossible.
119  int CopyCost = 1;
120
121  // MemberList - Specify which registers are in this class.  If the
122  // allocation_order_* method are not specified, this also defines the order of
123  // allocation used by the register allocator.
124  //
125  dag MemberList = regList;
126
127  // SubRegClasses - Specify the register class of subregisters as a list of
128  // dags: (RegClass SubRegIndex, SubRegindex, ...)
129  list<dag> SubRegClasses = [];
130
131  // isAllocatable - Specify that the register class can be used for virtual
132  // registers and register allocation.  Some register classes are only used to
133  // model instruction operand constraints, and should have isAllocatable = 0.
134  bit isAllocatable = 1;
135
136  // MethodProtos/MethodBodies - These members can be used to insert arbitrary
137  // code into a generated register class.   The normal usage of this is to
138  // overload virtual methods.
139  code MethodProtos = [{}];
140  code MethodBodies = [{}];
141}
142
143// The memberList in a RegisterClass is a dag of set operations. TableGen
144// evaluates these set operations and expand them into register lists. These
145// are the most common operation, see test/TableGen/SetTheory.td for more
146// examples of what is possible:
147//
148// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
149// register class, or a sub-expression. This is also the way to simply list
150// registers.
151//
152// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
153//
154// (and GPR, CSR) - Set intersection. All registers from the first set that are
155// also in the second set.
156//
157// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
158// numbered registers.
159//
160// (shl GPR, 4) - Remove the first N elements.
161//
162// (trunc GPR, 4) - Truncate after the first N elements.
163//
164// (rotl GPR, 1) - Rotate N places to the left.
165//
166// (rotr GPR, 1) - Rotate N places to the right.
167//
168// (decimate GPR, 2) - Pick every N'th element, starting with the first.
169//
170// All of these operators work on ordered sets, not lists. That means
171// duplicates are removed from sub-expressions.
172
173// Set operators. The rest is defined in TargetSelectionDAG.td.
174def sequence;
175def decimate;
176
177//===----------------------------------------------------------------------===//
178// DwarfRegNum - This class provides a mapping of the llvm register enumeration
179// to the register numbering used by gcc and gdb.  These values are used by a
180// debug information writer to describe where values may be located during
181// execution.
182class DwarfRegNum<list<int> Numbers> {
183  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
184  // These values can be determined by locating the <target>.h file in the
185  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
186  // order of these names correspond to the enumeration used by gcc.  A value of
187  // -1 indicates that the gcc number is undefined and -2 that register number
188  // is invalid for this mode/flavour.
189  list<int> DwarfNumbers = Numbers;
190}
191
192// DwarfRegAlias - This class declares that a given register uses the same dwarf
193// numbers as another one. This is useful for making it clear that the two
194// registers do have the same number. It also lets us build a mapping
195// from dwarf register number to llvm register.
196class DwarfRegAlias<Register reg> {
197      Register DwarfAlias = reg;
198}
199
200//===----------------------------------------------------------------------===//
201// Pull in the common support for scheduling
202//
203include "llvm/Target/TargetSchedule.td"
204
205class Predicate; // Forward def
206
207//===----------------------------------------------------------------------===//
208// Instruction set description - These classes correspond to the C++ classes in
209// the Target/TargetInstrInfo.h file.
210//
211class Instruction {
212  string Namespace = "";
213
214  dag OutOperandList;       // An dag containing the MI def operand list.
215  dag InOperandList;        // An dag containing the MI use operand list.
216  string AsmString = "";    // The .s format to print the instruction with.
217
218  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
219  // otherwise, uninitialized.
220  list<dag> Pattern;
221
222  // The follow state will eventually be inferred automatically from the
223  // instruction pattern.
224
225  list<Register> Uses = []; // Default to using no non-operand registers
226  list<Register> Defs = []; // Default to modifying no non-operand registers
227
228  // Predicates - List of predicates which will be turned into isel matching
229  // code.
230  list<Predicate> Predicates = [];
231
232  // Code size.
233  int CodeSize = 0;
234
235  // Added complexity passed onto matching pattern.
236  int AddedComplexity  = 0;
237
238  // These bits capture information about the high-level semantics of the
239  // instruction.
240  bit isReturn     = 0;     // Is this instruction a return instruction?
241  bit isBranch     = 0;     // Is this instruction a branch instruction?
242  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
243  bit isCompare    = 0;     // Is this instruction a comparison instruction?
