TargetInstrInfo.h revision 0115e164bad632572e2cfbaf72f0f0882d5319de
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class MCAsmInfo;
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29
30template<class T> class SmallVectorImpl;
31
32
33//---------------------------------------------------------------------------
34///
35/// TargetInstrInfo - Interface to description of machine instruction set
36///
37class TargetInstrInfo {
38  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
39  unsigned NumOpcodes;                // Number of entries in the desc array
40
41  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
42  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
43public:
44  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
45  virtual ~TargetInstrInfo();
46
47  // Invariant opcodes: All instruction sets have these as their low opcodes.
48  enum {
49    PHI = 0,
50    INLINEASM = 1,
51    DBG_LABEL = 2,
52    EH_LABEL = 3,
53    GC_LABEL = 4,
54
55    /// KILL - This instruction is a noop that is used only to adjust the liveness
56    /// of registers. This can be useful when dealing with sub-registers.
57    KILL = 5,
58
59    /// EXTRACT_SUBREG - This instruction takes two operands: a register
60    /// that has subregisters, and a subregister index. It returns the
61    /// extracted subregister value. This is commonly used to implement
62    /// truncation operations on target architectures which support it.
63    EXTRACT_SUBREG = 6,
64
65    /// INSERT_SUBREG - This instruction takes three operands: a register
66    /// that has subregisters, a register providing an insert value, and a
67    /// subregister index. It returns the value of the first register with
68    /// the value of the second register inserted. The first register is
69    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
70    /// anyext operations on target architectures which support it.
71    INSERT_SUBREG = 7,
72
73    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
74    IMPLICIT_DEF = 8,
75
76    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
77    /// that the first operand is an immediate integer constant. This constant
78    /// is often zero, as is commonly used to implement zext operations on
79    /// target architectures which support it, such as with x86-64 (with
80    /// zext from i32 to i64 via implicit zero-extension).
81    SUBREG_TO_REG = 9,
82
83    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
84    /// register-to-register copy into a specific register class. This is only
85    /// used between instruction selection and MachineInstr creation, before
86    /// virtual registers have been created for all the instructions, and it's
87    /// only needed in cases where the register classes implied by the
88    /// instructions are insufficient. The actual MachineInstrs to perform
89    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
90    COPY_TO_REGCLASS = 10
91  };
92
93  unsigned getNumOpcodes() const { return NumOpcodes; }
94
95  /// get - Return the machine instruction descriptor that corresponds to the
96  /// specified instruction opcode.
97  ///
98  const TargetInstrDesc &get(unsigned Opcode) const {
99    assert(Opcode < NumOpcodes && "Invalid opcode!");
100    return Descriptors[Opcode];
101  }
102
103  /// isTriviallyReMaterializable - Return true if the instruction is trivially
104  /// rematerializable, meaning it has no side effects and requires no operands
105  /// that aren't always available.
106  bool isTriviallyReMaterializable(const MachineInstr *MI,
107                                   AliasAnalysis *AA = 0) const {
108    return MI->getOpcode() == IMPLICIT_DEF ||
109           (MI->getDesc().isRematerializable() &&
110            (isReallyTriviallyReMaterializable(MI, AA) ||
111             isReallyTriviallyReMaterializableGeneric(MI, AA)));
112  }
113
114protected:
115  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
116  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
117  /// specify whether the instruction is actually trivially rematerializable,
118  /// taking into consideration its operands. This predicate must return false
119  /// if the instruction has any side effects other than producing a value, or
120  /// if it requres any address registers that are not always available.
121  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
122                                                 AliasAnalysis *AA) const {
123    return false;
124  }
125
126private:
127  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
128  /// for which the M_REMATERIALIZABLE flag is set and the target hook
129  /// isReallyTriviallyReMaterializable returns false, this function does
130  /// target-independent tests to determine if the instruction is really
131  /// trivially rematerializable.
132  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
133                                                AliasAnalysis *AA) const;
134
135public:
136  /// isMoveInstr - Return true if the instruction is a register to register
137  /// move and return the source and dest operands and their sub-register
138  /// indices by reference.
139  virtual bool isMoveInstr(const MachineInstr& MI,
140                           unsigned& SrcReg, unsigned& DstReg,
141                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
142    return false;
143  }
144
145  /// isIdentityCopy - Return true if the instruction is a copy (or
146  /// extract_subreg, insert_subreg, subreg_to_reg) where the source and
147  /// destination registers are the same.
