1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/CodeGen/DFAPacketizer.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/MC/MCInstrInfo.h"
21
22namespace llvm {
23
24class InstrItineraryData;
25class LiveVariables;
26class MCAsmInfo;
27class MachineMemOperand;
28class MachineRegisterInfo;
29class MDNode;
30class MCInst;
31class MCSchedModel;
32class MCSymbolRefExpr;
33class SDNode;
34class ScheduleHazardRecognizer;
35class SelectionDAG;
36class ScheduleDAG;
37class TargetRegisterClass;
38class TargetRegisterInfo;
39class BranchProbability;
40class TargetSubtargetInfo;
41
42template<class T> class SmallVectorImpl;
43
44
45//---------------------------------------------------------------------------
46///
47/// TargetInstrInfo - Interface to description of machine instruction set
48///
49class TargetInstrInfo : public MCInstrInfo {
50  TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
51  void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
52public:
53  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
54    : CallFrameSetupOpcode(CFSetupOpcode),
55      CallFrameDestroyOpcode(CFDestroyOpcode) {
56  }
57
58  virtual ~TargetInstrInfo();
59
60  /// getRegClass - Givem a machine instruction descriptor, returns the register
61  /// class constraint for OpNum, or NULL.
62  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
63                                         unsigned OpNum,
64                                         const TargetRegisterInfo *TRI,
65                                         const MachineFunction &MF) const;
66
67  /// isTriviallyReMaterializable - Return true if the instruction is trivially
68  /// rematerializable, meaning it has no side effects and requires no operands
69  /// that aren't always available.
70  bool isTriviallyReMaterializable(const MachineInstr *MI,
71                                   AliasAnalysis *AA = nullptr) const {
72    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
73           (MI->getDesc().isRematerializable() &&
74            (isReallyTriviallyReMaterializable(MI, AA) ||
75             isReallyTriviallyReMaterializableGeneric(MI, AA)));
76  }
77
78protected:
79  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
80  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
81  /// specify whether the instruction is actually trivially rematerializable,
82  /// taking into consideration its operands. This predicate must return false
83  /// if the instruction has any side effects other than producing a value, or
84  /// if it requres any address registers that are not always available.
85  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
86                                                 AliasAnalysis *AA) const {
87    return false;
88  }
89
90private:
91  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
92  /// for which the M_REMATERIALIZABLE flag is set and the target hook
93  /// isReallyTriviallyReMaterializable returns false, this function does
94  /// target-independent tests to determine if the instruction is really
95  /// trivially rematerializable.
96  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
97                                                AliasAnalysis *AA) const;
98
99public:
100  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
101  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
102  /// targets use pseudo instructions in order to abstract away the difference
103  /// between operating with a frame pointer and operating without, through the
104  /// use of these two instructions.
105  ///
106  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
107  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
108
109  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
110  /// extension instruction. That is, it's like a copy where it's legal for the
111  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
112  /// true, then it's expected the pre-extension value is available as a subreg
113  /// of the result register. This also returns the sub-register index in
114  /// SubIdx.
115  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
116                                     unsigned &SrcReg, unsigned &DstReg,
117                                     unsigned &SubIdx) const {
118    return false;
119  }
120
121  /// isLoadFromStackSlot - If the specified machine instruction is a direct
122  /// load from a stack slot, return the virtual or physical register number of
123  /// the destination along with the FrameIndex of the loaded stack slot.  If
124  /// not, return 0.  This predicate must return 0 if the instruction has
125  /// any side effects other than loading from the stack slot.
126  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
127                                       int &FrameIndex) const {
128    return 0;
129  }
130
131  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
132  /// stack locations as well.  This uses a heuristic so it isn't
133  /// reliable for correctness.
134  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
135                                             int &FrameIndex) const {
136    return 0;
137  }
138
139  /// hasLoadFromStackSlot - If the specified machine instruction has
140  /// a load from a stack slot, return true along with the FrameIndex
141  /// of the loaded stack slot and the machine mem operand containing
142  /// the reference.  If not, return false.  Unlike
143  /// isLoadFromStackSlot, this returns true for any instructions that
144  /// loads from the stack.  This is just a hint, as some cases may be
145  /// missed.
146  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
147                                    const MachineMemOperand *&MMO,
148                                    int &FrameIndex) const;
149
150  /// isStoreToStackSlot - If the specified machine instruction is a direct
151  /// store to a stack slot, return the virtual or physical register number of
152  /// the source reg along with the FrameIndex of the loaded stack slot.  If
153  /// not, return 0.  This predicate must return 0 if the instruction has
154  /// any side effects other than storing to the stack slot.
