TargetInstrInfo.h revision 220e240bdf3235252c2a1fc8fcc5d4b8e8117918
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MDNode;
28class MCInst;
29class SDNode;
30class ScheduleHazardRecognizer;
31class SelectionDAG;
32class TargetRegisterClass;
33class TargetRegisterInfo;
34
35template<class T> class SmallVectorImpl;
36
37
38//---------------------------------------------------------------------------
39///
40/// TargetInstrInfo - Interface to description of machine instruction set
41///
42class TargetInstrInfo {
43  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
44  unsigned NumOpcodes;                // Number of entries in the desc array
45
46  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
47  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
48public:
49  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
50  virtual ~TargetInstrInfo();
51
52  unsigned getNumOpcodes() const { return NumOpcodes; }
53
54  /// get - Return the machine instruction descriptor that corresponds to the
55  /// specified instruction opcode.
56  ///
57  const TargetInstrDesc &get(unsigned Opcode) const {
58    assert(Opcode < NumOpcodes && "Invalid opcode!");
59    return Descriptors[Opcode];
60  }
61
62  /// isTriviallyReMaterializable - Return true if the instruction is trivially
63  /// rematerializable, meaning it has no side effects and requires no operands
64  /// that aren't always available.
65  bool isTriviallyReMaterializable(const MachineInstr *MI,
66                                   AliasAnalysis *AA = 0) const {
67    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
68           (MI->getDesc().isRematerializable() &&
69            (isReallyTriviallyReMaterializable(MI, AA) ||
70             isReallyTriviallyReMaterializableGeneric(MI, AA)));
71  }
72
73protected:
74  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
75  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
76  /// specify whether the instruction is actually trivially rematerializable,
77  /// taking into consideration its operands. This predicate must return false
78  /// if the instruction has any side effects other than producing a value, or
79  /// if it requres any address registers that are not always available.
80  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
81                                                 AliasAnalysis *AA) const {
82    return false;
83  }
84
85private:
86  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
87  /// for which the M_REMATERIALIZABLE flag is set and the target hook
88  /// isReallyTriviallyReMaterializable returns false, this function does
89  /// target-independent tests to determine if the instruction is really
90  /// trivially rematerializable.
91  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
92                                                AliasAnalysis *AA) const;
93
94public:
95  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
96  /// extension instruction. That is, it's like a copy where it's legal for the
97  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
98  /// true, then it's expected the pre-extension value is available as a subreg
99  /// of the result register. This also returns the sub-register index in
100  /// SubIdx.
101  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
102                                     unsigned &SrcReg, unsigned &DstReg,
103                                     unsigned &SubIdx) const {
104    return false;
105  }
106
107  /// isLoadFromStackSlot - If the specified machine instruction is a direct
108  /// load from a stack slot, return the virtual or physical register number of
109  /// the destination along with the FrameIndex of the loaded stack slot.  If
110  /// not, return 0.  This predicate must return 0 if the instruction has
111  /// any side effects other than loading from the stack slot.
112  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
113                                       int &FrameIndex) const {
114    return 0;
115  }
116
117  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
118  /// stack locations as well.  This uses a heuristic so it isn't
119  /// reliable for correctness.
120  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
121                                             int &FrameIndex) const {
122    return 0;
123  }
124
125  /// hasLoadFromStackSlot - If the specified machine instruction has
126  /// a load from a stack slot, return true along with the FrameIndex
127  /// of the loaded stack slot and the machine mem operand containing
128  /// the reference.  If not, return false.  Unlike
129  /// isLoadFromStackSlot, this returns true for any instructions that
130  /// loads from the stack.  This is just a hint, as some cases may be
131  /// missed.
132  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
133                                    const MachineMemOperand *&MMO,
134                                    int &FrameIndex) const {
135    return 0;
136  }
137
138  /// isStoreToStackSlot - If the specified machine instruction is a direct
139  /// store to a stack slot, return the virtual or physical register number of
140  /// the source reg along with the FrameIndex of the loaded stack slot.  If
141  /// not, return 0.  This predicate must return 0 if the instruction has
142  /// any side effects other than storing to the stack slot.
143  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
144                                      int &FrameIndex) const {
145    return 0;
146  }
147
148  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
149  /// stack locations as well.  This uses a heuristic so it isn't
150  /// reliable for correctness.
