TargetInstrInfo.h revision 13cea0bcefa892b6b73c39fd4d30d8bb42392e1f
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/Support/DataTypes.h"
20#include <vector>
21#include <cassert>
22
23namespace llvm {
24
25class MachineInstr;
26class TargetMachine;
27class TargetRegisterClass;
28class LiveVariables;
29class CalleeSavedInfo;
30class SDNode;
31class SelectionDAG;
32
33template<class T> class SmallVectorImpl;
34
35//===----------------------------------------------------------------------===//
36// Machine Operand Flags and Description
37//===----------------------------------------------------------------------===//
38
39namespace TOI {
40  // Operand constraints: only "tied_to" for now.
41  enum OperandConstraint {
42    TIED_TO = 0  // Must be allocated the same register as.
43  };
44
45  /// OperandFlags - These are flags set on operands, but should be considered
46  /// private, all access should go through the TargetOperandInfo accessors.
47  /// See the accessors for a description of what these are.
48  enum OperandFlags {
49    LookupPtrRegClass = 1 << 0,
50    Predicate         = 1 << 1,
51    OptionalDef       = 1 << 2
52  };
53}
54
55/// TargetOperandInfo - This holds information about one operand of a machine
56/// instruction, indicating the register class for register operands, etc.
57///
58class TargetOperandInfo {
59public:
60  /// RegClass - This specifies the register class enumeration of the operand
61  /// if the operand is a register.  If not, this contains 0.
62  unsigned short RegClass;
63  unsigned short Flags;
64  /// Lower 16 bits are used to specify which constraints are set. The higher 16
65  /// bits are used to specify the value of constraints (4 bits each).
66  unsigned int Constraints;
67  /// Currently no other information.
68
69  /// isLookupPtrRegClass - Set if this operand is a pointer value and it
70  /// requires a callback to look up its register class.
71  bool isLookupPtrRegClass() const { return Flags & TOI::LookupPtrRegClass; }
72
73  /// isPredicate - Set if this is one of the operands that made up of
74  /// the predicate operand that controls an M_PREDICATED instruction.
75  bool isPredicate() const { return Flags & TOI::Predicate; }
76
77  /// isOptionalDef - Set if this operand is a optional def.
78  ///
79  bool isOptionalDef() const { return Flags & TOI::OptionalDef; }
80};
81
82
83//===----------------------------------------------------------------------===//
84// Machine Instruction Flags and Description
85//===----------------------------------------------------------------------===//
86
87const unsigned M_BRANCH_FLAG           = 1 << 0;
88const unsigned M_CALL_FLAG             = 1 << 1;
89const unsigned M_RET_FLAG              = 1 << 2;
90const unsigned M_BARRIER_FLAG          = 1 << 3;
91const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
92
93/// M_SIMPLE_LOAD_FLAG - This flag is set for instructions that are simple loads
94/// from memory.  This should only be set on instructions that load a value from
95/// memory and return it in their only virtual register definition.
96const unsigned M_SIMPLE_LOAD_FLAG      = 1 << 5;
97
98/// M_MAY_STORE_FLAG - This flag is set to any instruction that could possibly
99/// modify memory.  Instructions with this flag set are not necessarily simple
100/// store instructions, they may store a modified value based on their operands,
101/// or may not actually modify anything, for example.
102const unsigned M_MAY_STORE_FLAG        = 1 << 6;
103
104const unsigned M_INDIRECT_FLAG         = 1 << 7;
105const unsigned M_IMPLICIT_DEF_FLAG     = 1 << 8;
106
107// M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be
108// changed into a 3-address instruction if the first two operands cannot be
109// assigned to the same register.  The target must implement the
110// TargetInstrInfo::convertToThreeAddress method for this instruction.
111const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 9;
112
113// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
114// Z), which produces the same result if Y and Z are exchanged.
115const unsigned M_COMMUTABLE            = 1 << 10;
116
117const unsigned M_TERMINATOR_FLAG       = 1 << 11;
118
119// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
120// insertion support when the DAG scheduler is inserting it into a machine basic
121// block.
122const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 12;
123
124const unsigned M_VARIADIC          = 1 << 13;
125
126// M_PREDICABLE - Set if this instruction has a predicate operand that
127// controls execution. It may be set to 'always'.
128const unsigned M_PREDICABLE            = 1 << 14;
129
130// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
131// at any time, e.g. constant generation, load from constant pool.