155  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
156                                      int &FrameIndex) const {
157    return 0;
158  }
159
160  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
161  /// stack locations as well.  This uses a heuristic so it isn't
162  /// reliable for correctness.
163  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
164                                            int &FrameIndex) const {
165    return 0;
166  }
167
168  /// hasStoreToStackSlot - If the specified machine instruction has a
169  /// store to a stack slot, return true along with the FrameIndex of
170  /// the loaded stack slot and the machine mem operand containing the
171  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
172  /// this returns true for any instructions that stores to the
173  /// stack.  This is just a hint, as some cases may be missed.
174  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
175                                   const MachineMemOperand *&MMO,
176                                   int &FrameIndex) const;
177
178  /// isStackSlotCopy - Return true if the specified machine instruction
179  /// is a copy of one stack slot to another and has no other effect.
180  /// Provide the identity of the two frame indices.
181  virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
182                               int &SrcFrameIndex) const {
183    return false;
184  }
185
186  /// Compute the size in bytes and offset within a stack slot of a spilled
187  /// register or subregister.
188  ///
189  /// \param [out] Size in bytes of the spilled value.
190  /// \param [out] Offset in bytes within the stack slot.
191  /// \returns true if both Size and Offset are successfully computed.
192  ///
193  /// Not all subregisters have computable spill slots. For example,
194  /// subregisters registers may not be byte-sized, and a pair of discontiguous
195  /// subregisters has no single offset.
196  ///
197  /// Targets with nontrivial bigendian implementations may need to override
198  /// this, particularly to support spilled vector registers.
199  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
200                                 unsigned &Size, unsigned &Offset,
201                                 const TargetMachine *TM) const;
202
203  /// isAsCheapAsAMove - Return true if the instruction is as cheap as a move
204  /// instruction.
205  ///
206  /// Targets for different archs need to override this, and different
207  /// micro-architectures can also be finely tuned inside.
208  virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
209    return MI->isAsCheapAsAMove();
210  }
211
212  /// reMaterialize - Re-issue the specified 'original' instruction at the
213  /// specific location targeting a new destination register.
214  /// The register in Orig->getOperand(0).getReg() will be substituted by
215  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
216  /// SubIdx.
217  virtual void reMaterialize(MachineBasicBlock &MBB,
218                             MachineBasicBlock::iterator MI,
219                             unsigned DestReg, unsigned SubIdx,
220                             const MachineInstr *Orig,
221                             const TargetRegisterInfo &TRI) const;
222
223  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
224  /// MachineFunction::CloneMachineInstr(), but the target may update operands
225  /// that are required to be unique.
226  ///
227  /// The instruction must be duplicable as indicated by isNotDuplicable().
228  virtual MachineInstr *duplicate(MachineInstr *Orig,
229                                  MachineFunction &MF) const;
230
231  /// convertToThreeAddress - This method must be implemented by targets that
232  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
233  /// may be able to convert a two-address instruction into one or more true
234  /// three-address instructions on demand.  This allows the X86 target (for
235  /// example) to convert ADD and SHL instructions into LEA instructions if they
236  /// would require register copies due to two-addressness.
237  ///
238  /// This method returns a null pointer if the transformation cannot be
239  /// performed, otherwise it returns the last new instruction.
240  ///
241  virtual MachineInstr *
242  convertToThreeAddress(MachineFunction::iterator &MFI,
243                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
244    return nullptr;
245  }
246
247  /// commuteInstruction - If a target has any instructions that are
248  /// commutable but require converting to different instructions or making
249  /// non-trivial changes to commute them, this method can overloaded to do
250  /// that.  The default implementation simply swaps the commutable operands.
251  /// If NewMI is false, MI is modified in place and returned; otherwise, a
252  /// new machine instruction is created and returned.  Do not call this
253  /// method for a non-commutable instruction, but there may be some cases
254  /// where this method fails and returns null.
255  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
256                                           bool NewMI = false) const;
257
258  /// findCommutedOpIndices - If specified MI is commutable, return the two
259  /// operand indices that would swap value. Return false if the instruction
260  /// is not in a form which this routine understands.
261  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
262                                     unsigned &SrcOpIdx2) const;
263
264  /// produceSameValue - Return true if two machine instructions would produce
265  /// identical values. By default, this is only true when the two instructions
266  /// are deemed identical except for defs. If this function is called when the
267  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
268  /// aggressive checks.
269  virtual bool produceSameValue(const MachineInstr *MI0,
270                                const MachineInstr *MI1,
271                                const MachineRegisterInfo *MRI = nullptr) const;
272
273  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
274  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
275  /// implemented for a target).  Upon success, this returns false and returns
276  /// with the following information in various cases:
277  ///
278  /// 1. If this block ends with no branches (it just falls through to its succ)
279  ///    just return false, leaving TBB/FBB null.