151  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
152                                            int &FrameIndex) const {
153    return 0;
154  }
155
156  /// hasStoreToStackSlot - If the specified machine instruction has a
157  /// store to a stack slot, return true along with the FrameIndex of
158  /// the loaded stack slot and the machine mem operand containing the
159  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
160  /// this returns true for any instructions that stores to the
161  /// stack.  This is just a hint, as some cases may be missed.
162  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
163                                   const MachineMemOperand *&MMO,
164                                   int &FrameIndex) const {
165    return 0;
166  }
167
168  /// reMaterialize - Re-issue the specified 'original' instruction at the
169  /// specific location targeting a new destination register.
170  /// The register in Orig->getOperand(0).getReg() will be substituted by
171  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
172  /// SubIdx.
173  virtual void reMaterialize(MachineBasicBlock &MBB,
174                             MachineBasicBlock::iterator MI,
175                             unsigned DestReg, unsigned SubIdx,
176                             const MachineInstr *Orig,
177                             const TargetRegisterInfo &TRI) const = 0;
178
179  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
180  /// two-addrss instruction inserted by two-address pass.
181  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
182                                     MachineInstr *UseMI,
183                                     const TargetRegisterInfo &TRI) const {
184    // Do nothing.
185  }
186
187  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
188  /// MachineFunction::CloneMachineInstr(), but the target may update operands
189  /// that are required to be unique.
190  ///
191  /// The instruction must be duplicable as indicated by isNotDuplicable().
192  virtual MachineInstr *duplicate(MachineInstr *Orig,
193                                  MachineFunction &MF) const = 0;
194
195  /// convertToThreeAddress - This method must be implemented by targets that
196  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
197  /// may be able to convert a two-address instruction into one or more true
198  /// three-address instructions on demand.  This allows the X86 target (for
199  /// example) to convert ADD and SHL instructions into LEA instructions if they
200  /// would require register copies due to two-addressness.
201  ///
202  /// This method returns a null pointer if the transformation cannot be
203  /// performed, otherwise it returns the last new instruction.
204  ///
205  virtual MachineInstr *
206  convertToThreeAddress(MachineFunction::iterator &MFI,
207                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
208    return 0;
209  }
210
211  /// commuteInstruction - If a target has any instructions that are
212  /// commutable but require converting to different instructions or making
213  /// non-trivial changes to commute them, this method can overloaded to do
214  /// that.  The default implementation simply swaps the commutable operands.
215  /// If NewMI is false, MI is modified in place and returned; otherwise, a
216  /// new machine instruction is created and returned.  Do not call this
217  /// method for a non-commutable instruction, but there may be some cases
218  /// where this method fails and returns null.
219  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
220                                           bool NewMI = false) const = 0;
221
222  /// findCommutedOpIndices - If specified MI is commutable, return the two
223  /// operand indices that would swap value. Return false if the instruction
224  /// is not in a form which this routine understands.
225  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
226                                     unsigned &SrcOpIdx2) const = 0;
227
228  /// produceSameValue - Return true if two machine instructions would produce
229  /// identical values. By default, this is only true when the two instructions
230  /// are deemed identical except for defs.
231  virtual bool produceSameValue(const MachineInstr *MI0,
232                                const MachineInstr *MI1) const = 0;
233
234  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
235  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
236  /// implemented for a target).  Upon success, this returns false and returns
237  /// with the following information in various cases:
238  ///
239  /// 1. If this block ends with no branches (it just falls through to its succ)
240  ///    just return false, leaving TBB/FBB null.
241  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
242  ///    the destination block.
243  /// 3. If this block ends with a conditional branch and it falls through to a
244  ///    successor block, it sets TBB to be the branch destination block and a
245  ///    list of operands that evaluate the condition. These operands can be
246  ///    passed to other TargetInstrInfo methods to create new branches.
247  /// 4. If this block ends with a conditional branch followed by an
248  ///    unconditional branch, it returns the 'true' destination in TBB, the
249  ///    'false' destination in FBB, and a list of operands that evaluate the
250  ///    condition.  These operands can be passed to other TargetInstrInfo
251  ///    methods to create new branches.
252  ///
253  /// Note that RemoveBranch and InsertBranch must be implemented to support
254  /// cases where this method returns success.
255  ///
256  /// If AllowModify is true, then this routine is allowed to modify the basic
257  /// block (e.g. delete instructions after the unconditional branch).
258  ///
259  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
260                             MachineBasicBlock *&FBB,
261                             SmallVectorImpl<MachineOperand> &Cond,
262                             bool AllowModify = false) const {
263    return true;
264  }
265
266  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
267  /// This is only invoked in cases where AnalyzeBranch returns success. It
268  /// returns the number of instructions that were removed.