244  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
245  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
246  bit isBarrier    = 0;     // Can control flow fall through this instruction?
247  bit isCall       = 0;     // Is this instruction a call instruction?
248  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
249  bit mayLoad      = 0;     // Is it possible for this inst to read memory?
250  bit mayStore     = 0;     // Is it possible for this inst to write memory?
251  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
252  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
253  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
254  bit isReMaterializable = 0; // Is this instruction re-materializable?
255  bit isPredicable = 0;     // Is this instruction predicable?
256  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
257  bit usesCustomInserter = 0; // Pseudo instr needing special help.
258  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
259  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
260  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
261  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
262  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
263
264  // Side effect flags - When set, the flags have these meanings:
265  //
266  //  hasSideEffects - The instruction has side effects that are not
267  //    captured by any operands of the instruction or other flags.
268  //
269  //  neverHasSideEffects - Set on an instruction with no pattern if it has no
270  //    side effects.
271  bit hasSideEffects = 0;
272  bit neverHasSideEffects = 0;
273
274  // Is this instruction a "real" instruction (with a distinct machine
275  // encoding), or is it a pseudo instruction used for codegen modeling
276  // purposes.
277  bit isCodeGenOnly = 0;
278
279  // Is this instruction a pseudo instruction for use by the assembler parser.
280  bit isAsmParserOnly = 0;
281
282  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
283
284  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
285
286  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
287  /// be encoded into the output machineinstr.
288  string DisableEncoding = "";
289
290  string PostEncoderMethod = "";
291  string DecoderMethod = "";
292
293  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
294  bits<64> TSFlags = 0;
295
296  ///@name Assembler Parser Support
297  ///@{
298
299  string AsmMatchConverter = "";
300
301  ///@}
302}
303
304/// Predicates - These are extra conditionals which are turned into instruction
305/// selector matching code. Currently each predicate is just a string.
306class Predicate<string cond> {
307  string CondString = cond;
308
309  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
310  /// matcher, this is true.  Targets should set this by inheriting their
311  /// feature from the AssemblerPredicate class in addition to Predicate.
312  bit AssemblerMatcherPredicate = 0;
313}
314
315/// NoHonorSignDependentRounding - This predicate is true if support for
316/// sign-dependent-rounding is not enabled.
317def NoHonorSignDependentRounding
318 : Predicate<"!HonorSignDependentRoundingFPMath()">;
319
320class Requires<list<Predicate> preds> {
321  list<Predicate> Predicates = preds;
322}
323
324/// ops definition - This is just a simple marker used to identify the operand
325/// list for an instruction. outs and ins are identical both syntactically and
326/// semanticallyr; they are used to define def operands and use operands to
327/// improve readibility. This should be used like this:
328///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
329def ops;
330def outs;
331def ins;
332
333/// variable_ops definition - Mark this instruction as taking a variable number
334/// of operands.
335def variable_ops;
336
337
338/// PointerLikeRegClass - Values that are designed to have pointer width are
339/// derived from this.  TableGen treats the register class as having a symbolic
340/// type that it doesn't know, and resolves the actual regclass to use by using
341/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
342class PointerLikeRegClass<int Kind> {
343  int RegClassKind = Kind;
344}
345
346
347/// ptr_rc definition - Mark this operand as being a pointer value whose
348/// register class is resolved dynamically via a callback to TargetInstrInfo.
349/// FIXME: We should probably change this to a class which contain a list of
350/// flags. But currently we have but one flag.
351def ptr_rc : PointerLikeRegClass<0>;
352
353/// unknown definition - Mark this operand as being of unknown type, causing
354/// it to be resolved by inference in the context it is used.
355def unknown;
356
357/// AsmOperandClass - Representation for the kinds of operands which the target
358/// specific parser can create and the assembly matcher may need to distinguish.
359///
360/// Operand classes are used to define the order in which instructions are
361/// matched, to ensure that the instruction which gets matched for any
362/// particular list of operands is deterministic.
363///
364/// The target specific parser must be able to classify a parsed operand into a
365/// unique class which does not partially overlap with any other classes. It can
366/// match a subset of some other class, in which case the super class field
367/// should be defined.
368class AsmOperandClass {
369  /// The name to use for this class, which should be usable as an enum value.
370  string Name = ?;
371
372  /// The super classes of this operand.