280  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
281  ///    the destination block.
282  /// 3. If this block ends with a conditional branch and it falls through to a
283  ///    successor block, it sets TBB to be the branch destination block and a
284  ///    list of operands that evaluate the condition. These operands can be
285  ///    passed to other TargetInstrInfo methods to create new branches.
286  /// 4. If this block ends with a conditional branch followed by an
287  ///    unconditional branch, it returns the 'true' destination in TBB, the
288  ///    'false' destination in FBB, and a list of operands that evaluate the
289  ///    condition.  These operands can be passed to other TargetInstrInfo
290  ///    methods to create new branches.
291  ///
292  /// Note that RemoveBranch and InsertBranch must be implemented to support
293  /// cases where this method returns success.
294  ///
295  /// If AllowModify is true, then this routine is allowed to modify the basic
296  /// block (e.g. delete instructions after the unconditional branch).
297  ///
298  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
299                             MachineBasicBlock *&FBB,
300                             SmallVectorImpl<MachineOperand> &Cond,
301                             bool AllowModify = false) const {
302    return true;
303  }
304
305  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
306  /// This is only invoked in cases where AnalyzeBranch returns success. It
307  /// returns the number of instructions that were removed.
308  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
309    llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
310  }
311
312  /// InsertBranch - Insert branch code into the end of the specified
313  /// MachineBasicBlock.  The operands to this method are the same as those
314  /// returned by AnalyzeBranch.  This is only invoked in cases where
315  /// AnalyzeBranch returns success. It returns the number of instructions
316  /// inserted.
317  ///
318  /// It is also invoked by tail merging to add unconditional branches in
319  /// cases where AnalyzeBranch doesn't apply because there was no original
320  /// branch to analyze.  At least this much must be implemented, else tail
321  /// merging needs to be disabled.
322  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
323                                MachineBasicBlock *FBB,
324                                const SmallVectorImpl<MachineOperand> &Cond,
325                                DebugLoc DL) const {
326    llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
327  }
328
329  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
330  /// after it, replacing it with an unconditional branch to NewDest. This is
331  /// used by the tail merging pass.
332  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
333                                       MachineBasicBlock *NewDest) const;
334
335  /// getUnconditionalBranch - Get an instruction that performs an unconditional
336  /// branch to the given symbol.
337  virtual void
338  getUnconditionalBranch(MCInst &MI,
339                         const MCSymbolRefExpr *BranchTarget) const {
340    llvm_unreachable("Target didn't implement "
341                     "TargetInstrInfo::getUnconditionalBranch!");
342  }
343
344  /// getTrap - Get a machine trap instruction
345  virtual void getTrap(MCInst &MI) const {
346    llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
347  }
348
349  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
350  /// block at the specified instruction (i.e. instruction would be the start
351  /// of a new basic block).
352  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
353                                   MachineBasicBlock::iterator MBBI) const {
354    return true;
355  }
356
357  /// isProfitableToIfCvt - Return true if it's profitable to predicate
358  /// instructions with accumulated instruction latency of "NumCycles"
359  /// of the specified basic block, where the probability of the instructions
360  /// being executed is given by Probability, and Confidence is a measure
361  /// of our confidence that it will be properly predicted.
362  virtual
363  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
364                           unsigned ExtraPredCycles,
365                           const BranchProbability &Probability) const {
366    return false;
367  }
368
369  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
370  /// checks for the case where two basic blocks from true and false path
371  /// of a if-then-else (diamond) are predicated on mutally exclusive
372  /// predicates, where the probability of the true path being taken is given
373  /// by Probability, and Confidence is a measure of our confidence that it
374  /// will be properly predicted.
375  virtual bool
376  isProfitableToIfCvt(MachineBasicBlock &TMBB,
377                      unsigned NumTCycles, unsigned ExtraTCycles,
378                      MachineBasicBlock &FMBB,
379                      unsigned NumFCycles, unsigned ExtraFCycles,
380                      const BranchProbability &Probability) const {
381    return false;
382  }
383
384  /// isProfitableToDupForIfCvt - Return true if it's profitable for
385  /// if-converter to duplicate instructions of specified accumulated
386  /// instruction latencies in the specified MBB to enable if-conversion.
387  /// The probability of the instructions being executed is given by
388  /// Probability, and Confidence is a measure of our confidence that it
389  /// will be properly predicted.
390  virtual bool
391  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
392                            const BranchProbability &Probability) const {
393    return false;
394  }
395
396  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
397  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
398  /// exclusive predicates.
399  /// e.g.
400  ///   subeq  r0, r1, #1
401  ///   addne  r0, r1, #1
402  /// =>
403  ///   sub    r0, r1, #1
404  ///   addne  r0, r1, #1
405  ///
406  /// This may be profitable is conditional instructions are always executed.