269  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
270    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
271    return 0;
272  }
273
274  /// InsertBranch - Insert branch code into the end of the specified
275  /// MachineBasicBlock.  The operands to this method are the same as those
276  /// returned by AnalyzeBranch.  This is only invoked in cases where
277  /// AnalyzeBranch returns success. It returns the number of instructions
278  /// inserted.
279  ///
280  /// It is also invoked by tail merging to add unconditional branches in
281  /// cases where AnalyzeBranch doesn't apply because there was no original
282  /// branch to analyze.  At least this much must be implemented, else tail
283  /// merging needs to be disabled.
284  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
285                                MachineBasicBlock *FBB,
286                                const SmallVectorImpl<MachineOperand> &Cond,
287                                DebugLoc DL) const {
288    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
289    return 0;
290  }
291
292  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
293  /// after it, replacing it with an unconditional branch to NewDest. This is
294  /// used by the tail merging pass.
295  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
296                                       MachineBasicBlock *NewDest) const = 0;
297
298  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
299  /// block at the specified instruction (i.e. instruction would be the start
300  /// of a new basic block).
301  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
302                                   MachineBasicBlock::iterator MBBI) const {
303    return true;
304  }
305
306  /// isProfitableToIfCvt - Return true if it's profitable to first "NumInstrs"
307  /// of the specified basic block.
308  virtual
309  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumInstrs) const {
310    return false;
311  }
312
313  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
314  /// checks for the case where two basic blocks from true and false path
315  /// of a if-then-else (diamond) are predicated on mutally exclusive
316  /// predicates.
317  virtual bool
318  isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTInstrs,
319                      MachineBasicBlock &FMBB, unsigned NumFInstrs) const {
320    return false;
321  }
322
323  /// isProfitableToDupForIfCvt - Return true if it's profitable for
324  /// if-converter to duplicate a specific number of instructions in the
325  /// specified MBB to enable if-conversion.
326  virtual bool
327  isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs) const {
328    return false;
329  }
330
331  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
332  virtual void copyPhysReg(MachineBasicBlock &MBB,
333                           MachineBasicBlock::iterator MI, DebugLoc DL,
334                           unsigned DestReg, unsigned SrcReg,
335                           bool KillSrc) const {
336    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
337  }
338
339  /// storeRegToStackSlot - Store the specified register of the given register
340  /// class to the specified stack frame index. The store instruction is to be
341  /// added to the given machine basic block before the specified machine
342  /// instruction. If isKill is true, the register operand is the last use and
343  /// must be marked kill.
344  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
345                                   MachineBasicBlock::iterator MI,
346                                   unsigned SrcReg, bool isKill, int FrameIndex,
347                                   const TargetRegisterClass *RC,
348                                   const TargetRegisterInfo *TRI) const {
349  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
350  }
351
352  /// loadRegFromStackSlot - Load the specified register of the given register
353  /// class from the specified stack frame index. The load instruction is to be
354  /// added to the given machine basic block before the specified machine
355  /// instruction.
356  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
357                                    MachineBasicBlock::iterator MI,
358                                    unsigned DestReg, int FrameIndex,
359                                    const TargetRegisterClass *RC,
360                                    const TargetRegisterInfo *TRI) const {
361  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
362  }
363
364  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
365  /// saved registers and returns true if it isn't possible / profitable to do
366  /// so by issuing a series of store instructions via
367  /// storeRegToStackSlot(). Returns false otherwise.
368  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
369                                         MachineBasicBlock::iterator MI,
370                                        const std::vector<CalleeSavedInfo> &CSI,
371                                         const TargetRegisterInfo *TRI) const {
372    return false;
373  }
374
375  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
376  /// saved registers and returns true if it isn't possible / profitable to do
377  /// so by issuing a series of load instructions via loadRegToStackSlot().
378  /// Returns false otherwise.
379  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
380                                           MachineBasicBlock::iterator MI,
381                                        const std::vector<CalleeSavedInfo> &CSI,
382                                        const TargetRegisterInfo *TRI) const {
383    return false;
384  }
385
386  /// emitFrameIndexDebugValue - Emit a target-dependent form of
387  /// DBG_VALUE encoding the address of a frame index.  Addresses would
388  /// normally be lowered the same way as other addresses on the target,
389  /// e.g. in load instructions.  For targets that do not support this
390  /// the debug info is simply lost.
