TargetInstrInfo.h revision 2312842de0c641107dd04d7e056d02491cc781ca
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class CalleeSavedInfo;
23class InstrItineraryData;
24class LiveVariables;
25class MCAsmInfo;
26class MachineMemOperand;
27class MachineRegisterInfo;
28class MDNode;
29class MCInst;
30class SDNode;
31class ScheduleHazardRecognizer;
32class SelectionDAG;
33class TargetRegisterClass;
34class TargetRegisterInfo;
35
36template<class T> class SmallVectorImpl;
37
38
39//---------------------------------------------------------------------------
40///
41/// TargetInstrInfo - Interface to description of machine instruction set
42///
43class TargetInstrInfo {
44  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
45  unsigned NumOpcodes;                // Number of entries in the desc array
46
47  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
48  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
49public:
50  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
51  virtual ~TargetInstrInfo();
52
53  unsigned getNumOpcodes() const { return NumOpcodes; }
54
55  /// get - Return the machine instruction descriptor that corresponds to the
56  /// specified instruction opcode.
57  ///
58  const TargetInstrDesc &get(unsigned Opcode) const {
59    assert(Opcode < NumOpcodes && "Invalid opcode!");
60    return Descriptors[Opcode];
61  }
62
63  /// isTriviallyReMaterializable - Return true if the instruction is trivially
64  /// rematerializable, meaning it has no side effects and requires no operands
65  /// that aren't always available.
66  bool isTriviallyReMaterializable(const MachineInstr *MI,
67                                   AliasAnalysis *AA = 0) const {
68    return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
69           (MI->getDesc().isRematerializable() &&
70            (isReallyTriviallyReMaterializable(MI, AA) ||
71             isReallyTriviallyReMaterializableGeneric(MI, AA)));
72  }
73
74protected:
75  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
76  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
77  /// specify whether the instruction is actually trivially rematerializable,
78  /// taking into consideration its operands. This predicate must return false
79  /// if the instruction has any side effects other than producing a value, or
80  /// if it requres any address registers that are not always available.
81  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
82                                                 AliasAnalysis *AA) const {
83    return false;
84  }
85
86private:
87  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
88  /// for which the M_REMATERIALIZABLE flag is set and the target hook
89  /// isReallyTriviallyReMaterializable returns false, this function does
90  /// target-independent tests to determine if the instruction is really
91  /// trivially rematerializable.
92  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
93                                                AliasAnalysis *AA) const;
94
95public:
96  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
97  /// extension instruction. That is, it's like a copy where it's legal for the
98  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
99  /// true, then it's expected the pre-extension value is available as a subreg
100  /// of the result register. This also returns the sub-register index in
101  /// SubIdx.
102  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
103                                     unsigned &SrcReg, unsigned &DstReg,
104                                     unsigned &SubIdx) const {
105    return false;
106  }
107
108  /// isLoadFromStackSlot - If the specified machine instruction is a direct
109  /// load from a stack slot, return the virtual or physical register number of
110  /// the destination along with the FrameIndex of the loaded stack slot.  If
111  /// not, return 0.  This predicate must return 0 if the instruction has
112  /// any side effects other than loading from the stack slot.
113  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
114                                       int &FrameIndex) const {
115    return 0;
116  }
117
118  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
119  /// stack locations as well.  This uses a heuristic so it isn't
120  /// reliable for correctness.
121  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
122                                             int &FrameIndex) const {
123    return 0;
124  }
125
126  /// hasLoadFromStackSlot - If the specified machine instruction has
127  /// a load from a stack slot, return true along with the FrameIndex
128  /// of the loaded stack slot and the machine mem operand containing
129  /// the reference.  If not, return false.  Unlike
130  /// isLoadFromStackSlot, this returns true for any instructions that
131  /// loads from the stack.  This is just a hint, as some cases may be
132  /// missed.
133  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
134                                    const MachineMemOperand *&MMO,
135                                    int &FrameIndex) const {
136    return 0;
137  }
138
139  /// isStoreToStackSlot - If the specified machine instruction is a direct
140  /// store to a stack slot, return the virtual or physical register number of
141  /// the source reg along with the FrameIndex of the loaded stack slot.  If
142  /// not, return 0.  This predicate must return 0 if the instruction has
143  /// any side effects other than storing to the stack slot.