373  list<AsmOperandClass> SuperClasses = [];
374
375  /// The name of the method on the target specific operand to call to test
376  /// whether the operand is an instance of this class. If not set, this will
377  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
378  /// signature should be:
379  ///   bool isFoo() const;
380  string PredicateMethod = ?;
381
382  /// The name of the method on the target specific operand to call to add the
383  /// target specific operand to an MCInst. If not set, this will default to
384  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
385  /// signature should be:
386  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
387  string RenderMethod = ?;
388
389  /// The name of the method on the target specific operand to call to custom
390  /// handle the operand parsing. This is useful when the operands do not relate
391  /// to immediates or registers and are very instruction specific (as flags to
392  /// set in a processor register, coprocessor number, ...).
393  string ParserMethod = ?;
394}
395
396def ImmAsmOperand : AsmOperandClass {
397  let Name = "Imm";
398}
399
400/// Operand Types - These provide the built-in operand types that may be used
401/// by a target.  Targets can optionally provide their own operand types as
402/// needed, though this should not be needed for RISC targets.
403class Operand<ValueType ty> {
404  ValueType Type = ty;
405  string PrintMethod = "printOperand";
406  string EncoderMethod = "";
407  string DecoderMethod = "";
408  string AsmOperandLowerMethod = ?;
409  dag MIOperandInfo = (ops);
410
411  // ParserMatchClass - The "match class" that operands of this type fit
412  // in. Match classes are used to define the order in which instructions are
413  // match, to ensure that which instructions gets matched is deterministic.
414  //
415  // The target specific parser must be able to classify an parsed operand into
416  // a unique class, which does not partially overlap with any other classes. It
417  // can match a subset of some other class, in which case the AsmOperandClass
418  // should declare the other operand as one of its super classes.
419  AsmOperandClass ParserMatchClass = ImmAsmOperand;
420}
421
422def i1imm  : Operand<i1>;
423def i8imm  : Operand<i8>;
424def i16imm : Operand<i16>;
425def i32imm : Operand<i32>;
426def i64imm : Operand<i64>;
427
428def f32imm : Operand<f32>;
429def f64imm : Operand<f64>;
430
431/// zero_reg definition - Special node to stand for the zero register.
432///
433def zero_reg;
434
435/// PredicateOperand - This can be used to define a predicate operand for an
436/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
437/// AlwaysVal specifies the value of this predicate when set to "always
438/// execute".
439class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
440  : Operand<ty> {
441  let MIOperandInfo = OpTypes;
442  dag DefaultOps = AlwaysVal;
443}
444
445/// OptionalDefOperand - This is used to define a optional definition operand
446/// for an instruction. DefaultOps is the register the operand represents if
447/// none is supplied, e.g. zero_reg.
448class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
449  : Operand<ty> {
450  let MIOperandInfo = OpTypes;
451  dag DefaultOps = defaultops;
452}
453
454
455// InstrInfo - This class should only be instantiated once to provide parameters
456// which are global to the target machine.
457//
458class InstrInfo {
459  // Target can specify its instructions in either big or little-endian formats.
460  // For instance, while both Sparc and PowerPC are big-endian platforms, the
461  // Sparc manual specifies its instructions in the format [31..0] (big), while
462  // PowerPC specifies them using the format [0..31] (little).
463  bit isLittleEndianEncoding = 0;
464}
465
466// Standard Pseudo Instructions.
467// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
468// Only these instructions are allowed in the TargetOpcode namespace.
469let isCodeGenOnly = 1, Namespace = "TargetOpcode" in {
470def PHI : Instruction {
471  let OutOperandList = (outs);
472  let InOperandList = (ins variable_ops);
473  let AsmString = "PHINODE";
474}
475def INLINEASM : Instruction {
476  let OutOperandList = (outs);
477  let InOperandList = (ins variable_ops);
478  let AsmString = "";
479  let neverHasSideEffects = 1;  // Note side effect is encoded in an operand.