407  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
408                                         MachineBasicBlock &FMBB) const {
409    return false;
410  }
411
412  /// canInsertSelect - Return true if it is possible to insert a select
413  /// instruction that chooses between TrueReg and FalseReg based on the
414  /// condition code in Cond.
415  ///
416  /// When successful, also return the latency in cycles from TrueReg,
417  /// FalseReg, and Cond to the destination register. In most cases, a select
418  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
419  ///
420  /// Some x86 implementations have 2-cycle cmov instructions.
421  ///
422  /// @param MBB         Block where select instruction would be inserted.
423  /// @param Cond        Condition returned by AnalyzeBranch.
424  /// @param TrueReg     Virtual register to select when Cond is true.
425  /// @param FalseReg    Virtual register to select when Cond is false.
426  /// @param CondCycles  Latency from Cond+Branch to select output.
427  /// @param TrueCycles  Latency from TrueReg to select output.
428  /// @param FalseCycles Latency from FalseReg to select output.
429  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
430                               const SmallVectorImpl<MachineOperand> &Cond,
431                               unsigned TrueReg, unsigned FalseReg,
432                               int &CondCycles,
433                               int &TrueCycles, int &FalseCycles) const {
434    return false;
435  }
436
437  /// insertSelect - Insert a select instruction into MBB before I that will
438  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
439  /// Cond is false.
440  ///
441  /// This function can only be called after canInsertSelect() returned true.
442  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
443  /// that the same flags or registers required by Cond are available at the
444  /// insertion point.
445  ///
446  /// @param MBB      Block where select instruction should be inserted.
447  /// @param I        Insertion point.
448  /// @param DL       Source location for debugging.
449  /// @param DstReg   Virtual register to be defined by select instruction.
450  /// @param Cond     Condition as computed by AnalyzeBranch.
451  /// @param TrueReg  Virtual register to copy when Cond is true.
452  /// @param FalseReg Virtual register to copy when Cons is false.
453  virtual void insertSelect(MachineBasicBlock &MBB,
454                            MachineBasicBlock::iterator I, DebugLoc DL,
455                            unsigned DstReg,
456                            const SmallVectorImpl<MachineOperand> &Cond,
457                            unsigned TrueReg, unsigned FalseReg) const {
458    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
459  }
460
461  /// analyzeSelect - Analyze the given select instruction, returning true if
462  /// it cannot be understood. It is assumed that MI->isSelect() is true.
463  ///
464  /// When successful, return the controlling condition and the operands that
465  /// determine the true and false result values.
466  ///
467  ///   Result = SELECT Cond, TrueOp, FalseOp
468  ///
469  /// Some targets can optimize select instructions, for example by predicating
470  /// the instruction defining one of the operands. Such targets should set
471  /// Optimizable.
472  ///
473  /// @param         MI Select instruction to analyze.
474  /// @param Cond    Condition controlling the select.
475  /// @param TrueOp  Operand number of the value selected when Cond is true.
476  /// @param FalseOp Operand number of the value selected when Cond is false.
477  /// @param Optimizable Returned as true if MI is optimizable.
478  /// @returns False on success.
479  virtual bool analyzeSelect(const MachineInstr *MI,
480                             SmallVectorImpl<MachineOperand> &Cond,
481                             unsigned &TrueOp, unsigned &FalseOp,
482                             bool &Optimizable) const {
483    assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
484    return true;
485  }
486
487  /// optimizeSelect - Given a select instruction that was understood by
488  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
489  /// merging it with one of its operands. Returns NULL on failure.
490  ///
491  /// When successful, returns the new select instruction. The client is
492  /// responsible for deleting MI.
493  ///
494  /// If both sides of the select can be optimized, PreferFalse is used to pick
495  /// a side.
496  ///
497  /// @param MI          Optimizable select instruction.
498  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
499  /// @returns Optimized instruction or NULL.
500  virtual MachineInstr *optimizeSelect(MachineInstr *MI,
501                                       bool PreferFalse = false) const {
502    // This function must be implemented if Optimizable is ever set.
503    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
504  }
505
506  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
507  ///
508  /// This function should support copies within any legal register class as
509  /// well as any cross-class copies created during instruction selection.
510  ///
511  /// The source and destination registers may overlap, which may require a
512  /// careful implementation when multiple copy instructions are required for
513  /// large registers. See for example the ARM target.