391  /// If you add this for a target you should handle this DBG_VALUE in the
392  /// target-specific AsmPrinter code as well; you will probably get invalid
393  /// assembly output if you don't.
394  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
395                                                 int FrameIx,
396                                                 uint64_t Offset,
397                                                 const MDNode *MDPtr,
398                                                 DebugLoc dl) const {
399    return 0;
400  }
401
402  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
403  /// slot into the specified machine instruction for the specified operand(s).
404  /// If this is possible, a new instruction is returned with the specified
405  /// operand folded, otherwise NULL is returned.
406  /// The new instruction is inserted before MI, and the client is responsible
407  /// for removing the old instruction.
408  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
409                                  const SmallVectorImpl<unsigned> &Ops,
410                                  int FrameIndex) const;
411
412  /// foldMemoryOperand - Same as the previous version except it allows folding
413  /// of any load and store from / to any address, not just from a specific
414  /// stack slot.
415  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
416                                  const SmallVectorImpl<unsigned> &Ops,
417                                  MachineInstr* LoadMI) const;
418
419protected:
420  /// foldMemoryOperandImpl - Target-dependent implementation for
421  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
422  /// take care of adding a MachineMemOperand to the newly created instruction.
423  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
424                                          MachineInstr* MI,
425                                          const SmallVectorImpl<unsigned> &Ops,
426                                          int FrameIndex) const {
427    return 0;
428  }
429
430  /// foldMemoryOperandImpl - Target-dependent implementation for
431  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
432  /// take care of adding a MachineMemOperand to the newly created instruction.
433  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
434                                              MachineInstr* MI,
435                                          const SmallVectorImpl<unsigned> &Ops,
436                                              MachineInstr* LoadMI) const {
437    return 0;
438  }
439
440public:
441  /// canFoldMemoryOperand - Returns true for the specified load / store if
442  /// folding is possible.
443  virtual
444  bool canFoldMemoryOperand(const MachineInstr *MI,
445                            const SmallVectorImpl<unsigned> &Ops) const =0;
446
447  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
448  /// a store or a load and a store into two or more instruction. If this is
449  /// possible, returns true as well as the new instructions by reference.
450  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
451                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
452                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
453    return false;
454  }
455
456  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
457                                   SmallVectorImpl<SDNode*> &NewNodes) const {
458    return false;
459  }
460
461  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
462  /// instruction after load / store are unfolded from an instruction of the
463  /// specified opcode. It returns zero if the specified unfolding is not
464  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
465  /// index of the operand which will hold the register holding the loaded
466  /// value.
467  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
468                                      bool UnfoldLoad, bool UnfoldStore,
469                                      unsigned *LoadRegIndex = 0) const {
470    return 0;
471  }
472
473  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
474  /// to determine if two loads are loading from the same base address. It
475  /// should only return true if the base pointers are the same and the
476  /// only differences between the two addresses are the offset. It also returns
477  /// the offsets by reference.
478  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
479                                    int64_t &Offset1, int64_t &Offset2) const {
480    return false;
481  }
482
483  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
484  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
485  /// be scheduled togther. On some targets if two loads are loading from
486  /// addresses in the same cache line, it's better if they are scheduled
487  /// together. This function takes two integers that represent the load offsets
488  /// from the common base address. It returns true if it decides it's desirable
489  /// to schedule the two loads together. "NumLoads" is the number of loads that
490  /// have already been scheduled after Load1.
491  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
492                                       int64_t Offset1, int64_t Offset2,
493                                       unsigned NumLoads) const {
494    return false;
495  }
496
497  /// ReverseBranchCondition - Reverses the branch condition of the specified
498  /// condition list, returning false on success and true if it cannot be
499  /// reversed.
500  virtual
501  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
502    return true;
503  }
504
505  /// insertNoop - Insert a noop into the instruction stream at the specified
506  /// point.
507  virtual void insertNoop(MachineBasicBlock &MBB,
508                          MachineBasicBlock::iterator MI) const;
509
510
511  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
512  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
513    // Default to just using 'nop' string.
514  }
515
516
517  /// isPredicated - Returns true if the instruction is already predicated.
518  ///
519  virtual bool isPredicated(const MachineInstr *MI) const {
520    return false;
521  }
522
523  /// isUnpredicatedTerminator - Returns true if the instruction is a
524  /// terminator instruction that has not been predicated.
525  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
526
527  /// PredicateInstruction - Convert the instruction into a predicated
528  /// instruction. It returns true if the operation was successful.