144  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
145                                      int &FrameIndex) const {
146    return 0;
147  }
148
149  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
150  /// stack locations as well.  This uses a heuristic so it isn't
151  /// reliable for correctness.
152  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
153                                            int &FrameIndex) const {
154    return 0;
155  }
156
157  /// hasStoreToStackSlot - If the specified machine instruction has a
158  /// store to a stack slot, return true along with the FrameIndex of
159  /// the loaded stack slot and the machine mem operand containing the
160  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
161  /// this returns true for any instructions that stores to the
162  /// stack.  This is just a hint, as some cases may be missed.
163  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
164                                   const MachineMemOperand *&MMO,
165                                   int &FrameIndex) const {
166    return 0;
167  }
168
169  /// reMaterialize - Re-issue the specified 'original' instruction at the
170  /// specific location targeting a new destination register.
171  /// The register in Orig->getOperand(0).getReg() will be substituted by
172  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
173  /// SubIdx.
174  virtual void reMaterialize(MachineBasicBlock &MBB,
175                             MachineBasicBlock::iterator MI,
176                             unsigned DestReg, unsigned SubIdx,
177                             const MachineInstr *Orig,
178                             const TargetRegisterInfo &TRI) const = 0;
179
180  /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
181  /// two-addrss instruction inserted by two-address pass.
182  virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
183                                     MachineInstr *UseMI,
184                                     const TargetRegisterInfo &TRI) const {
185    // Do nothing.
186  }
187
188  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
189  /// MachineFunction::CloneMachineInstr(), but the target may update operands
190  /// that are required to be unique.
191  ///
192  /// The instruction must be duplicable as indicated by isNotDuplicable().
193  virtual MachineInstr *duplicate(MachineInstr *Orig,
194                                  MachineFunction &MF) const = 0;
195
196  /// convertToThreeAddress - This method must be implemented by targets that
197  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
198  /// may be able to convert a two-address instruction into one or more true
199  /// three-address instructions on demand.  This allows the X86 target (for
200  /// example) to convert ADD and SHL instructions into LEA instructions if they
201  /// would require register copies due to two-addressness.
202  ///
203  /// This method returns a null pointer if the transformation cannot be
204  /// performed, otherwise it returns the last new instruction.
205  ///
206  virtual MachineInstr *
207  convertToThreeAddress(MachineFunction::iterator &MFI,
208                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
209    return 0;
210  }
211
212  /// commuteInstruction - If a target has any instructions that are
213  /// commutable but require converting to different instructions or making
214  /// non-trivial changes to commute them, this method can overloaded to do
215  /// that.  The default implementation simply swaps the commutable operands.
216  /// If NewMI is false, MI is modified in place and returned; otherwise, a
217  /// new machine instruction is created and returned.  Do not call this
218  /// method for a non-commutable instruction, but there may be some cases
219  /// where this method fails and returns null.
220  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
221                                           bool NewMI = false) const = 0;
222
223  /// findCommutedOpIndices - If specified MI is commutable, return the two
224  /// operand indices that would swap value. Return false if the instruction
225  /// is not in a form which this routine understands.
226  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
227                                     unsigned &SrcOpIdx2) const = 0;
228
229  /// produceSameValue - Return true if two machine instructions would produce
230  /// identical values. By default, this is only true when the two instructions
231  /// are deemed identical except for defs.
232  virtual bool produceSameValue(const MachineInstr *MI0,
233                                const MachineInstr *MI1) const = 0;
234
235  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
236  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
237  /// implemented for a target).  Upon success, this returns false and returns
238  /// with the following information in various cases:
239  ///
240  /// 1. If this block ends with no branches (it just falls through to its succ)
241  ///    just return false, leaving TBB/FBB null.
242  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
243  ///    the destination block.
