TargetInstrInfo.h revision 2a3868849438a0a0ad4f9a50f2b94eb1639b554e
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Support/ErrorHandling.h"
18#include "llvm/Target/TargetInstrDesc.h"
19#include "llvm/CodeGen/MachineFunction.h"
20
21namespace llvm {
22
23class TargetRegisterClass;
24class TargetRegisterInfo;
25class LiveVariables;
26class CalleeSavedInfo;
27class SDNode;
28class SelectionDAG;
29
30template<class T> class SmallVectorImpl;
31
32
33//---------------------------------------------------------------------------
34///
35/// TargetInstrInfo - Interface to description of machine instruction set
36///
37class TargetInstrInfo {
38  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
39  unsigned NumOpcodes;                // Number of entries in the desc array
40
41  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
42  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
43public:
44  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
45  virtual ~TargetInstrInfo();
46
47  // Invariant opcodes: All instruction sets have these as their low opcodes.
48  enum {
49    PHI = 0,
50    INLINEASM = 1,
51    DBG_LABEL = 2,
52    EH_LABEL = 3,
53    GC_LABEL = 4,
54    DECLARE = 5,
55
56    /// EXTRACT_SUBREG - This instruction takes two operands: a register
57    /// that has subregisters, and a subregister index. It returns the
58    /// extracted subregister value. This is commonly used to implement
59    /// truncation operations on target architectures which support it.
60    EXTRACT_SUBREG = 6,
61
62    /// INSERT_SUBREG - This instruction takes three operands: a register
63    /// that has subregisters, a register providing an insert value, and a
64    /// subregister index. It returns the value of the first register with
65    /// the value of the second register inserted. The first register is
66    /// often defined by an IMPLICIT_DEF, as is commonly used to implement
67    /// anyext operations on target architectures which support it.
68    INSERT_SUBREG = 7,
69
70    /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
71    IMPLICIT_DEF = 8,
72
73    /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except
74    /// that the first operand is an immediate integer constant. This constant
75    /// is often zero, as is commonly used to implement zext operations on
76    /// target architectures which support it, such as with x86-64 (with
77    /// zext from i32 to i64 via implicit zero-extension).
78    SUBREG_TO_REG = 9,
79
80    /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
81    /// register-to-register copy into a specific register class. This is only
82    /// used between instruction selection and MachineInstr creation, before
83    /// virtual registers have been created for all the instructions, and it's
84    /// only needed in cases where the register classes implied by the
85    /// instructions are insufficient. The actual MachineInstrs to perform
86    /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
87    COPY_TO_REGCLASS = 10
88  };
89
90  unsigned getNumOpcodes() const { return NumOpcodes; }
91
92  /// get - Return the machine instruction descriptor that corresponds to the
93  /// specified instruction opcode.
94  ///
95  const TargetInstrDesc &get(unsigned Opcode) const {
96    assert(Opcode < NumOpcodes && "Invalid opcode!");
97    return Descriptors[Opcode];
98  }
99
100  /// isTriviallyReMaterializable - Return true if the instruction is trivially
101  /// rematerializable, meaning it has no side effects and requires no operands
102  /// that aren't always available.
103  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
104    return MI->getDesc().isRematerializable() &&
105           isReallyTriviallyReMaterializable(MI);
106  }
107
108protected:
109  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
110  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
111  /// instruction itself is actually trivially rematerializable, considering
112  /// its operands.  This is used for targets that have instructions that are
113  /// only trivially rematerializable for specific uses.  This predicate must
114  /// return false if the instruction has any side effects other than
115  /// producing a value, or if it requres any address registers that are not
116  /// always available.
117  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
118    return true;
119  }
120
121public:
122  /// Return true if the instruction is a register to register move and return
123  /// the source and dest operands and their sub-register indices by reference.
124  virtual bool isMoveInstr(const MachineInstr& MI,
125                           unsigned& SrcReg, unsigned& DstReg,
126                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
127    return false;
128  }
129
130  /// isLoadFromStackSlot - If the specified machine instruction is a direct
131  /// load from a stack slot, return the virtual or physical register number of
132  /// the destination along with the FrameIndex of the loaded stack slot.  If
133  /// not, return 0.  This predicate must return 0 if the instruction has
134  /// any side effects other than loading from the stack slot.