132const unsigned M_REMATERIALIZIBLE      = 1 << 15;
133
134// M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated.
135// (e.g. instructions with unique labels attached).
136const unsigned M_NOT_DUPLICABLE        = 1 << 16;
137
138const unsigned M_HAS_OPTIONAL_DEF      = 1 << 17;
139
140// M_NEVER_HAS_SIDE_EFFECTS - Set if this instruction has no side effects that
141// are not captured by any operands of the instruction or other flags, and when
142// *all* instances of the instruction of that opcode have no side effects.
143//
144// Note: This and M_MAY_HAVE_SIDE_EFFECTS are mutually exclusive. You can't set
145// both! If neither flag is set, then the instruction *always* has side effects.
146const unsigned M_NEVER_HAS_SIDE_EFFECTS = 1 << 18;
147
148// M_MAY_HAVE_SIDE_EFFECTS - Set if some instances of this instruction can have
149// side effects. The virtual method "isReallySideEffectFree" is called to
150// determine this. Load instructions are an example of where this is useful. In
151// general, loads always have side effects. However, loads from constant pools
152// don't. We let the specific back end make this determination.
153//
154// Note: This and M_NEVER_HAS_SIDE_EFFECTS are mutually exclusive. You can't set
155// both! If neither flag is set, then the instruction *always* has side effects.
156const unsigned M_MAY_HAVE_SIDE_EFFECTS = 1 << 19;
157
158
159
160class TargetInstrDescriptor {
161public:
162  unsigned short  Opcode;        // The opcode number.
163  unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
164  unsigned short  NumDefs;       // Num of args that are definitions.
165  unsigned short  SchedClass;    // enum identifying instr sched class
166  const char *    Name;          // Name of the instruction record in td file.
167  unsigned        Flags;         // flags identifying machine instr class
168  unsigned        TSFlags;       // Target Specific Flag values
169  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
170  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
171  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
172
173  /// getOperandConstraint - Returns the value of the specific constraint if
174  /// it is set. Returns -1 if it is not set.
175  int getOperandConstraint(unsigned OpNum,
176                           TOI::OperandConstraint Constraint) const {
177    assert((OpNum < NumOperands || isVariadic()) &&
178           "Invalid operand # of TargetInstrInfo");
179    if (OpNum < NumOperands &&
180        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
181      unsigned Pos = 16 + Constraint * 4;
182      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
183    }
184    return -1;
185  }
186
187  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
188  /// dest operand. Returns -1 if there isn't one.
189  int findTiedToSrcOperand(unsigned OpNum) const;
190
191  /// getName - Return the name of the record in the .td file for this
192  /// instruction, for example "ADD8ri".
193  const char *getName() const {
194    return Name;
195  }
196
197  /// getNumOperands - Return the number of declared MachineOperands for this
198  /// MachineInstruction.  Note that variadic (isVariadic() returns true)
199  /// instructions may have additional operands at the end of the list, and note
200  /// that the machine instruction may include implicit register def/uses as
201  /// well.
202  unsigned getNumOperands() const {
203    return NumOperands;
204  }
205
206  /// getNumDefs - Return the number of MachineOperands that are register
207  /// definitions.  Register definitions always occur at the start of the
208  /// machine operand list.  This is the number of "outs" in the .td file.
209  unsigned getNumDefs() const {
210    return NumDefs;
211  }
212
213  /// isVariadic - Return true if this instruction can have a variable number of
214  /// operands.  In this case, the variable operands will be after the normal
215  /// operands but before the implicit definitions and uses (if any are
216  /// present).
217  bool isVariadic() const {
218    return Flags & M_VARIADIC;
219  }
220
221  /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
222  /// ARM instructions which can set condition code if 's' bit is set.
223  bool hasOptionalDef() const {
224    return Flags & M_HAS_OPTIONAL_DEF;
225  }
226
227  /// getImplicitUses - Return a list of machine operands that are potentially
228  /// read by any instance of this machine instruction.  For example, on X86,
229  /// the "adc" instruction adds two register operands and adds the carry bit in
230  /// from the flags register.  In this case, the instruction is marked as
231  /// implicitly reading the flags.  Likewise, the variable shift instruction on
232  /// X86 is marked as implicitly reading the 'CL' register, which it always
233  /// does.
234  ///
235  /// This method returns null if the instruction has no implicit uses.