480}
481def PROLOG_LABEL : Instruction {
482  let OutOperandList = (outs);
483  let InOperandList = (ins i32imm:$id);
484  let AsmString = "";
485  let hasCtrlDep = 1;
486  let isNotDuplicable = 1;
487}
488def EH_LABEL : Instruction {
489  let OutOperandList = (outs);
490  let InOperandList = (ins i32imm:$id);
491  let AsmString = "";
492  let hasCtrlDep = 1;
493  let isNotDuplicable = 1;
494}
495def GC_LABEL : Instruction {
496  let OutOperandList = (outs);
497  let InOperandList = (ins i32imm:$id);
498  let AsmString = "";
499  let hasCtrlDep = 1;
500  let isNotDuplicable = 1;
501}
502def KILL : Instruction {
503  let OutOperandList = (outs);
504  let InOperandList = (ins variable_ops);
505  let AsmString = "";
506  let neverHasSideEffects = 1;
507}
508def EXTRACT_SUBREG : Instruction {
509  let OutOperandList = (outs unknown:$dst);
510  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
511  let AsmString = "";
512  let neverHasSideEffects = 1;
513}
514def INSERT_SUBREG : Instruction {
515  let OutOperandList = (outs unknown:$dst);
516  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
517  let AsmString = "";
518  let neverHasSideEffects = 1;
519  let Constraints = "$supersrc = $dst";
520}
521def IMPLICIT_DEF : Instruction {
522  let OutOperandList = (outs unknown:$dst);
523  let InOperandList = (ins);
524  let AsmString = "";
525  let neverHasSideEffects = 1;
526  let isReMaterializable = 1;
527  let isAsCheapAsAMove = 1;
528}
529def SUBREG_TO_REG : Instruction {
530  let OutOperandList = (outs unknown:$dst);
531  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
532  let AsmString = "";
533  let neverHasSideEffects = 1;
534}
535def COPY_TO_REGCLASS : Instruction {
536  let OutOperandList = (outs unknown:$dst);
537  let InOperandList = (ins unknown:$src, i32imm:$regclass);
538  let AsmString = "";
539  let neverHasSideEffects = 1;
540  let isAsCheapAsAMove = 1;
541}
542def DBG_VALUE : Instruction {
543  let OutOperandList = (outs);
544  let InOperandList = (ins variable_ops);
545  let AsmString = "DBG_VALUE";
546  let neverHasSideEffects = 1;
547}
548def REG_SEQUENCE : Instruction {
549  let OutOperandList = (outs unknown:$dst);
550  let InOperandList = (ins variable_ops);
551  let AsmString = "";
552  let neverHasSideEffects = 1;
553  let isAsCheapAsAMove = 1;
554}
555def COPY : Instruction {
556  let OutOperandList = (outs unknown:$dst);
557  let InOperandList = (ins unknown:$src);
558  let AsmString = "";
559  let neverHasSideEffects = 1;
560  let isAsCheapAsAMove = 1;
561}
562}
563
564//===----------------------------------------------------------------------===//
565// AsmParser - This class can be implemented by targets that wish to implement
566// .s file parsing.
567//
568// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
569// syntax on X86 for example).
570//
571class AsmParser {
572  // AsmParserClassName - This specifies the suffix to use for the asmparser
573  // class.  Generated AsmParser classes are always prefixed with the target
574  // name.
575  string AsmParserClassName  = "AsmParser";
576
577  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
578  // function of the AsmParser class to call on every matched instruction.
579  // This can be used to perform target specific instruction post-processing.
580  string AsmParserInstCleanup  = "";
581
582  // Variant - AsmParsers can be of multiple different variants.  Variants are
583  // used to support targets that need to parser multiple formats for the
584  // assembly language.
585  int Variant = 0;
586
587  // CommentDelimiter - If given, the delimiter string used to recognize
588  // comments which are hard coded in the .td assembler strings for individual
589  // instructions.
590  string CommentDelimiter = "";
591
592  // RegisterPrefix - If given, the token prefix which indicates a register
593  // token. This is used by the matcher to automatically recognize hard coded
594  // register tokens as constrained registers, instead of tokens, for the
595  // purposes of matching.
596  string RegisterPrefix = "";
597}
598def DefaultAsmParser : AsmParser;
599
600/// AssemblerPredicate - This is a Predicate that can be used when the assembler
601/// matches instructions and aliases.
602class AssemblerPredicate {
603  bit AssemblerMatcherPredicate = 1;
604}
605
606
607
608/// MnemonicAlias - This class allows targets to define assembler mnemonic
609/// aliases.  This should be used when all forms of one mnemonic are accepted
610/// with a different mnemonic.  For example, X86 allows:
611///   sal %al, 1    -> shl %al, 1
612///   sal %ax, %cl  -> shl %ax, %cl
613///   sal %eax, %cl -> shl %eax, %cl
614/// etc.  Though "sal" is accepted with many forms, all of them are directly
615/// translated to a shl, so it can be handled with (in the case of X86, it
616/// actually has one for each suffix as well):
617///   def : MnemonicAlias<"sal", "shl">;
618///
619/// Mnemonic aliases are mapped before any other translation in the match phase,
620/// and do allow Requires predicates, e.g.:
621///
622///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
623///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
624///
625class MnemonicAlias<string From, string To> {
626  string FromMnemonic = From;
627  string ToMnemonic = To;
628
629  // Predicates - Predicates that must be true for this remapping to happen.