135  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
136                                       int &FrameIndex) const {
137    return 0;
138  }
139
140  /// isStoreToStackSlot - If the specified machine instruction is a direct
141  /// store to a stack slot, return the virtual or physical register number of
142  /// the source reg along with the FrameIndex of the loaded stack slot.  If
143  /// not, return 0.  This predicate must return 0 if the instruction has
144  /// any side effects other than storing to the stack slot.
145  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
146                                      int &FrameIndex) const {
147    return 0;
148  }
149
150  /// reMaterialize - Re-issue the specified 'original' instruction at the
151  /// specific location targeting a new destination register.
152  virtual void reMaterialize(MachineBasicBlock &MBB,
153                             MachineBasicBlock::iterator MI,
154                             unsigned DestReg, unsigned SubIdx,
155                             const MachineInstr *Orig) const = 0;
156
157  /// isInvariantLoad - Return true if the specified instruction (which is
158  /// marked mayLoad) is loading from a location whose value is invariant across
159  /// the function.  For example, loading a value from the constant pool or from
160  /// from the argument area of a function if it does not change.  This should
161  /// only return true of *all* loads the instruction does are invariant (if it
162  /// does multiple loads).
163  virtual bool isInvariantLoad(const MachineInstr *MI) const {
164    return false;
165  }
166
167  /// convertToThreeAddress - This method must be implemented by targets that
168  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
169  /// may be able to convert a two-address instruction into one or more true
170  /// three-address instructions on demand.  This allows the X86 target (for
171  /// example) to convert ADD and SHL instructions into LEA instructions if they
172  /// would require register copies due to two-addressness.
173  ///
174  /// This method returns a null pointer if the transformation cannot be
175  /// performed, otherwise it returns the last new instruction.
176  ///
177  virtual MachineInstr *
178  convertToThreeAddress(MachineFunction::iterator &MFI,
179                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
180    return 0;
181  }
182
183  /// commuteInstruction - If a target has any instructions that are commutable,
184  /// but require converting to a different instruction or making non-trivial
185  /// changes to commute them, this method can overloaded to do this.  The
186  /// default implementation of this method simply swaps the first two operands
187  /// of MI and returns it.
188  ///
189  /// If a target wants to make more aggressive changes, they can construct and
190  /// return a new machine instruction.  If an instruction cannot commute, it
191  /// can also return null.
192  ///
193  /// If NewMI is true, then a new machine instruction must be created.
194  ///
195  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
196                                           bool NewMI = false) const = 0;
197
198  /// findCommutedOpIndices - If specified MI is commutable, return the two
199  /// operand indices that would swap value. Return true if the instruction
200  /// is not in a form which this routine understands.
201  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
202                                     unsigned &SrcOpIdx2) const = 0;
203
204  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
205  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
206  /// implemented for a target).  Upon success, this returns false and returns
207  /// with the following information in various cases:
208  ///
209  /// 1. If this block ends with no branches (it just falls through to its succ)
210  ///    just return false, leaving TBB/FBB null.
211  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
212  ///    the destination block.
213  /// 3. If this block ends with an conditional branch and it falls through to
214  ///    an successor block, it sets TBB to be the branch destination block and
215  ///    a list of operands that evaluate the condition. These
216  ///    operands can be passed to other TargetInstrInfo methods to create new
217  ///    branches.
218  /// 4. If this block ends with an conditional branch and an unconditional
219  ///    block, it returns the 'true' destination in TBB, the 'false'
220  ///    destination in FBB, and a list of operands that evaluate the condition.
221  ///    These operands can be passed to other TargetInstrInfo methods to create
222  ///    new branches.
223  ///
224  /// Note that RemoveBranch and InsertBranch must be implemented to support
225  /// cases where this method returns success.
226  ///
227  /// If AllowModify is true, then this routine is allowed to modify the basic
228  /// block (e.g. delete instructions after the unconditional branch).
229  ///
230  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
231                             MachineBasicBlock *&FBB,
232                             SmallVectorImpl<MachineOperand> &Cond,
233                             bool AllowModify = false) const {
234    return true;
235  }
236
237  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
238  /// This is only invoked in cases where AnalyzeBranch returns success. It
239  /// returns the number of instructions that were removed.