236  const unsigned *getImplicitUses() const {
237    return ImplicitUses;
238  }
239
240  /// getImplicitDefs - Return a list of machine operands that are potentially
241  /// written by any instance of this machine instruction.  For example, on X86,
242  /// many instructions implicitly set the flags register.  In this case, they
243  /// are marked as setting the FLAGS.  Likewise, many instructions always
244  /// deposit their result in a physical register.  For example, the X86 divide
245  /// instruction always deposits the quotient and remainder in the EAX/EDX
246  /// registers.  For that instruction, this will return a list containing the
247  /// EAX/EDX/EFLAGS registers.
248  ///
249  /// This method returns null if the instruction has no implicit uses.
250  const unsigned *getImplicitDefs() const {
251    return ImplicitDefs;
252  }
253
254  bool isReturn() const {
255    return Flags & M_RET_FLAG;
256  }
257
258  bool isCall() const {
259    return Flags & M_CALL_FLAG;
260  }
261
262  /// isImplicitDef - Return true if this is an "IMPLICIT_DEF" instruction,
263  /// which defines a register to an unspecified value.  These basically
264  /// correspond to x = undef.
265  bool isImplicitDef() const {
266    return Flags & M_IMPLICIT_DEF_FLAG;
267  }
268
269  /// isBarrier - Returns true if the specified instruction stops control flow
270  /// from executing the instruction immediately following it.  Examples include
271  /// unconditional branches and return instructions.
272  bool isBarrier() const {
273    return Flags & M_BARRIER_FLAG;
274  }
275
276  /// isTerminator - Returns true if this instruction part of the terminator for
277  /// a basic block.  Typically this is things like return and branch
278  /// instructions.
279  ///
280  /// Various passes use this to insert code into the bottom of a basic block,
281  /// but before control flow occurs.
282  bool isTerminator() const {
283    return Flags & M_TERMINATOR_FLAG;
284  }
285
286  /// isBranch - Returns true if this is a conditional, unconditional, or
287  /// indirect branch.  Predicates below can be used to discriminate between
288  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
289  /// get more information.
290  bool isBranch() const {
291    return Flags & M_BRANCH_FLAG;
292  }
293
294  /// isIndirectBranch - Return true if this is an indirect branch, such as a
295  /// branch through a register.
296  bool isIndirectBranch() const {
297    return Flags & M_INDIRECT_FLAG;
298  }
299
300  /// isConditionalBranch - Return true if this is a branch which may fall
301  /// through to the next instruction or may transfer control flow to some other
302  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
303  /// information about this branch.
304  bool isConditionalBranch() const {
305    return isBranch() & !isBarrier() & !isIndirectBranch();
306  }
307
308  /// isUnconditionalBranch - Return true if this is a branch which always
309  /// transfers control flow to some other block.  The
310  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
311  /// about this branch.
312  bool isUnconditionalBranch() const {
313    return isBranch() & isBarrier() & !isIndirectBranch();
314  }
315
316  bool isPredicable() const {
317    return Flags & M_PREDICABLE;
318  }
319
320  bool isNotDuplicable() const {
321    return Flags & M_NOT_DUPLICABLE;
322  }
323
324  bool isCommutableInstr() const {
325    return Flags & M_COMMUTABLE;
326  }
327
328  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
329  /// which must be filled by the code generator.
330  bool hasDelaySlot() const {
331    return Flags & M_DELAY_SLOT_FLAG;
332  }
333
334  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
335  /// custom insertion support when the DAG scheduler is inserting it into a
336  /// machine basic block.
337  bool usesCustomDAGSchedInsertionHook() const {
338    return Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
339  }
340
341  /// isSimpleLoad - Return true for instructions that are simple loads from
342  /// memory.  This should only be set on instructions that load a value from
343  /// memory and return it in their only virtual register definition.
344  /// Instructions that return a value loaded from memory and then modified in
345  /// some way should not return true for this.
346  bool isSimpleLoad() const {
347    return Flags & M_SIMPLE_LOAD_FLAG;
348  }
349
350  /// mayStore - Return true if this instruction could possibly modify memory.
351  /// Instructions with this flag set are not necessarily simple store
352  /// instructions, they may store a modified value based on their operands, or
353  /// may not actually modify anything, for example.