630  list<Predicate> Predicates = [];
631}
632
633/// InstAlias - This defines an alternate assembly syntax that is allowed to
634/// match an instruction that has a different (more canonical) assembly
635/// representation.
636class InstAlias<string Asm, dag Result, bit Emit = 0b1> {
637  string AsmString = Asm;      // The .s format to match the instruction with.
638  dag ResultInst = Result;     // The MCInst to generate.
639  bit EmitAlias = Emit;        // Emit the alias instead of what's aliased.
640
641  // Predicates - Predicates that must be true for this to match.
642  list<Predicate> Predicates = [];
643}
644
645//===----------------------------------------------------------------------===//
646// AsmWriter - This class can be implemented by targets that need to customize
647// the format of the .s file writer.
648//
649// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
650// on X86 for example).
651//
652class AsmWriter {
653  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
654  // class.  Generated AsmWriter classes are always prefixed with the target
655  // name.
656  string AsmWriterClassName  = "AsmPrinter";
657
658  // Variant - AsmWriters can be of multiple different variants.  Variants are
659  // used to support targets that need to emit assembly code in ways that are
660  // mostly the same for different targets, but have minor differences in
661  // syntax.  If the asmstring contains {|} characters in them, this integer
662  // will specify which alternative to use.  For example "{x|y|z}" with Variant
663  // == 1, will expand to "y".
664  int Variant = 0;
665
666
667  // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar
668  // layout, the asmwriter can actually generate output in this columns (in
669  // verbose-asm mode).  These two values indicate the width of the first column
670  // (the "opcode" area) and the width to reserve for subsequent operands.  When
671  // verbose asm mode is enabled, operands will be indented to respect this.
672  int FirstOperandColumn = -1;
673
674  // OperandSpacing - Space between operand columns.
675  int OperandSpacing = -1;
676
677  // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls
678  // generation of the printInstruction() method. For MC printers, it takes
679  // an MCInstr* operand, otherwise it takes a MachineInstr*.
680  bit isMCAsmWriter = 0;
681}
682def DefaultAsmWriter : AsmWriter;
683
684
685//===----------------------------------------------------------------------===//
686// Target - This class contains the "global" target information
687//
688class Target {
689  // InstructionSet - Instruction set description for this target.
690  InstrInfo InstructionSet;
691
692  // AssemblyParsers - The AsmParser instances available for this target.
693  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
694
695  // AssemblyWriters - The AsmWriter instances available for this target.
696  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
697}
698
699//===----------------------------------------------------------------------===//
700// SubtargetFeature - A characteristic of the chip set.
701//
702class SubtargetFeature<string n, string a,  string v, string d,
703                       list<SubtargetFeature> i = []> {
704  // Name - Feature name.  Used by command line (-mattr=) to determine the
705  // appropriate target chip.
706  //
707  string Name = n;
708
709  // Attribute - Attribute to be set by feature.
710  //
711  string Attribute = a;
712
713  // Value - Value the attribute to be set to by feature.
714  //
715  string Value = v;
716
717  // Desc - Feature description.  Used by command line (-mattr=) to display help
718  // information.
719  //
720  string Desc = d;
721
722  // Implies - Features that this feature implies are present. If one of those
723  // features isn't set, then this one shouldn't be set either.
724  //
725  list<SubtargetFeature> Implies = i;
726}
727
728//===----------------------------------------------------------------------===//
729// Processor chip sets - These values represent each of the chip sets supported
730// by the scheduler.  Each Processor definition requires corresponding
731// instruction itineraries.
732//
733class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
734  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
735  // appropriate target chip.
736  //
737  string Name = n;
738
739  // ProcItin - The scheduling information for the target processor.
740  //
741  ProcessorItineraries ProcItin = pi;
742
743  // Features - list of
744  list<SubtargetFeature> Features = f;
745}
746
747//===----------------------------------------------------------------------===//
748// Pull in the common support for calling conventions.
749//
750include "llvm/Target/TargetCallingConv.td"
751
752//===----------------------------------------------------------------------===//
753// Pull in the common support for DAG isel generation.
754//
755include "llvm/Target/TargetSelectionDAG.td"
756