148  bool isIdentityCopy(const MachineInstr &MI) const {
149    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
150    if (isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
151        SrcReg == DstReg)
152      return true;
153
154    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG &&
155        MI.getOperand(0).getReg() == MI.getOperand(1).getReg())
156    return true;
157
158    if ((MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
159         MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
160        MI.getOperand(0).getReg() == MI.getOperand(2).getReg())
161      return true;
162    return false;
163  }
164
165  /// isLoadFromStackSlot - If the specified machine instruction is a direct
166  /// load from a stack slot, return the virtual or physical register number of
167  /// the destination along with the FrameIndex of the loaded stack slot.  If
168  /// not, return 0.  This predicate must return 0 if the instruction has
169  /// any side effects other than loading from the stack slot.
170  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
171                                       int &FrameIndex) const {
172    return 0;
173  }
174
175  /// isStoreToStackSlot - If the specified machine instruction is a direct
176  /// store to a stack slot, return the virtual or physical register number of
177  /// the source reg along with the FrameIndex of the loaded stack slot.  If
178  /// not, return 0.  This predicate must return 0 if the instruction has
179  /// any side effects other than storing to the stack slot.
180  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
181                                      int &FrameIndex) const {
182    return 0;
183  }
184
185  /// reMaterialize - Re-issue the specified 'original' instruction at the
186  /// specific location targeting a new destination register.
187  virtual void reMaterialize(MachineBasicBlock &MBB,
188                             MachineBasicBlock::iterator MI,
189                             unsigned DestReg, unsigned SubIdx,
190                             const MachineInstr *Orig) const = 0;
191
192  /// convertToThreeAddress - This method must be implemented by targets that
193  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
194  /// may be able to convert a two-address instruction into one or more true
195  /// three-address instructions on demand.  This allows the X86 target (for
196  /// example) to convert ADD and SHL instructions into LEA instructions if they
197  /// would require register copies due to two-addressness.
198  ///
199  /// This method returns a null pointer if the transformation cannot be
200  /// performed, otherwise it returns the last new instruction.
201  ///
202  virtual MachineInstr *
203  convertToThreeAddress(MachineFunction::iterator &MFI,
204                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
205    return 0;
206  }
207
208  /// commuteInstruction - If a target has any instructions that are commutable,
209  /// but require converting to a different instruction or making non-trivial
210  /// changes to commute them, this method can overloaded to do this.  The
211  /// default implementation of this method simply swaps the first two operands
212  /// of MI and returns it.
213  ///
214  /// If a target wants to make more aggressive changes, they can construct and
215  /// return a new machine instruction.  If an instruction cannot commute, it
216  /// can also return null.
217  ///
218  /// If NewMI is true, then a new machine instruction must be created.
219  ///
220  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
221                                           bool NewMI = false) const = 0;
222
223  /// findCommutedOpIndices - If specified MI is commutable, return the two
224  /// operand indices that would swap value. Return true if the instruction
225  /// is not in a form which this routine understands.
226  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
227                                     unsigned &SrcOpIdx2) const = 0;
228
229  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
230  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
231  /// implemented for a target).  Upon success, this returns false and returns
232  /// with the following information in various cases:
233  ///
234  /// 1. If this block ends with no branches (it just falls through to its succ)
235  ///    just return false, leaving TBB/FBB null.
236  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
237  ///    the destination block.
238  /// 3. If this block ends with an conditional branch and it falls through to
239  ///    a successor block, it sets TBB to be the branch destination block and
240  ///    a list of operands that evaluate the condition. These
241  ///    operands can be passed to other TargetInstrInfo methods to create new
242  ///    branches.
243  /// 4. If this block ends with a conditional branch followed by an
244  ///    unconditional branch, it returns the 'true' destination in TBB, the
245  ///    'false' destination in FBB, and a list of operands that evaluate the
246  ///    condition.  These operands can be passed to other TargetInstrInfo
247  ///    methods to create new branches.
248  ///
249  /// Note that RemoveBranch and InsertBranch must be implemented to support
250  /// cases where this method returns success.
251  ///
252  /// If AllowModify is true, then this routine is allowed to modify the basic
253  /// block (e.g. delete instructions after the unconditional branch).
254  ///
255  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
256                             MachineBasicBlock *&FBB,
257                             SmallVectorImpl<MachineOperand> &Cond,
258                             bool AllowModify = false) const {
259    return true;
260  }
261
262  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
263  /// This is only invoked in cases where AnalyzeBranch returns success. It
264  /// returns the number of instructions that were removed.