354  bool mayStore() const {
355    return Flags & M_MAY_STORE_FLAG;
356  }
357
358  unsigned getSchedClass() const {
359    return SchedClass;
360  }
361};
362
363
364//---------------------------------------------------------------------------
365///
366/// TargetInstrInfo - Interface to description of machine instructions
367///
368class TargetInstrInfo {
369  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
370  unsigned NumOpcodes;                  // number of entries in the desc array
371  unsigned numRealOpCodes;              // number of non-dummy op codes
372
373  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
374  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
375public:
376  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
377  virtual ~TargetInstrInfo();
378
379  // Invariant opcodes: All instruction sets have these as their low opcodes.
380  enum {
381    PHI = 0,
382    INLINEASM = 1,
383    LABEL = 2,
384    EXTRACT_SUBREG = 3,
385    INSERT_SUBREG = 4
386  };
387
388  unsigned getNumOpcodes() const { return NumOpcodes; }
389
390  /// get - Return the machine instruction descriptor that corresponds to the
391  /// specified instruction opcode.
392  ///
393  const TargetInstrDescriptor& get(unsigned Opcode) const {
394    assert(Opcode < NumOpcodes);
395    return desc[Opcode];
396  }
397
398  /// isTriviallyReMaterializable - Return true if the instruction is trivially
399  /// rematerializable, meaning it has no side effects and requires no operands
400  /// that aren't always available.
401  bool isTriviallyReMaterializable(MachineInstr *MI) const {
402    return (MI->getDesc()->Flags & M_REMATERIALIZIBLE) &&
403           isReallyTriviallyReMaterializable(MI);
404  }
405
406  /// hasUnmodelledSideEffects - Returns true if the instruction has side
407  /// effects that are not captured by any operands of the instruction or other
408  /// flags.
409  bool hasUnmodelledSideEffects(MachineInstr *MI) const {
410    const TargetInstrDescriptor *TID = MI->getDesc();
411    if (TID->Flags & M_NEVER_HAS_SIDE_EFFECTS) return false;
412    if (!(TID->Flags & M_MAY_HAVE_SIDE_EFFECTS)) return true;
413    return !isReallySideEffectFree(MI); // May have side effects
414  }
415protected:
416  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
417  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
418  /// instruction itself is actually trivially rematerializable, considering
419  /// its operands.  This is used for targets that have instructions that are
420  /// only trivially rematerializable for specific uses.  This predicate must
421  /// return false if the instruction has any side effects other than
422  /// producing a value, or if it requres any address registers that are not
423  /// always available.
424  virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
425    return true;
426  }
427
428  /// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
429  /// method is called to determine if the specific instance of this
430  /// instruction has side effects. This is useful in cases of instructions,
431  /// like loads, which generally always have side effects. A load from a
432  /// constant pool doesn't have side effects, though. So we need to
433  /// differentiate it from the general case.
434  virtual bool isReallySideEffectFree(MachineInstr *MI) const {
435    return false;
436  }
437public:
438  /// getOperandConstraint - Returns the value of the specific constraint if
439  /// it is set. Returns -1 if it is not set.
440  int getOperandConstraint(unsigned Opcode, unsigned OpNum,
441                           TOI::OperandConstraint Constraint) const {
442    return get(Opcode).getOperandConstraint(OpNum, Constraint);
443  }
444
445  /// Return true if the instruction is a register to register move
446  /// and leave the source and dest operands in the passed parameters.
447  virtual bool isMoveInstr(const MachineInstr& MI,
448                           unsigned& sourceReg,
449                           unsigned& destReg) const {
450    return false;
451  }
452
453  /// isLoadFromStackSlot - If the specified machine instruction is a direct
454  /// load from a stack slot, return the virtual or physical register number of
455  /// the destination along with the FrameIndex of the loaded stack slot.  If
456  /// not, return 0.  This predicate must return 0 if the instruction has
457  /// any side effects other than loading from the stack slot.
458  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
459    return 0;
460  }
461
462  /// isStoreToStackSlot - If the specified machine instruction is a direct
463  /// store to a stack slot, return the virtual or physical register number of
464  /// the source reg along with the FrameIndex of the loaded stack slot.  If
465  /// not, return 0.  This predicate must return 0 if the instruction has
466  /// any side effects other than storing to the stack slot.
467  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
468    return 0;
469  }
470
471  /// convertToThreeAddress - This method must be implemented by targets that
472  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
473  /// may be able to convert a two-address instruction into one or more true
474  /// three-address instructions on demand.  This allows the X86 target (for
475  /// example) to convert ADD and SHL instructions into LEA instructions if they
476  /// would require register copies due to two-addressness.