240  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
241    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
242    return 0;
243  }
244
245  /// InsertBranch - Insert a branch into the end of the specified
246  /// MachineBasicBlock.  This operands to this method are the same as those
247  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
248  /// returns success and when an unconditional branch (TBB is non-null, FBB is
249  /// null, Cond is empty) needs to be inserted. It returns the number of
250  /// instructions inserted.
251  ///
252  /// It is also invoked by tail merging to add unconditional branches in
253  /// cases where AnalyzeBranch doesn't apply because there was no original
254  /// branch to analyze.  At least this much must be implemented, else tail
255  /// merging needs to be disabled.
256  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
257                            MachineBasicBlock *FBB,
258                            const SmallVectorImpl<MachineOperand> &Cond) const {
259    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
260    return 0;
261  }
262
263  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
264  /// returns false if the target does not how to copy between the specified
265  /// registers.
266  virtual bool copyRegToReg(MachineBasicBlock &MBB,
267                            MachineBasicBlock::iterator MI,
268                            unsigned DestReg, unsigned SrcReg,
269                            const TargetRegisterClass *DestRC,
270                            const TargetRegisterClass *SrcRC) const {
271    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
272    return false;
273  }
274
275  /// storeRegToStackSlot - Store the specified register of the given register
276  /// class to the specified stack frame index. The store instruction is to be
277  /// added to the given machine basic block before the specified machine
278  /// instruction. If isKill is true, the register operand is the last use and
279  /// must be marked kill.
280  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
281                                   MachineBasicBlock::iterator MI,
282                                   unsigned SrcReg, bool isKill, int FrameIndex,
283                                   const TargetRegisterClass *RC) const {
284    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
285  }
286
287  /// loadRegFromStackSlot - Load the specified register of the given register
288  /// class from the specified stack frame index. The load instruction is to be
289  /// added to the given machine basic block before the specified machine
290  /// instruction.
291  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
292                                    MachineBasicBlock::iterator MI,
293                                    unsigned DestReg, int FrameIndex,
294                                    const TargetRegisterClass *RC) const {
295    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
296  }
297
298  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
299  /// saved registers and returns true if it isn't possible / profitable to do
300  /// so by issuing a series of store instructions via
301  /// storeRegToStackSlot(). Returns false otherwise.
302  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
303                                         MachineBasicBlock::iterator MI,
304                                const std::vector<CalleeSavedInfo> &CSI) const {
305    return false;
306  }
307
308  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
309  /// saved registers and returns true if it isn't possible / profitable to do
310  /// so by issuing a series of load instructions via loadRegToStackSlot().
311  /// Returns false otherwise.
312  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
313                                           MachineBasicBlock::iterator MI,
314                                const std::vector<CalleeSavedInfo> &CSI) const {
315    return false;
316  }
317
318  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
319  /// slot into the specified machine instruction for the specified operand(s).
320  /// If this is possible, a new instruction is returned with the specified
321  /// operand folded, otherwise NULL is returned. The client is responsible for
322  /// removing the old instruction and adding the new one in the instruction
323  /// stream.
324  MachineInstr* foldMemoryOperand(MachineFunction &MF,
325                                  MachineInstr* MI,
326                                  const SmallVectorImpl<unsigned> &Ops,
327                                  int FrameIndex) const;
328
329  /// foldMemoryOperand - Same as the previous version except it allows folding
330  /// of any load and store from / to any address, not just from a specific
331  /// stack slot.
332  MachineInstr* foldMemoryOperand(MachineFunction &MF,
333                                  MachineInstr* MI,
334                                  const SmallVectorImpl<unsigned> &Ops,
335                                  MachineInstr* LoadMI) const;
336
337protected:
338  /// foldMemoryOperandImpl - Target-dependent implementation for
339  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
340  /// take care of adding a MachineMemOperand to the newly created instruction.
341  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
342                                          MachineInstr* MI,
343                                          const SmallVectorImpl<unsigned> &Ops,
344                                          int FrameIndex) const {
345    return 0;
346  }
347
348  /// foldMemoryOperandImpl - Target-dependent implementation for
349  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
350  /// take care of adding a MachineMemOperand to the newly created instruction.
351  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
352                                              MachineInstr* MI,
353                                              const SmallVectorImpl<unsigned> &Ops,
354                                              MachineInstr* LoadMI) const {
355    return 0;
356  }
357
358public:
359  /// canFoldMemoryOperand - Returns true for the specified load / store if
360  /// folding is possible.