244  /// 3. If this block ends with a conditional branch and it falls through to a
245  ///    successor block, it sets TBB to be the branch destination block and a
246  ///    list of operands that evaluate the condition. These operands can be
247  ///    passed to other TargetInstrInfo methods to create new branches.
248  /// 4. If this block ends with a conditional branch followed by an
249  ///    unconditional branch, it returns the 'true' destination in TBB, the
250  ///    'false' destination in FBB, and a list of operands that evaluate the
251  ///    condition.  These operands can be passed to other TargetInstrInfo
252  ///    methods to create new branches.
253  ///
254  /// Note that RemoveBranch and InsertBranch must be implemented to support
255  /// cases where this method returns success.
256  ///
257  /// If AllowModify is true, then this routine is allowed to modify the basic
258  /// block (e.g. delete instructions after the unconditional branch).
259  ///
260  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
261                             MachineBasicBlock *&FBB,
262                             SmallVectorImpl<MachineOperand> &Cond,
263                             bool AllowModify = false) const {
264    return true;
265  }
266
267  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
268  /// This is only invoked in cases where AnalyzeBranch returns success. It
269  /// returns the number of instructions that were removed.
270  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
271    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
272    return 0;
273  }
274
275  /// InsertBranch - Insert branch code into the end of the specified
276  /// MachineBasicBlock.  The operands to this method are the same as those
277  /// returned by AnalyzeBranch.  This is only invoked in cases where
278  /// AnalyzeBranch returns success. It returns the number of instructions
279  /// inserted.
280  ///
281  /// It is also invoked by tail merging to add unconditional branches in
282  /// cases where AnalyzeBranch doesn't apply because there was no original
283  /// branch to analyze.  At least this much must be implemented, else tail
284  /// merging needs to be disabled.
285  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
286                                MachineBasicBlock *FBB,
287                                const SmallVectorImpl<MachineOperand> &Cond,
288                                DebugLoc DL) const {
289    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
290    return 0;
291  }
292
293  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
294  /// after it, replacing it with an unconditional branch to NewDest. This is
295  /// used by the tail merging pass.
296  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
297                                       MachineBasicBlock *NewDest) const = 0;
298
299  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
300  /// block at the specified instruction (i.e. instruction would be the start
301  /// of a new basic block).
302  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
303                                   MachineBasicBlock::iterator MBBI) const {
304    return true;
305  }
306
307  /// isProfitableToIfCvt - Return true if it's profitable to first "NumInstrs"
308  /// of the specified basic block, where the probability of the instructions
309  /// being executed is given by Probability, and Confidence is a measure
310  /// of our confidence that it will be properly predicted.
311  virtual
312  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumInstrs,
313                           float Probability, float Confidence) const {
314    return false;
315  }
316
317  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
318  /// checks for the case where two basic blocks from true and false path
319  /// of a if-then-else (diamond) are predicated on mutally exclusive
320  /// predicates, where the probability of the true path being taken is given
321  /// by Probability, and Confidence is a measure of our confidence that it
322  /// will be properly predicted.
323  virtual bool
324  isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTInstrs,
325                      MachineBasicBlock &FMBB, unsigned NumFInstrs,
326                      float Probability, float Confidence) const {
327    return false;
328  }
329
330  /// isProfitableToDupForIfCvt - Return true if it's profitable for
331  /// if-converter to duplicate a specific number of instructions in the
332  /// specified MBB to enable if-conversion, where the probability of the
333  /// instructions being executed is given by Probability, and Confidence is
334  /// a measure of our confidence that it will be properly predicted.
335  virtual bool
336  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumInstrs,
337                            float Probability, float Confidence) const {
338    return false;
339  }
340
341  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
342  virtual void copyPhysReg(MachineBasicBlock &MBB,
343                           MachineBasicBlock::iterator MI, DebugLoc DL,
344                           unsigned DestReg, unsigned SrcReg,
345                           bool KillSrc) const {
346    assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
347  }
348
349  /// storeRegToStackSlot - Store the specified register of the given register
350  /// class to the specified stack frame index. The store instruction is to be
351  /// added to the given machine basic block before the specified machine
352  /// instruction. If isKill is true, the register operand is the last use and
353  /// must be marked kill.