477  ///
478  /// This method returns a null pointer if the transformation cannot be
479  /// performed, otherwise it returns the last new instruction.
480  ///
481  virtual MachineInstr *
482  convertToThreeAddress(MachineFunction::iterator &MFI,
483                   MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const {
484    return 0;
485  }
486
487  /// commuteInstruction - If a target has any instructions that are commutable,
488  /// but require converting to a different instruction or making non-trivial
489  /// changes to commute them, this method can overloaded to do this.  The
490  /// default implementation of this method simply swaps the first two operands
491  /// of MI and returns it.
492  ///
493  /// If a target wants to make more aggressive changes, they can construct and
494  /// return a new machine instruction.  If an instruction cannot commute, it
495  /// can also return null.
496  ///
497  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0;
498
499  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
500  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
501  /// implemented for a target).  Upon success, this returns false and returns
502  /// with the following information in various cases:
503  ///
504  /// 1. If this block ends with no branches (it just falls through to its succ)
505  ///    just return false, leaving TBB/FBB null.
506  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
507  ///    the destination block.
508  /// 3. If this block ends with an conditional branch and it falls through to
509  ///    an successor block, it sets TBB to be the branch destination block and a
510  ///    list of operands that evaluate the condition. These
511  ///    operands can be passed to other TargetInstrInfo methods to create new
512  ///    branches.
513  /// 4. If this block ends with an conditional branch and an unconditional
514  ///    block, it returns the 'true' destination in TBB, the 'false' destination
515  ///    in FBB, and a list of operands that evaluate the condition. These
516  ///    operands can be passed to other TargetInstrInfo methods to create new
517  ///    branches.
518  ///
519  /// Note that RemoveBranch and InsertBranch must be implemented to support
520  /// cases where this method returns success.
521  ///
522  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
523                             MachineBasicBlock *&FBB,
524                             std::vector<MachineOperand> &Cond) const {
525    return true;
526  }
527
528  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
529  /// this is only invoked in cases where AnalyzeBranch returns success. It
530  /// returns the number of instructions that were removed.
531  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
532    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
533    return 0;
534  }
535
536  /// InsertBranch - Insert a branch into the end of the specified
537  /// MachineBasicBlock.  This operands to this method are the same as those
538  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
539  /// returns success and when an unconditional branch (TBB is non-null, FBB is
540  /// null, Cond is empty) needs to be inserted. It returns the number of
541  /// instructions inserted.
542  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
543                            MachineBasicBlock *FBB,
544                            const std::vector<MachineOperand> &Cond) const {
545    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
546    return 0;
547  }
548
549  /// copyRegToReg - Add a copy between a pair of registers
550  virtual void copyRegToReg(MachineBasicBlock &MBB,
551                            MachineBasicBlock::iterator MI,
552                            unsigned DestReg, unsigned SrcReg,
553                            const TargetRegisterClass *DestRC,
554                            const TargetRegisterClass *SrcRC) const {
555    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
556  }
557
558  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
559                                   MachineBasicBlock::iterator MI,
560                                   unsigned SrcReg, bool isKill, int FrameIndex,
561                                   const TargetRegisterClass *RC) const {
562    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
563  }
564
565  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
566                              SmallVectorImpl<MachineOperand> &Addr,
567                              const TargetRegisterClass *RC,
568                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
569    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
570  }
571
572  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
573                                    MachineBasicBlock::iterator MI,
574                                    unsigned DestReg, int FrameIndex,
575                                    const TargetRegisterClass *RC) const {
576    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
577  }
578
579  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
580                               SmallVectorImpl<MachineOperand> &Addr,
581                               const TargetRegisterClass *RC,
582                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
583    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
584  }
585
586  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
587  /// saved registers and returns true if it isn't possible / profitable to do
588  /// so by issuing a series of store instructions via
589  /// storeRegToStackSlot(). Returns false otherwise.
590  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
591                                         MachineBasicBlock::iterator MI,
592                                const std::vector<CalleeSavedInfo> &CSI) const {
593    return false;
594  }
595
596  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
597  /// saved registers and returns true if it isn't possible / profitable to do
598  /// so by issuing a series of load instructions via loadRegToStackSlot().
599  /// Returns false otherwise.
600  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
601                                           MachineBasicBlock::iterator MI,
602                                const std::vector<CalleeSavedInfo> &CSI) const {
603    return false;
604  }
605
606  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
607  /// slot into the specified machine instruction for the specified operand(s).