514  virtual void copyPhysReg(MachineBasicBlock &MBB,
515                           MachineBasicBlock::iterator MI, DebugLoc DL,
516                           unsigned DestReg, unsigned SrcReg,
517                           bool KillSrc) const {
518    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
519  }
520
521  /// storeRegToStackSlot - Store the specified register of the given register
522  /// class to the specified stack frame index. The store instruction is to be
523  /// added to the given machine basic block before the specified machine
524  /// instruction. If isKill is true, the register operand is the last use and
525  /// must be marked kill.
526  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
527                                   MachineBasicBlock::iterator MI,
528                                   unsigned SrcReg, bool isKill, int FrameIndex,
529                                   const TargetRegisterClass *RC,
530                                   const TargetRegisterInfo *TRI) const {
531    llvm_unreachable("Target didn't implement "
532                     "TargetInstrInfo::storeRegToStackSlot!");
533  }
534
535  /// loadRegFromStackSlot - Load the specified register of the given register
536  /// class from the specified stack frame index. The load instruction is to be
537  /// added to the given machine basic block before the specified machine
538  /// instruction.
539  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
540                                    MachineBasicBlock::iterator MI,
541                                    unsigned DestReg, int FrameIndex,
542                                    const TargetRegisterClass *RC,
543                                    const TargetRegisterInfo *TRI) const {
544    llvm_unreachable("Target didn't implement "
545                     "TargetInstrInfo::loadRegFromStackSlot!");
546  }
547
548  /// expandPostRAPseudo - This function is called for all pseudo instructions
549  /// that remain after register allocation. Many pseudo instructions are
550  /// created to help register allocation. This is the place to convert them
551  /// into real instructions. The target can edit MI in place, or it can insert
552  /// new instructions and erase MI. The function should return true if
553  /// anything was changed.
554  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
555    return false;
556  }
557
558  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
559  /// slot into the specified machine instruction for the specified operand(s).
560  /// If this is possible, a new instruction is returned with the specified
561  /// operand folded, otherwise NULL is returned.
562  /// The new instruction is inserted before MI, and the client is responsible
563  /// for removing the old instruction.
564  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
565                                  const SmallVectorImpl<unsigned> &Ops,
566                                  int FrameIndex) const;
567
568  /// foldMemoryOperand - Same as the previous version except it allows folding
569  /// of any load and store from / to any address, not just from a specific
570  /// stack slot.
571  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
572                                  const SmallVectorImpl<unsigned> &Ops,
573                                  MachineInstr* LoadMI) const;
574
575protected:
576  /// foldMemoryOperandImpl - Target-dependent implementation for
577  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
578  /// take care of adding a MachineMemOperand to the newly created instruction.
579  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
580                                          MachineInstr* MI,
581                                          const SmallVectorImpl<unsigned> &Ops,
582                                          int FrameIndex) const {
583    return nullptr;
584  }
585
586  /// foldMemoryOperandImpl - Target-dependent implementation for
587  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
588  /// take care of adding a MachineMemOperand to the newly created instruction.
589  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
590                                              MachineInstr* MI,
591                                          const SmallVectorImpl<unsigned> &Ops,
592                                              MachineInstr* LoadMI) const {
593    return nullptr;
594  }
595
596public:
597  /// canFoldMemoryOperand - Returns true for the specified load / store if
598  /// folding is possible.
599  virtual
600  bool canFoldMemoryOperand(const MachineInstr *MI,
601                            const SmallVectorImpl<unsigned> &Ops) const;
602
603  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
604  /// a store or a load and a store into two or more instruction. If this is
605  /// possible, returns true as well as the new instructions by reference.
606  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
607                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
608                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
609    return false;
610  }
611
612  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
613                                   SmallVectorImpl<SDNode*> &NewNodes) const {
614    return false;
615  }
616
617  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
618  /// instruction after load / store are unfolded from an instruction of the
619  /// specified opcode. It returns zero if the specified unfolding is not
620  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
621  /// index of the operand which will hold the register holding the loaded
622  /// value.
623  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
624                                      bool UnfoldLoad, bool UnfoldStore,
625                                      unsigned *LoadRegIndex = nullptr) const {
626    return 0;
627  }
628
629  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
630  /// to determine if two loads are loading from the same base address. It
631  /// should only return true if the base pointers are the same and the
632  /// only differences between the two addresses are the offset. It also returns
633  /// the offsets by reference.
634  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
635                                    int64_t &Offset1, int64_t &Offset2) const {
636    return false;
637  }
638
639  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
640  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
641  /// be scheduled togther. On some targets if two loads are loading from
642  /// addresses in the same cache line, it's better if they are scheduled
643  /// together. This function takes two integers that represent the load offsets
644  /// from the common base address. It returns true if it decides it's desirable
645  /// to schedule the two loads together. "NumLoads" is the number of loads that
646  /// have already been scheduled after Load1.