265  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
266    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
267    return 0;
268  }
269
270  /// InsertBranch - Insert branch code into the end of the specified
271  /// MachineBasicBlock.  The operands to this method are the same as those
272  /// returned by AnalyzeBranch.  This is only invoked in cases where
273  /// AnalyzeBranch returns success. It returns the number of instructions
274  /// inserted.
275  ///
276  /// It is also invoked by tail merging to add unconditional branches in
277  /// cases where AnalyzeBranch doesn't apply because there was no original
278  /// branch to analyze.  At least this much must be implemented, else tail
279  /// merging needs to be disabled.
280  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
281                            MachineBasicBlock *FBB,
282                            const SmallVectorImpl<MachineOperand> &Cond) const {
283    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
284    return 0;
285  }
286
287  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
288  /// returns false if the target does not how to copy between the specified
289  /// registers.
290  virtual bool copyRegToReg(MachineBasicBlock &MBB,
291                            MachineBasicBlock::iterator MI,
292                            unsigned DestReg, unsigned SrcReg,
293                            const TargetRegisterClass *DestRC,
294                            const TargetRegisterClass *SrcRC) const {
295    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
296    return false;
297  }
298
299  /// storeRegToStackSlot - Store the specified register of the given register
300  /// class to the specified stack frame index. The store instruction is to be
301  /// added to the given machine basic block before the specified machine
302  /// instruction. If isKill is true, the register operand is the last use and
303  /// must be marked kill.
304  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
305                                   MachineBasicBlock::iterator MI,
306                                   unsigned SrcReg, bool isKill, int FrameIndex,
307                                   const TargetRegisterClass *RC) const {
308    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
309  }
310
311  /// loadRegFromStackSlot - Load the specified register of the given register
312  /// class from the specified stack frame index. The load instruction is to be
313  /// added to the given machine basic block before the specified machine
314  /// instruction.
315  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
316                                    MachineBasicBlock::iterator MI,
317                                    unsigned DestReg, int FrameIndex,
318                                    const TargetRegisterClass *RC) const {
319    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
320  }
321
322  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
323  /// saved registers and returns true if it isn't possible / profitable to do
324  /// so by issuing a series of store instructions via
325  /// storeRegToStackSlot(). Returns false otherwise.
326  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
327                                         MachineBasicBlock::iterator MI,
328                                const std::vector<CalleeSavedInfo> &CSI) const {
329    return false;
330  }
331
332  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
333  /// saved registers and returns true if it isn't possible / profitable to do
334  /// so by issuing a series of load instructions via loadRegToStackSlot().
335  /// Returns false otherwise.
336  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
337                                           MachineBasicBlock::iterator MI,
338                                const std::vector<CalleeSavedInfo> &CSI) const {
339    return false;
340  }
341
342  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
343  /// slot into the specified machine instruction for the specified operand(s).
344  /// If this is possible, a new instruction is returned with the specified
345  /// operand folded, otherwise NULL is returned. The client is responsible for
346  /// removing the old instruction and adding the new one in the instruction
347  /// stream.
348  MachineInstr* foldMemoryOperand(MachineFunction &MF,
349                                  MachineInstr* MI,
350                                  const SmallVectorImpl<unsigned> &Ops,
351                                  int FrameIndex) const;
352
353  /// foldMemoryOperand - Same as the previous version except it allows folding
354  /// of any load and store from / to any address, not just from a specific
355  /// stack slot.
356  MachineInstr* foldMemoryOperand(MachineFunction &MF,
357                                  MachineInstr* MI,
358                                  const SmallVectorImpl<unsigned> &Ops,
359                                  MachineInstr* LoadMI) const;
360
361protected:
362  /// foldMemoryOperandImpl - Target-dependent implementation for
363  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
364  /// take care of adding a MachineMemOperand to the newly created instruction.
365  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
366                                          MachineInstr* MI,
367                                          const SmallVectorImpl<unsigned> &Ops,
368                                          int FrameIndex) const {
369    return 0;
370  }
371
372  /// foldMemoryOperandImpl - Target-dependent implementation for
373  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
374  /// take care of adding a MachineMemOperand to the newly created instruction.