361  virtual
362  bool canFoldMemoryOperand(const MachineInstr *MI,
363                            const SmallVectorImpl<unsigned> &Ops) const {
364    return false;
365  }
366
367  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
368  /// a store or a load and a store into two or more instruction. If this is
369  /// possible, returns true as well as the new instructions by reference.
370  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
371                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
372                                 SmallVectorImpl<MachineInstr*> &NewMIs) const{
373    return false;
374  }
375
376  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
377                                   SmallVectorImpl<SDNode*> &NewNodes) const {
378    return false;
379  }
380
381  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
382  /// instruction after load / store are unfolded from an instruction of the
383  /// specified opcode. It returns zero if the specified unfolding is not
384  /// possible.
385  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
386                                      bool UnfoldLoad, bool UnfoldStore) const {
387    return 0;
388  }
389
390  /// BlockHasNoFallThrough - Return true if the specified block does not
391  /// fall-through into its successor block.  This is primarily used when a
392  /// branch is unanalyzable.  It is useful for things like unconditional
393  /// indirect branches (jump tables).
394  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
395    return false;
396  }
397
398  /// ReverseBranchCondition - Reverses the branch condition of the specified
399  /// condition list, returning false on success and true if it cannot be
400  /// reversed.
401  virtual
402  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
403    return true;
404  }
405
406  /// insertNoop - Insert a noop into the instruction stream at the specified
407  /// point.
408  virtual void insertNoop(MachineBasicBlock &MBB,
409                          MachineBasicBlock::iterator MI) const {
410    llvm_unreachable("Target didn't implement insertNoop!");
411  }
412
413  /// isPredicated - Returns true if the instruction is already predicated.
414  ///
415  virtual bool isPredicated(const MachineInstr *MI) const {
416    return false;
417  }
418
419  /// isUnpredicatedTerminator - Returns true if the instruction is a
420  /// terminator instruction that has not been predicated.
421  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
422
423  /// PredicateInstruction - Convert the instruction into a predicated
424  /// instruction. It returns true if the operation was successful.
425  virtual
426  bool PredicateInstruction(MachineInstr *MI,
427                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
428
429  /// SubsumesPredicate - Returns true if the first specified predicate
430  /// subsumes the second, e.g. GE subsumes GT.
431  virtual
432  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
433                         const SmallVectorImpl<MachineOperand> &Pred2) const {
434    return false;
435  }
436
437  /// DefinesPredicate - If the specified instruction defines any predicate
438  /// or condition code register(s) used for predication, returns true as well
439  /// as the definition predicate(s) by reference.
440  virtual bool DefinesPredicate(MachineInstr *MI,
441                                std::vector<MachineOperand> &Pred) const {
442    return false;
443  }
444
445  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
446  /// instruction that defines the specified register class.
447  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
448    return true;
449  }
450
451  /// isDeadInstruction - Return true if the instruction is considered dead.
452  /// This allows some late codegen passes to delete them.
453  virtual bool isDeadInstruction(const MachineInstr *MI) const = 0;
454
455  /// GetInstSize - Returns the size of the specified Instruction.
456  ///
457  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
458    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
459    return 0;
460  }
461
462  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
463  ///
464  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
465};
466
467/// TargetInstrInfoImpl - This is the default implementation of
468/// TargetInstrInfo, which just provides a couple of default implementations
469/// for various methods.  This separated out because it is implemented in
470/// libcodegen, not in libtarget.
471class TargetInstrInfoImpl : public TargetInstrInfo {
472protected:
473  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
474  : TargetInstrInfo(desc, NumOpcodes) {}
475public:
476  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
477                                           bool NewMI = false) const;
478  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
479                                     unsigned &SrcOpIdx2) const;
480  virtual bool PredicateInstruction(MachineInstr *MI,
481                            const SmallVectorImpl<MachineOperand> &Pred) const;
482  virtual void reMaterialize(MachineBasicBlock &MBB,
483                             MachineBasicBlock::iterator MI,
484                             unsigned DestReg, unsigned SubReg,
485                             const MachineInstr *Orig) const;
486  virtual bool isDeadInstruction(const MachineInstr *MI) const;
487
488  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
489};
490
491} // End llvm namespace
492
493#endif
494