354  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
355                                   MachineBasicBlock::iterator MI,
356                                   unsigned SrcReg, bool isKill, int FrameIndex,
357                                   const TargetRegisterClass *RC,
358                                   const TargetRegisterInfo *TRI) const {
359  assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
360  }
361
362  /// loadRegFromStackSlot - Load the specified register of the given register
363  /// class from the specified stack frame index. The load instruction is to be
364  /// added to the given machine basic block before the specified machine
365  /// instruction.
366  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
367                                    MachineBasicBlock::iterator MI,
368                                    unsigned DestReg, int FrameIndex,
369                                    const TargetRegisterClass *RC,
370                                    const TargetRegisterInfo *TRI) const {
371  assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
372  }
373
374  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
375  /// saved registers and returns true if it isn't possible / profitable to do
376  /// so by issuing a series of store instructions via
377  /// storeRegToStackSlot(). Returns false otherwise.
378  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
379                                         MachineBasicBlock::iterator MI,
380                                        const std::vector<CalleeSavedInfo> &CSI,
381                                         const TargetRegisterInfo *TRI) const {
382    return false;
383  }
384
385  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
386  /// saved registers and returns true if it isn't possible / profitable to do
387  /// so by issuing a series of load instructions via loadRegToStackSlot().
388  /// Returns false otherwise.
389  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
390                                           MachineBasicBlock::iterator MI,
391                                        const std::vector<CalleeSavedInfo> &CSI,
392                                        const TargetRegisterInfo *TRI) const {
393    return false;
394  }
395
396  /// emitFrameIndexDebugValue - Emit a target-dependent form of
397  /// DBG_VALUE encoding the address of a frame index.  Addresses would
398  /// normally be lowered the same way as other addresses on the target,
399  /// e.g. in load instructions.  For targets that do not support this
400  /// the debug info is simply lost.
401  /// If you add this for a target you should handle this DBG_VALUE in the
402  /// target-specific AsmPrinter code as well; you will probably get invalid
403  /// assembly output if you don't.
404  virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
405                                                 int FrameIx,
406                                                 uint64_t Offset,
407                                                 const MDNode *MDPtr,
408                                                 DebugLoc dl) const {
409    return 0;
410  }
411
412  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
413  /// slot into the specified machine instruction for the specified operand(s).
414  /// If this is possible, a new instruction is returned with the specified
415  /// operand folded, otherwise NULL is returned.
416  /// The new instruction is inserted before MI, and the client is responsible
417  /// for removing the old instruction.
418  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
419                                  const SmallVectorImpl<unsigned> &Ops,
420                                  int FrameIndex) const;
421
422  /// foldMemoryOperand - Same as the previous version except it allows folding
423  /// of any load and store from / to any address, not just from a specific
424  /// stack slot.
425  MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
426                                  const SmallVectorImpl<unsigned> &Ops,
427                                  MachineInstr* LoadMI) const;
428
429protected:
430  /// foldMemoryOperandImpl - Target-dependent implementation for
431  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
432  /// take care of adding a MachineMemOperand to the newly created instruction.
433  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
434                                          MachineInstr* MI,
435                                          const SmallVectorImpl<unsigned> &Ops,
436                                          int FrameIndex) const {
437    return 0;
438  }
439
440  /// foldMemoryOperandImpl - Target-dependent implementation for
441  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
442  /// take care of adding a MachineMemOperand to the newly created instruction.
443  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
444                                              MachineInstr* MI,
445                                          const SmallVectorImpl<unsigned> &Ops,
446                                              MachineInstr* LoadMI) const {
447    return 0;
448  }
449
450public:
451  /// canFoldMemoryOperand - Returns true for the specified load / store if
452  /// folding is possible.
453  virtual
454  bool canFoldMemoryOperand(const MachineInstr *MI,
455                            const SmallVectorImpl<unsigned> &Ops) const =0;
456
457  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
458  /// a store or a load and a store into two or more instruction. If this is
459  /// possible, returns true as well as the new instructions by reference.