608  /// If this is possible, a new instruction is returned with the specified
609  /// operand folded, otherwise NULL is returned. The client is responsible for
610  /// removing the old instruction and adding the new one in the instruction
611  /// stream.
612  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
613                                          SmallVectorImpl<unsigned> &Ops,
614                                          int FrameIndex) const {
615    return 0;
616  }
617
618  /// foldMemoryOperand - Same as the previous version except it allows folding
619  /// of any load and store from / to any address, not just from a specific
620  /// stack slot.
621  virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
622                                          SmallVectorImpl<unsigned> &Ops,
623                                          MachineInstr* LoadMI) const {
624    return 0;
625  }
626
627  /// canFoldMemoryOperand - Returns true if the specified load / store is
628  /// folding is possible.
629  virtual
630  bool canFoldMemoryOperand(MachineInstr *MI,
631                            SmallVectorImpl<unsigned> &Ops) const{
632    return false;
633  }
634
635  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
636  /// a store or a load and a store into two or more instruction. If this is
637  /// possible, returns true as well as the new instructions by reference.
638  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
639                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
640                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
641    return false;
642  }
643
644  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
645                                   SmallVectorImpl<SDNode*> &NewNodes) const {
646    return false;
647  }
648
649  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
650  /// instruction after load / store are unfolded from an instruction of the
651  /// specified opcode. It returns zero if the specified unfolding is not
652  /// possible.
653  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
654                                      bool UnfoldLoad, bool UnfoldStore) const {
655    return 0;
656  }
657
658  /// BlockHasNoFallThrough - Return true if the specified block does not
659  /// fall-through into its successor block.  This is primarily used when a
660  /// branch is unanalyzable.  It is useful for things like unconditional
661  /// indirect branches (jump tables).
662  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
663    return false;
664  }
665
666  /// ReverseBranchCondition - Reverses the branch condition of the specified
667  /// condition list, returning false on success and true if it cannot be
668  /// reversed.
669  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
670    return true;
671  }
672
673  /// insertNoop - Insert a noop into the instruction stream at the specified
674  /// point.
675  virtual void insertNoop(MachineBasicBlock &MBB,
676                          MachineBasicBlock::iterator MI) const {
677    assert(0 && "Target didn't implement insertNoop!");
678    abort();
679  }
680
681  /// isPredicated - Returns true if the instruction is already predicated.
682  ///
683  virtual bool isPredicated(const MachineInstr *MI) const {
684    return false;
685  }
686
687  /// isUnpredicatedTerminator - Returns true if the instruction is a
688  /// terminator instruction that has not been predicated.
689  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
690
691  /// PredicateInstruction - Convert the instruction into a predicated
692  /// instruction. It returns true if the operation was successful.
693  virtual
694  bool PredicateInstruction(MachineInstr *MI,
695                            const std::vector<MachineOperand> &Pred) const = 0;
696
697  /// SubsumesPredicate - Returns true if the first specified predicate
698  /// subsumes the second, e.g. GE subsumes GT.
699  virtual
700  bool SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
701                         const std::vector<MachineOperand> &Pred2) const {
702    return false;
703  }
704
705  /// DefinesPredicate - If the specified instruction defines any predicate
706  /// or condition code register(s) used for predication, returns true as well
707  /// as the definition predicate(s) by reference.
708  virtual bool DefinesPredicate(MachineInstr *MI,
709                                std::vector<MachineOperand> &Pred) const {
710    return false;
711  }
712
713  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
714  /// values.
715  virtual const TargetRegisterClass *getPointerRegClass() const {
716    assert(0 && "Target didn't implement getPointerRegClass!");
717    abort();
718    return 0; // Must return a value in order to compile with VS 2005
719  }
720};
721
722/// TargetInstrInfoImpl - This is the default implementation of
723/// TargetInstrInfo, which just provides a couple of default implementations
724/// for various methods.  This separated out because it is implemented in
725/// libcodegen, not in libtarget.
726class TargetInstrInfoImpl : public TargetInstrInfo {
727protected:
728  TargetInstrInfoImpl(const TargetInstrDescriptor *desc, unsigned NumOpcodes)
729  : TargetInstrInfo(desc, NumOpcodes) {}
730public:
731  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
732  virtual bool PredicateInstruction(MachineInstr *MI,
733                              const std::vector<MachineOperand> &Pred) const;
734
735};
736
737} // End llvm namespace
738
739#endif
740