647  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
648                                       int64_t Offset1, int64_t Offset2,
649                                       unsigned NumLoads) const {
650    return false;
651  }
652
653  /// \brief Get the base register and byte offset of a load/store instr.
654  virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
655                                    unsigned &BaseReg, unsigned &Offset,
656                                    const TargetRegisterInfo *TRI) const {
657    return false;
658  }
659
660  virtual bool enableClusterLoads() const { return false; }
661
662  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
663                                  MachineInstr *SecondLdSt,
664                                  unsigned NumLoads) const {
665    return false;
666  }
667
668  /// \brief Can this target fuse the given instructions if they are scheduled
669  /// adjacent.
670  virtual bool shouldScheduleAdjacent(MachineInstr* First,
671                                      MachineInstr *Second) const {
672    return false;
673  }
674
675  /// ReverseBranchCondition - Reverses the branch condition of the specified
676  /// condition list, returning false on success and true if it cannot be
677  /// reversed.
678  virtual
679  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
680    return true;
681  }
682
683  /// insertNoop - Insert a noop into the instruction stream at the specified
684  /// point.
685  virtual void insertNoop(MachineBasicBlock &MBB,
686                          MachineBasicBlock::iterator MI) const;
687
688
689  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
690  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
691    // Default to just using 'nop' string.
692  }
693
694
695  /// isPredicated - Returns true if the instruction is already predicated.
696  ///
697  virtual bool isPredicated(const MachineInstr *MI) const {
698    return false;
699  }
700
701  /// isUnpredicatedTerminator - Returns true if the instruction is a
702  /// terminator instruction that has not been predicated.
703  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
704
705  /// PredicateInstruction - Convert the instruction into a predicated
706  /// instruction. It returns true if the operation was successful.
707  virtual
708  bool PredicateInstruction(MachineInstr *MI,
709                        const SmallVectorImpl<MachineOperand> &Pred) const;
710
711  /// SubsumesPredicate - Returns true if the first specified predicate
712  /// subsumes the second, e.g. GE subsumes GT.
713  virtual
714  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
715                         const SmallVectorImpl<MachineOperand> &Pred2) const {
716    return false;
717  }
718
719  /// DefinesPredicate - If the specified instruction defines any predicate
720  /// or condition code register(s) used for predication, returns true as well
721  /// as the definition predicate(s) by reference.
722  virtual bool DefinesPredicate(MachineInstr *MI,
723                                std::vector<MachineOperand> &Pred) const {
724    return false;
725  }
726
727  /// isPredicable - Return true if the specified instruction can be predicated.
728  /// By default, this returns true for every instruction with a
729  /// PredicateOperand.
730  virtual bool isPredicable(MachineInstr *MI) const {
731    return MI->getDesc().isPredicable();
732  }
733
734  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
735  /// instruction that defines the specified register class.
736  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
737    return true;
738  }
739
740  /// isSchedulingBoundary - Test if the given instruction should be
741  /// considered a scheduling boundary. This primarily includes labels and
742  /// terminators.
743  virtual bool isSchedulingBoundary(const MachineInstr *MI,
744                                    const MachineBasicBlock *MBB,
745                                    const MachineFunction &MF) const;
746
747  /// Measure the specified inline asm to determine an approximation of its
748  /// length.
749  virtual unsigned getInlineAsmLength(const char *Str,
750                                      const MCAsmInfo &MAI) const;
751
752  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
753  /// use for this target when scheduling the machine instructions before
754  /// register allocation.
755  virtual ScheduleHazardRecognizer*
756  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
757                               const ScheduleDAG *DAG) const;
758
759  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
760  /// to use for this target when scheduling the machine instructions before
761  /// register allocation.
762  virtual ScheduleHazardRecognizer*
763  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
764                                 const ScheduleDAG *DAG) const;
765
766  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
767  /// recognizer to use for this target when scheduling the machine instructions
768  /// after register allocation.
769  virtual ScheduleHazardRecognizer*
770  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
771                                     const ScheduleDAG *DAG) const;
772
773  /// Provide a global flag for disabling the PreRA hazard recognizer that
774  /// targets may choose to honor.
775  bool usePreRAHazardRecognizer() const;
776
777  /// analyzeCompare - For a comparison instruction, return the source registers
778  /// in SrcReg and SrcReg2 if having two register operands, and the value it
779  /// compares against in CmpValue. Return true if the comparison instruction
780  /// can be analyzed.
781  virtual bool analyzeCompare(const MachineInstr *MI,
782                              unsigned &SrcReg, unsigned &SrcReg2,
783                              int &Mask, int &Value) const {
784    return false;
785  }
786
787  /// optimizeCompareInstr - See if the comparison instruction can be converted
788  /// into something more efficient. E.g., on ARM most instructions can set the
789  /// flags register, obviating the need for a separate CMP.