460  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
461                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
462                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
463    return false;
464  }
465
466  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
467                                   SmallVectorImpl<SDNode*> &NewNodes) const {
468    return false;
469  }
470
471  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
472  /// instruction after load / store are unfolded from an instruction of the
473  /// specified opcode. It returns zero if the specified unfolding is not
474  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
475  /// index of the operand which will hold the register holding the loaded
476  /// value.
477  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
478                                      bool UnfoldLoad, bool UnfoldStore,
479                                      unsigned *LoadRegIndex = 0) const {
480    return 0;
481  }
482
483  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
484  /// to determine if two loads are loading from the same base address. It
485  /// should only return true if the base pointers are the same and the
486  /// only differences between the two addresses are the offset. It also returns
487  /// the offsets by reference.
488  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
489                                    int64_t &Offset1, int64_t &Offset2) const {
490    return false;
491  }
492
493  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
494  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
495  /// be scheduled togther. On some targets if two loads are loading from
496  /// addresses in the same cache line, it's better if they are scheduled
497  /// together. This function takes two integers that represent the load offsets
498  /// from the common base address. It returns true if it decides it's desirable
499  /// to schedule the two loads together. "NumLoads" is the number of loads that
500  /// have already been scheduled after Load1.
501  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
502                                       int64_t Offset1, int64_t Offset2,
503                                       unsigned NumLoads) const {
504    return false;
505  }
506
507  /// ReverseBranchCondition - Reverses the branch condition of the specified
508  /// condition list, returning false on success and true if it cannot be
509  /// reversed.
510  virtual
511  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
512    return true;
513  }
514
515  /// insertNoop - Insert a noop into the instruction stream at the specified
516  /// point.
517  virtual void insertNoop(MachineBasicBlock &MBB,
518                          MachineBasicBlock::iterator MI) const;
519
520
521  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
522  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
523    // Default to just using 'nop' string.
524  }
525
526
527  /// isPredicated - Returns true if the instruction is already predicated.
528  ///
529  virtual bool isPredicated(const MachineInstr *MI) const {
530    return false;
531  }
532
533  /// isUnpredicatedTerminator - Returns true if the instruction is a
534  /// terminator instruction that has not been predicated.
535  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
536
537  /// PredicateInstruction - Convert the instruction into a predicated
538  /// instruction. It returns true if the operation was successful.
539  virtual
540  bool PredicateInstruction(MachineInstr *MI,
541                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
542
543  /// SubsumesPredicate - Returns true if the first specified predicate
544  /// subsumes the second, e.g. GE subsumes GT.
545  virtual
546  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
547                         const SmallVectorImpl<MachineOperand> &Pred2) const {
548    return false;
549  }
550
551  /// DefinesPredicate - If the specified instruction defines any predicate
552  /// or condition code register(s) used for predication, returns true as well
553  /// as the definition predicate(s) by reference.
554  virtual bool DefinesPredicate(MachineInstr *MI,
555                                std::vector<MachineOperand> &Pred) const {
556    return false;
557  }
558
559  /// isPredicable - Return true if the specified instruction can be predicated.
560  /// By default, this returns true for every instruction with a
561  /// PredicateOperand.
562  virtual bool isPredicable(MachineInstr *MI) const {
563    return MI->getDesc().isPredicable();
564  }
565
566  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
567  /// instruction that defines the specified register class.
568  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
569    return true;
570  }
571
572  /// isSchedulingBoundary - Test if the given instruction should be
573  /// considered a scheduling boundary. This primarily includes labels and
574  /// terminators.
575  virtual bool isSchedulingBoundary(const MachineInstr *MI,
576                                    const MachineBasicBlock *MBB,
577                                    const MachineFunction &MF) const = 0;
578
579  /// Measure the specified inline asm to determine an approximation of its
580  /// length.
581  virtual unsigned getInlineAsmLength(const char *Str,
582                                      const MCAsmInfo &MAI) const;
583
584  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer
585  /// to use for this target when scheduling the machine instructions after
586  /// register allocation.