375  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
376                                              MachineInstr* MI,
377                                              const SmallVectorImpl<unsigned> &Ops,
378                                              MachineInstr* LoadMI) const {
379    return 0;
380  }
381
382public:
383  /// canFoldMemoryOperand - Returns true for the specified load / store if
384  /// folding is possible.
385  virtual
386  bool canFoldMemoryOperand(const MachineInstr *MI,
387                            const SmallVectorImpl<unsigned> &Ops) const {
388    return false;
389  }
390
391  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
392  /// a store or a load and a store into two or more instruction. If this is
393  /// possible, returns true as well as the new instructions by reference.
394  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
395                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
396                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
397    return false;
398  }
399
400  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
401                                   SmallVectorImpl<SDNode*> &NewNodes) const {
402    return false;
403  }
404
405  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
406  /// instruction after load / store are unfolded from an instruction of the
407  /// specified opcode. It returns zero if the specified unfolding is not
408  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
409  /// index of the operand which will hold the register holding the loaded
410  /// value.
411  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
412                                      bool UnfoldLoad, bool UnfoldStore,
413                                      unsigned *LoadRegIndex = 0) const {
414    return 0;
415  }
416
417  /// BlockHasNoFallThrough - Return true if the specified block does not
418  /// fall-through into its successor block.  This is primarily used when a
419  /// branch is unanalyzable.  It is useful for things like unconditional
420  /// indirect branches (jump tables).
421  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
422    return false;
423  }
424
425  /// ReverseBranchCondition - Reverses the branch condition of the specified
426  /// condition list, returning false on success and true if it cannot be
427  /// reversed.
428  virtual
429  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
430    return true;
431  }
432
433  /// insertNoop - Insert a noop into the instruction stream at the specified
434  /// point.
435  virtual void insertNoop(MachineBasicBlock &MBB,
436                          MachineBasicBlock::iterator MI) const;
437
438  /// isPredicated - Returns true if the instruction is already predicated.
439  ///
440  virtual bool isPredicated(const MachineInstr *MI) const {
441    return false;
442  }
443
444  /// isUnpredicatedTerminator - Returns true if the instruction is a
445  /// terminator instruction that has not been predicated.
446  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
447
448  /// PredicateInstruction - Convert the instruction into a predicated
449  /// instruction. It returns true if the operation was successful.
450  virtual
451  bool PredicateInstruction(MachineInstr *MI,
452                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
453
454  /// SubsumesPredicate - Returns true if the first specified predicate
455  /// subsumes the second, e.g. GE subsumes GT.
456  virtual
457  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
458                         const SmallVectorImpl<MachineOperand> &Pred2) const {
459    return false;
460  }
461
462  /// DefinesPredicate - If the specified instruction defines any predicate
463  /// or condition code register(s) used for predication, returns true as well
464  /// as the definition predicate(s) by reference.
465  virtual bool DefinesPredicate(MachineInstr *MI,
466                                std::vector<MachineOperand> &Pred) const {
467    return false;
468  }
469
470  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
471  /// instruction that defines the specified register class.
472  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
473    return true;
474  }
475
476  /// GetInstSize - Returns the size of the specified Instruction.
477  ///
478  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
479    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
480    return 0;
481  }
482
483  /// GetFunctionSizeInBytes - Returns the size of the specified
484  /// MachineFunction.
485  ///
486  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
487
488  /// Measure the specified inline asm to determine an approximation of its
489  /// length.
490  virtual unsigned getInlineAsmLength(const char *Str,
491                                      const MCAsmInfo &MAI) const;
492};
493
494/// TargetInstrInfoImpl - This is the default implementation of
495/// TargetInstrInfo, which just provides a couple of default implementations
496/// for various methods.  This separated out because it is implemented in
497/// libcodegen, not in libtarget.
498class TargetInstrInfoImpl : public TargetInstrInfo {
499protected:
500  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
501  : TargetInstrInfo(desc, NumOpcodes) {}
502public:
503  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
504                                           bool NewMI = false) const;
505  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
506                                     unsigned &SrcOpIdx2) const;
507  virtual bool PredicateInstruction(MachineInstr *MI,
508                            const SmallVectorImpl<MachineOperand> &Pred) const;
509  virtual void reMaterialize(MachineBasicBlock &MBB,
510                             MachineBasicBlock::iterator MI,
511                             unsigned DestReg, unsigned SubReg,
512                             const MachineInstr *Orig) const;
513  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
514};
515
516} // End llvm namespace
517
518#endif
519