529  virtual
530  bool PredicateInstruction(MachineInstr *MI,
531                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
532
533  /// SubsumesPredicate - Returns true if the first specified predicate
534  /// subsumes the second, e.g. GE subsumes GT.
535  virtual
536  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
537                         const SmallVectorImpl<MachineOperand> &Pred2) const {
538    return false;
539  }
540
541  /// DefinesPredicate - If the specified instruction defines any predicate
542  /// or condition code register(s) used for predication, returns true as well
543  /// as the definition predicate(s) by reference.
544  virtual bool DefinesPredicate(MachineInstr *MI,
545                                std::vector<MachineOperand> &Pred) const {
546    return false;
547  }
548
549  /// isPredicable - Return true if the specified instruction can be predicated.
550  /// By default, this returns true for every instruction with a
551  /// PredicateOperand.
552  virtual bool isPredicable(MachineInstr *MI) const {
553    return MI->getDesc().isPredicable();
554  }
555
556  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
557  /// instruction that defines the specified register class.
558  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
559    return true;
560  }
561
562  /// isSchedulingBoundary - Test if the given instruction should be
563  /// considered a scheduling boundary. This primarily includes labels and
564  /// terminators.
565  virtual bool isSchedulingBoundary(const MachineInstr *MI,
566                                    const MachineBasicBlock *MBB,
567                                    const MachineFunction &MF) const = 0;
568
569  /// Measure the specified inline asm to determine an approximation of its
570  /// length.
571  virtual unsigned getInlineAsmLength(const char *Str,
572                                      const MCAsmInfo &MAI) const;
573
574  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
575  /// to use for this target when scheduling the machine instructions after
576  /// register allocation.
577  virtual ScheduleHazardRecognizer*
578  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const = 0;
579
580  /// AnalyzeCompare - For a comparison instruction, return the source register
581  /// in SrcReg and the value it compares against in CmpValue. Return true if
582  /// the comparison instruction can be analyzed.
583  virtual bool AnalyzeCompare(const MachineInstr *MI,
584                              unsigned &SrcReg, int &CmpValue) const {
585    return false;
586  }
587
588  /// ConvertToSetZeroFlag - Convert the instruction to set the zero flag so
589  /// that we can remove a "comparison with zero".  Update the iterator *only*
590  /// if a transformation took place.
591  virtual bool ConvertToSetZeroFlag(MachineInstr * /*Instr*/,
592                                    MachineInstr * /*CmpInstr*/,
593                                    MachineBasicBlock::iterator &) const {
594    return false;
595  }
596
597  /// getNumMicroOps - Return the number of u-operations the given machine
598  /// instruction will be decoded to on the target cpu.
599  virtual unsigned getNumMicroOps(const MachineInstr *MI,
600                                  const InstrItineraryData *ItinData) const;
601};
602
603/// TargetInstrInfoImpl - This is the default implementation of
604/// TargetInstrInfo, which just provides a couple of default implementations
605/// for various methods.  This separated out because it is implemented in
606/// libcodegen, not in libtarget.
607class TargetInstrInfoImpl : public TargetInstrInfo {
608protected:
609  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
610  : TargetInstrInfo(desc, NumOpcodes) {}
611public:
612  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
613                                       MachineBasicBlock *NewDest) const;
614  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
615                                           bool NewMI = false) const;
616  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
617                                     unsigned &SrcOpIdx2) const;
618  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
619                                    const SmallVectorImpl<unsigned> &Ops) const;
620  virtual bool PredicateInstruction(MachineInstr *MI,
621                            const SmallVectorImpl<MachineOperand> &Pred) const;
622  virtual void reMaterialize(MachineBasicBlock &MBB,
623                             MachineBasicBlock::iterator MI,
624                             unsigned DestReg, unsigned SubReg,
625                             const MachineInstr *Orig,
626                             const TargetRegisterInfo &TRI) const;
627  virtual MachineInstr *duplicate(MachineInstr *Orig,
628                                  MachineFunction &MF) const;
629  virtual bool produceSameValue(const MachineInstr *MI0,
630                                const MachineInstr *MI1) const;
631  virtual bool isSchedulingBoundary(const MachineInstr *MI,
632                                    const MachineBasicBlock *MBB,
633                                    const MachineFunction &MF) const;
634
635  virtual ScheduleHazardRecognizer *
636  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const;
637};
638
639} // End llvm namespace
640
641#endif
642