790  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
791                                    unsigned SrcReg, unsigned SrcReg2,
792                                    int Mask, int Value,
793                                    const MachineRegisterInfo *MRI) const {
794    return false;
795  }
796
797  /// optimizeLoadInstr - Try to remove the load by folding it to a register
798  /// operand at the use. We fold the load instructions if and only if the
799  /// def and use are in the same BB. We only look at one load and see
800  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
801  /// defined by the load we are trying to fold. DefMI returns the machine
802  /// instruction that defines FoldAsLoadDefReg, and the function returns
803  /// the machine instruction generated due to folding.
804  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
805                        const MachineRegisterInfo *MRI,
806                        unsigned &FoldAsLoadDefReg,
807                        MachineInstr *&DefMI) const {
808    return nullptr;
809  }
810
811  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
812  /// instruction, try to fold the immediate into the use instruction.
813  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
814  /// then the caller may assume that DefMI has been erased from its parent
815  /// block. The caller may assume that it will not be erased by this
816  /// function otherwise.
817  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
818                             unsigned Reg, MachineRegisterInfo *MRI) const {
819    return false;
820  }
821
822  /// getNumMicroOps - Return the number of u-operations the given machine
823  /// instruction will be decoded to on the target cpu. The itinerary's
824  /// IssueWidth is the number of microops that can be dispatched each
825  /// cycle. An instruction with zero microops takes no dispatch resources.
826  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
827                                  const MachineInstr *MI) const;
828
829  /// isZeroCost - Return true for pseudo instructions that don't consume any
830  /// machine resources in their current form. These are common cases that the
831  /// scheduler should consider free, rather than conservatively handling them
832  /// as instructions with no itinerary.
833  bool isZeroCost(unsigned Opcode) const {
834    return Opcode <= TargetOpcode::COPY;
835  }
836
837  virtual int getOperandLatency(const InstrItineraryData *ItinData,
838                                SDNode *DefNode, unsigned DefIdx,
839                                SDNode *UseNode, unsigned UseIdx) const;
840
841  /// getOperandLatency - Compute and return the use operand latency of a given
842  /// pair of def and use.
843  /// In most cases, the static scheduling itinerary was enough to determine the
844  /// operand latency. But it may not be possible for instructions with variable
845  /// number of defs / uses.
846  ///
847  /// This is a raw interface to the itinerary that may be directly overriden by
848  /// a target. Use computeOperandLatency to get the best estimate of latency.
849  virtual int getOperandLatency(const InstrItineraryData *ItinData,
850                                const MachineInstr *DefMI, unsigned DefIdx,
851                                const MachineInstr *UseMI,
852                                unsigned UseIdx) const;
853
854  /// computeOperandLatency - Compute and return the latency of the given data
855  /// dependent def and use when the operand indices are already known.
856  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
857                                 const MachineInstr *DefMI, unsigned DefIdx,
858                                 const MachineInstr *UseMI, unsigned UseIdx)
859    const;
860
861  /// getInstrLatency - Compute the instruction latency of a given instruction.
862  /// If the instruction has higher cost when predicated, it's returned via
863  /// PredCost.
864  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
865                                   const MachineInstr *MI,
866                                   unsigned *PredCost = nullptr) const;
867
868  virtual unsigned getPredicationCost(const MachineInstr *MI) const;
869
870  virtual int getInstrLatency(const InstrItineraryData *ItinData,
871                              SDNode *Node) const;
872
873  /// Return the default expected latency for a def based on it's opcode.
874  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
875                             const MachineInstr *DefMI) const;
876
877  int computeDefOperandLatency(const InstrItineraryData *ItinData,
878                               const MachineInstr *DefMI) const;
879
880  /// isHighLatencyDef - Return true if this opcode has high latency to its
881  /// result.
882  virtual bool isHighLatencyDef(int opc) const { return false; }
883
884  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
885  /// and an use in the current loop, return true if the target considered
886  /// it 'high'. This is used by optimization passes such as machine LICM to
887  /// determine whether it makes sense to hoist an instruction out even in
888  /// high register pressure situation.
889  virtual
890  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
891                             const MachineRegisterInfo *MRI,
892                             const MachineInstr *DefMI, unsigned DefIdx,
893                             const MachineInstr *UseMI, unsigned UseIdx) const {
894    return false;
895  }
896
897  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
898  /// if the target considered it 'low'.
899  virtual
900  bool hasLowDefLatency(const InstrItineraryData *ItinData,
901                        const MachineInstr *DefMI, unsigned DefIdx) const;
902
903  /// verifyInstruction - Perform target specific instruction verification.