587  virtual ScheduleHazardRecognizer*
588  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const = 0;
589
590  /// AnalyzeCompare - For a comparison instruction, return the source register
591  /// in SrcReg and the value it compares against in CmpValue. Return true if
592  /// the comparison instruction can be analyzed.
593  virtual bool AnalyzeCompare(const MachineInstr *MI,
594                              unsigned &SrcReg, int &Mask, int &Value) const {
595    return false;
596  }
597
598  /// OptimizeCompareInstr - See if the comparison instruction can be converted
599  /// into something more efficient. E.g., on ARM most instructions can set the
600  /// flags register, obviating the need for a separate CMP. Update the iterator
601  /// *only* if a transformation took place.
602  virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
603                                    unsigned SrcReg, int Mask, int Value,
604                                    const MachineRegisterInfo *MRI,
605                                    MachineBasicBlock::iterator &) const {
606    return false;
607  }
608
609  /// getNumMicroOps - Return the number of u-operations the given machine
610  /// instruction will be decoded to on the target cpu.
611  virtual unsigned getNumMicroOps(const MachineInstr *MI,
612                                  const InstrItineraryData *ItinData) const;
613
614  /// getOperandLatency - Compute and return the use operand latency of a given
615  /// itinerary class and operand index if the value is produced by an
616  /// instruction of the specified itinerary class and def operand index.
617  /// In most cases, the static scheduling itinerary was enough to determine the
618  /// operand latency. But it may not be possible for instructions with variable
619  /// number of defs / uses.
620  virtual
621  int getOperandLatency(const InstrItineraryData *ItinData,
622                        const MachineInstr *DefMI, unsigned DefIdx,
623                        const MachineInstr *UseMI, unsigned UseIdx) const;
624
625  virtual
626  int getOperandLatency(const InstrItineraryData *ItinData,
627                        SDNode *DefNode, unsigned DefIdx,
628                        SDNode *UseNode, unsigned UseIdx) const;
629
630  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
631  /// and an use in the current loop, return true if the target considered
632  /// it 'high'. This is used by optimization passes such as machine LICM to
633  /// determine whether it makes sense to hoist an instruction out even in
634  /// high register pressure situation.
635  virtual
636  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
637                             const MachineRegisterInfo *MRI,
638                             const MachineInstr *DefMI, unsigned DefIdx,
639                             const MachineInstr *UseMI, unsigned UseIdx) const {
640    return false;
641  }
642};
643
644/// TargetInstrInfoImpl - This is the default implementation of
645/// TargetInstrInfo, which just provides a couple of default implementations
646/// for various methods.  This separated out because it is implemented in
647/// libcodegen, not in libtarget.
648class TargetInstrInfoImpl : public TargetInstrInfo {
649protected:
650  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
651  : TargetInstrInfo(desc, NumOpcodes) {}
652public:
653  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
654                                       MachineBasicBlock *NewDest) const;
655  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
656                                           bool NewMI = false) const;
657  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
658                                     unsigned &SrcOpIdx2) const;
659  virtual bool canFoldMemoryOperand(const MachineInstr *MI,
660                                    const SmallVectorImpl<unsigned> &Ops) const;
661  virtual bool PredicateInstruction(MachineInstr *MI,
662                            const SmallVectorImpl<MachineOperand> &Pred) const;
663  virtual void reMaterialize(MachineBasicBlock &MBB,
664                             MachineBasicBlock::iterator MI,
665                             unsigned DestReg, unsigned SubReg,
666                             const MachineInstr *Orig,
667                             const TargetRegisterInfo &TRI) const;
668  virtual MachineInstr *duplicate(MachineInstr *Orig,
669                                  MachineFunction &MF) const;
670  virtual bool produceSameValue(const MachineInstr *MI0,
671                                const MachineInstr *MI1) const;
672  virtual bool isSchedulingBoundary(const MachineInstr *MI,
673                                    const MachineBasicBlock *MBB,
674                                    const MachineFunction &MF) const;
675
676  virtual ScheduleHazardRecognizer *
677  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*) const;
678};
679
680} // End llvm namespace
681
682#endif
683