904  virtual
905  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
906    return true;
907  }
908
909  /// getExecutionDomain - Return the current execution domain and bit mask of
910  /// possible domains for instruction.
911  ///
912  /// Some micro-architectures have multiple execution domains, and multiple
913  /// opcodes that perform the same operation in different domains.  For
914  /// example, the x86 architecture provides the por, orps, and orpd
915  /// instructions that all do the same thing.  There is a latency penalty if a
916  /// register is written in one domain and read in another.
917  ///
918  /// This function returns a pair (domain, mask) containing the execution
919  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
920  /// function can be used to change the opcode to one of the domains in the
921  /// bit mask.  Instructions whose execution domain can't be changed should
922  /// return a 0 mask.
923  ///
924  /// The execution domain numbers don't have any special meaning except domain
925  /// 0 is used for instructions that are not associated with any interesting
926  /// execution domain.
927  ///
928  virtual std::pair<uint16_t, uint16_t>
929  getExecutionDomain(const MachineInstr *MI) const {
930    return std::make_pair(0, 0);
931  }
932
933  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
934  ///
935  /// The bit (1 << Domain) must be set in the mask returned from
936  /// getExecutionDomain(MI).
937  ///
938  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
939
940
941  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
942  /// before an instruction with an unwanted partial register update.
943  ///
944  /// Some instructions only write part of a register, and implicitly need to
945  /// read the other parts of the register.  This may cause unwanted stalls
946  /// preventing otherwise unrelated instructions from executing in parallel in
947  /// an out-of-order CPU.
948  ///
949  /// For example, the x86 instruction cvtsi2ss writes its result to bits
950  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
951  /// the instruction needs to wait for the old value of the register to become
952  /// available:
953  ///
954  ///   addps %xmm1, %xmm0
955  ///   movaps %xmm0, (%rax)
956  ///   cvtsi2ss %rbx, %xmm0
957  ///
958  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
959  /// instruction before it can issue, even though the high bits of %xmm0
960  /// probably aren't needed.
961  ///
962  /// This hook returns the preferred clearance before MI, measured in
963  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
964  /// instructions before MI.  It should only return a positive value for
965  /// unwanted dependencies.  If the old bits of the defined register have
966  /// useful values, or if MI is determined to otherwise read the dependency,
967  /// the hook should return 0.
968  ///
969  /// The unwanted dependency may be handled by:
970  ///
971  /// 1. Allocating the same register for an MI def and use.  That makes the
972  ///    unwanted dependency identical to a required dependency.
973  ///
974  /// 2. Allocating a register for the def that has no defs in the previous N
975  ///    instructions.
976  ///
977  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
978  ///    allows the target to insert a dependency breaking instruction.
979  ///
980  virtual unsigned
981  getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
982                               const TargetRegisterInfo *TRI) const {
983    // The default implementation returns 0 for no partial register dependency.
984    return 0;
985  }
986
987  /// \brief Return the minimum clearance before an instruction that reads an
988  /// unused register.
989  ///
990  /// For example, AVX instructions may copy part of an register operand into
991  /// the unused high bits of the destination register.
992  ///
993  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
994  ///
995  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
996  /// false dependence on any previous write to %xmm0.
997  ///
998  /// This hook works similarly to getPartialRegUpdateClearance, except that it
999  /// does not take an operand index. Instead sets \p OpNum to the index of the
1000  /// unused register.
1001  virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
1002                                        const TargetRegisterInfo *TRI) const {
1003    // The default implementation returns 0 for no undef register dependency.
1004    return 0;
1005  }
1006
1007  /// breakPartialRegDependency - Insert a dependency-breaking instruction
1008  /// before MI to eliminate an unwanted dependency on OpNum.
1009  ///
1010  /// If it wasn't possible to avoid a def in the last N instructions before MI
1011  /// (see getPartialRegUpdateClearance), this hook will be called to break the
1012  /// unwanted dependency.
1013  ///
1014  /// On x86, an xorps instruction can be used as a dependency breaker:
1015  ///
1016  ///   addps %xmm1, %xmm0
1017  ///   movaps %xmm0, (%rax)
1018  ///   xorps %xmm0, %xmm0
1019  ///   cvtsi2ss %rbx, %xmm0
1020  ///
1021  /// An <imp-kill> operand should be added to MI if an instruction was
1022  /// inserted.  This ties the instructions together in the post-ra scheduler.
1023  ///
1024  virtual void
1025  breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
1026                            const TargetRegisterInfo *TRI) const {}
1027
1028  /// Create machine specific model for scheduling.
1029  virtual DFAPacketizer*
1030    CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
1031    return nullptr;
1032  }
1033
1034private:
1035  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
1036};
1037
1038} // End llvm namespace
1039
1040#endif
1041